基于正交投影的子带信息几何雷达弱小目标检测方法

杨政 程永强 吴昊 黎湘 王宏强

杨政, 程永强, 吴昊, 等. 基于正交投影的子带信息几何雷达弱小目标检测方法[J]. 雷达学报, 2023, 12(4): 776–792. doi: 10.12000/JR23079
引用本文: 杨政, 程永强, 吴昊, 等. 基于正交投影的子带信息几何雷达弱小目标检测方法[J]. 雷达学报, 2023, 12(4): 776–792. doi: 10.12000/JR23079
YANG Zheng, CHENG Yongqiang, WU Hao, et al. Subband information geometry detection method based on orthogonal projection for weak radar targets[J]. Journal of Radars, 2023, 12(4): 776–792. doi: 10.12000/JR23079
Citation: YANG Zheng, CHENG Yongqiang, WU Hao, et al. Subband information geometry detection method based on orthogonal projection for weak radar targets[J]. Journal of Radars, 2023, 12(4): 776–792. doi: 10.12000/JR23079

基于正交投影的子带信息几何雷达弱小目标检测方法

DOI: 10.12000/JR23079
基金项目: 国家自然科学基金(61921001),湖南省杰出青年基金(2022JJ10063)
详细信息
    作者简介:

    杨 政,博士生,主要研究方向为雷达目标检测和信息几何

    程永强,教授,主要研究方向为雷达目标检测、信息几何和雷达前视成像

    吴 昊,博士生,主要研究方向为雷达目标检测和信息几何

    黎 湘,教授,主要研究方向为目标识别、信号检测和雷达成像

    王宏强,研究员,主要研究方向为太赫兹技术、量子雷达和雷达目标特性

    通讯作者:

    程永强 nudtyqcheng@gmail.com

  • 责任主编:陈小龙 Corresponding Editor: CHEN Xiaolong
  • 中图分类号: TN957.51

Subband Information Geometry Detection Method Based on Orthogonal Projection for Weak Radar Targets

Funds: The National Natural Science Foundation of China (61921001), Distinguished Youth Science Foundation of Hunan Province (2022JJ10063)
More Information
  • 摘要: 基于信息几何理论的雷达目标检测是一种新兴的技术,它将目标检测问题转化为流形上目标与杂波的区分问题,在低信杂比检测中具有优势。对于复杂背景下的弱小目标检测,目标与杂波难以区分,限制着检测性能。因此,该文基于矩阵信息几何检测器,提出一种基于正交投影的子带信息几何目标检测方法。该文利用滤波器组对雷达回波信号进行子带分解,并在矩阵流形上稳健估计子带内强杂波信号子空间,提出基于流形的正交投影方法以抑制强杂波,增强目标与杂波的区分性。最后,采用仿真数据和实测海杂波数据验证所提方法的有效性。结果表明,所提方法能够有效抑制强杂波,具有较好的检测性能。

     

  • 图  1  矩阵信息几何检测器原理框图

    Figure  1.  Block scheme of MIG detector

    图  2  HPD矩阵流形的几何解释

    Figure  2.  Geometric interpretation on HPD matrix manifold

    图  3  子带滤波器组频率幅度响应

    Figure  3.  Amplitude frequency response of subband filter bank

    图  4  代数均值与几何均值的对比

    Figure  4.  Comparison between arithmetic mean and geometric mean

    图  5  基于正交投影的子带信息几何检测流程图

    Figure  5.  Flowchart of subband geometric detection based on orthogonal projection

    图  6  加入干扰信号后不同方法的平均影响函数值

    Figure  6.  Mean value of the influence function for different methods after adding interferences

    图  7  K分布杂波下的检测概率($K = n$)

    Figure  7.  Probabilities of detection for K distribution clutter ($K = n$)

    图  8  K分布杂波下的检测性能曲线($K = 2n$)

    Figure  8.  Probabilities of detection for K distribution clutter ($K = 2n$)

    图  9  数据集杂波谱

    Figure  9.  Clutter power spectrum of the data set

    图  10  IPIX雷达数据的归一化检测统计量(${f_{\rm{d}}} = 160$ Hz)

    Figure  10.  Normalized detection statistics of the IPIX radar data (${f_{\rm{d}}} = 160$ Hz)

    图  11  基于IPIX雷达数据的检测概率(${f_{\rm{d}}} = 160$ Hz)

    Figure  11.  Probabilities of detection for the IPIX radar data (${f_{\rm{d}}} = 160$ Hz)

    图  12  基于IPIX雷达数据的检测概率(${f_{\rm{d}}} = 350$ Hz)

    Figure  12.  Probabilities of detection for the IPIX radar data (${f_{\rm{d}}} = 350$ Hz)

    图  13  海杂波与目标探测数据采集的试验场景

    Figure  13.  Sea clutter and target detection experimental scenario

    图  14  数据集20210106150614_02_staring的归一化距离-脉冲图

    Figure  14.  Normalized range-pulse of data set 20210106150614_02_staring

    图  15  NAU实验数据(目标位于4.84 km处)

    Figure  15.  Experimental data of NAU (the target is located at 4.84 km)

    图  16  NAU数据的归一化检测统计量

    Figure  16.  Normalized detection statistics of the NAU data

    图  17  归一化一维距离像

    Figure  17.  Normalized range profile

    图  18  NAU数据的接收机工作特性曲线

    Figure  18.  ROC curves of different methods for the NAU data

    1  基于正交投影的子带信息几何检测方法

    1.   Subband MIG detection method based on orthogonal projection

     输入:雷达待检测单元回波信号$ {{\boldsymbol{z}}_D} $和杂波参考单元回波信号$ {\left\{ {{{\boldsymbol{z}}_k}} \right\}_{k \in \left[ K \right]}} $。
     输出:检测决策:${\mathcal{D}^{(l)} }\left( {\Re \left( { { {\boldsymbol{z} }_D} } \right),\bar \Re \left( { { {\left\{ { { {\boldsymbol{z} }_k} } \right\} }_{k \in \left[ K \right]} } } \right)} \right)\mathop \gtrless \limits_{ {\mathcal{H}_0} }^{ {\mathcal{H}_1} } {\eta ^{(l)} }, \;\;{l = - L,-(L-1), \cdots ,0, \cdots ,L}$。
     For $l = - L,-(L-1), \cdots ,0, \cdots ,L$:
      1:首先基于子带滤波器,对雷达回波信号进行子带滤波,获得子带滤波信号$ {\boldsymbol{z}}_D^{(l)} = \mathfrak{L}\left( {{{\boldsymbol{z}}_D}} \right) $和$ {\left\{ {{\boldsymbol{z}}_k^{(l)} = \mathfrak{L}\left( {{{\boldsymbol{z}}_k}} \right)} \right\}_{k \in \left[ K \right]}} $;
      2:基于流形估计子带内的杂波信号子空间,并进行稳健的正交投影,得到目标增强信号$ {\boldsymbol{\tilde z}}_D^{(l)} = \mathfrak{P}\left( {{\boldsymbol{z}}_D^{(l)}} \right) $和$ {\left\{ {{\boldsymbol{\tilde z}}_k^{(l)} = \mathfrak{P}\left( {{\boldsymbol{z}}_k^{(l)}} \right)} \right\}_{k \in \left[ K \right]}} $;
      3:将基于流形正交投影后的信号表征为HPD矩阵,计算待检测单元HPD矩阵$ \Re \left( {{{\boldsymbol{z}}_D}} \right) $和杂波参考单元HPD矩阵$ {\left\{ {\Re \left( {{{\boldsymbol{z}}_k}} \right)} \right\}_{k \in \left[ K \right]}} $,并计算
        几何均值$ \bar \Re \left( {{{\left\{ {{{\boldsymbol{z}}_k}} \right\}}_{k \in \left[ K \right]}}} \right) $;
      4:计算几何检测统计量$ {\mathcal{D}^{(l)}}\left( {\Re \left( {{{\boldsymbol{z}}_D}} \right),\bar \Re \left( {{{\left\{ {{{\boldsymbol{z}}_k}} \right\}}_{k \in \left[ K \right]}}} \right)} \right) $,并与门限$ {\eta ^{(l)}} $进行比较,完成检测判决
        $ {\mathcal{D}^{(l)}}\left( {\Re \left( {{{\boldsymbol{z}}_D}} \right),\bar \Re \left( {{{\left\{ {{{\boldsymbol{z}}_k}} \right\}}_{k \in \left[ K \right]}}} \right)} \right)\mathop \gtrless \limits_{{\mathcal{H}_0}}^{{\mathcal{H}_1}} {\eta ^{(l)}} $。
     End
    下载: 导出CSV

    表  1  不同方法的计算复杂度

    Table  1.   The computation complexity of different methods

    方法计算复杂度
    本文方法$ \mathcal{O}\left( {M\left( {K{n^3} + {n^3} + \left( {n + Q} \right)\log \left( {n + Q} \right)} \right)} \right) $
    RD$ \mathcal{O}\left( {\nu K{n^3}} \right) $
    LE$ \mathcal{O}\left( {K{n^3}} \right) $
    KLD$ \mathcal{O}\left( {K{n^3}} \right) $
    LD$ \mathcal{O}\left( {\varepsilon K{n^3}} \right) $
    FFT$ \mathcal{O}\left( {n\log n + Kn} \right) $
    ANMF$ \mathcal{O}\left( {{n^3} + K{n^2}} \right) $
    SANMF$ \mathcal{O}\left( {M\left( {{n^3} + K{n^2}} \right)} \right) $
    ME$ \mathcal{O}\left( {K\left( {{n^3} + n} \right)} \right) $
    PS-GLRT$ \mathcal{O}\left( {{n^3} + K{n^2}} \right) $
    2S-Rao$ \mathcal{O}\left( {{n^3} + K{n^2}} \right) $
    下载: 导出CSV

    表  2  数据文件19980204_155537_ANTSTEP参数

    Table  2.   Parameters of data file 19980204_155537_ANTSTEP

    参数数值
    载频(GHz)9.39
    脉冲重复频率(Hz)1000
    距离单元数28
    脉冲数60000
    距离分辨率(m)30
    下载: 导出CSV

    表  3  数据文件20210106150614_02_staring参数

    Table  3.   Parameters of data file 20210106150614_02_staring

    参数数值
    载频(GHz)9.3~9.5
    脉冲重复频率(Hz)1704
    距离单元数4346
    脉冲数6000
    采样频率(MHz)60
    目标位置(km)4.84
    下载: 导出CSV
  • [1] 许述文, 白晓惠, 郭子薰, 等. 海杂波背景下雷达目标特征检测方法的现状与展望[J]. 雷达学报, 2020, 9(4): 684–714. doi: 10.12000/JR20084

    XU Shuwen, BAI Xiaohui, GUO Zixun, et al. Status and prospects of feature-based detection methods for floating targets on the sea surface[J]. Journal of Radars, 2020, 9(4): 684–714. doi: 10.12000/JR20084
    [2] 朱文涛. 海面慢速弱小目标雷达探测技术研究[J]. 科技视界, 2018(22): 64–67. doi: 10.19694/j.cnki.issn2095-2457.2018.22.030

    ZHU Wentao. Research on radar detection technology for slow and weak targets on the sea[J]. Science &Technology Vision, 2018(22): 64–67. doi: 10.19694/j.cnki.issn2095-2457.2018.22.030
    [3] 陈小龙, 关键, 黄勇, 等. 雷达低可观测目标探测技术[J]. 科技导报, 2017, 35(11): 30–38. doi: 10.3981/j.issn.1000-7857.2017.11.004

    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radar low-observable target detection[J]. Science &Technology Review, 2017, 35(11): 30–38. doi: 10.3981/j.issn.1000-7857.2017.11.004
    [4] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068

    CHEN Xiaolong, CHEN Weishi, RAO Yunhua, et al. Progress and prospects of radar target detection and recognition technology for flying birds and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068
    [5] WATTS S. Cell-averaging CFAR gain in spatially correlated K-distributed clutter[J]. IEE Proceedings-Radar, Sonar and Navigation, 1996, 143(5): 321–327. doi: 10.1049/ip-rsn:19960745
    [6] ARMSTRONG B C and GRIFFITHS H D. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter[J]. IEE Proceedings F (Radar and Signal Processing), 1991, 138(2): 139–152. doi: 10.1049/ip-f-2.1991.0020
    [7] CONTE E, DE MAIO A, and RICCI G. Covariance matrix estimation for adaptive CFAR detection in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 415–426. doi: 10.1109/TAES.2002.1008976
    [8] SANGSTON K J and FARINA A. Coherent radar detection in compound-Gaussian clutter: Clairvoyant detectors[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 42–63. doi: 10.1109/MAES.2016.150132
    [9] LIU Weijian, LIU Jun, HAO Chengpeng, et al. Multichannel adaptive signal detection: Basic theory and literature review[J]. Science China Information Sciences, 2022, 65(2): 121301. doi: 10.1007/s11432-020-3211-8
    [10] RONG Yao, AUBRY A, DE MAIO A, et al. Adaptive radar detection in low-rank heterogeneous clutter via invariance theory[J]. IEEE Transactions on Signal Processing, 2021, 69: 1492–1506. doi: 10.1109/TSP.2021.3058447
    [11] SHUI Penglang and SHI Yanling. Subband ANMF detection of moving targets in sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3578–3593. doi: 10.1109/TAES.2012.6324742
    [12] 时艳玲, 林毓峰, 梁丹丹. 非平稳海杂波背景下子带分段ANMF检测器[J]. 系统工程与电子技术, 2018, 40(4): 782–789. doi: 10.3969/j.issn.1001-506X.2018.04.11

    SHI Yanling, LIN Yufeng, and LIANG Dandan. Subband segmented ANMF detector in non-stationary sea clutter[J]. Systems Engineering and Electronics, 2018, 40(4): 782–789. doi: 10.3969/j.issn.1001-506X.2018.04.11
    [13] 时艳玲, 王磊, 李君豪. 基于投影空间下奇异值分解的海面小目标CFAR检测[J]. 系统工程与电子技术, 2022, 44(2): 512–519. doi: 10.12305/j.issn.1001-506X.2022.02.20

    SHI Yanling, WANG Lei, and LI Junhao. CFAR detection for small targets on sea surface based on singular value decomposition in projection space[J]. Systems Engineering and Electronics, 2022, 44(2): 512–519. doi: 10.12305/j.issn.1001-506X.2022.02.20
    [14] YANG Yong, XIAO Shunping, and WANG Xuesong. Radar detection of small target in sea clutter using orthogonal projection[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3): 382–386. doi: 10.1109/LGRS.2018.2875705
    [15] 王炜鹏, 冯远, 单涛. 采用改进型时频滤波的海杂波抑制方法[J]. 信号处理, 2019, 35(2): 208–216. doi: 10.16798/j.issn.1003-0530.2019.02.006

    WANG Weipeng, FENG Yuan, and SHAN Tao. A sea clutter suppression method using improved time-frequency filtering method[J]. Journal of Signal Processing, 2019, 35(2): 208–216. doi: 10.16798/j.issn.1003-0530.2019.02.006
    [16] CHENG Yongqiang, HUA Xiaoqiang, WANG Hongqiang, et al. The geometry of signal detection with applications to radar signal processing[J]. Entropy, 2016, 18(11): 381. doi: 10.3390/e18110381
    [17] HUA Xiaoqiang, ONO Y, PENG Linyu, et al. Target detection within nonhomogeneous clutter via total Bregman divergence-based matrix information geometry detectors[J]. IEEE Transactions on Signal Processing, 2021, 69: 4326–4340. doi: 10.1109/TSP.2021.3095725
    [18] HUA Xiaoqiang and PENG Linyu. MIG median detectors with manifold filter[J]. Signal Processing, 2021, 188: 108176. doi: 10.1016/j.sigpro.2021.108176
    [19] CHEN Xixi, CHENG Yongqiang, WU Hao, et al. Heterogeneous clutter suppression via affine transformation on Riemannian manifold of HPD matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5109813. doi: 10.1109/TGRS.2022.3147494
    [20] WU Hao, CHENG Yongqiang, CHEN Xixi, et al. Geodesic normal coordinate-based manifold filtering for target detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5114615. doi: 10.1109/TGRS.2022.3183432
    [21] ARNAUDON M, BARBARESCO F, and YANG Le. Riemannian medians and means with applications to radar signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(4): 595–604. doi: 10.1109/JSTSP.2013.2261798
    [22] BARBARESCO F. Innovative tools for radar signal processing based on Cartan’s geometry of SPD matrices & information geometry[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6.
    [23] BARBARESCO F and MEIER U. Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air[J]. Comptes Rendus Physique, 2010, 11(1): 54–67. doi: 10.1016/j.crhy.2010.01.001
    [24] HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Matrix CFAR detectors based on symmetrized Kullback-Leibler and total Kullback-Leibler divergences[J]. Digital Signal Processing, 2017, 69: 106–116. doi: 10.1016/j.dsp.2017.06.019
    [25] YANG Zheng, CHENG Yongqiang, WU Hao, et al. Enhanced matrix CFAR detection with dimensionality reduction of Riemannian manifold[J]. IEEE Signal Processing Letters, 2020, 27: 2084–2088. doi: 10.1109/LSP.2020.3037489
    [26] 杨政, 程永强, 吴昊, 等. 基于黎曼流形监督降维的矩阵CFAR增强检测[J]. 信号处理, 2021, 37(11): 2013–2021. doi: 10.16798/j.issn.1003-0530.2021.11.001

    YANG Zheng, CHENG Yongqiang, WU Hao, et al. Enhanced matrix CFAR detection based on supervised dimensionality reduction of Riemannian manifold[J]. Journal of Signal Processing, 2021, 37(11): 2013–2021. doi: 10.16798/j.issn.1003-0530.2021.11.001
    [27] ZHAO Wenjing, LIU Wenlong, and JIN Minglu. Spectral norm based mean matrix estimation and its application to radar target CFAR detection[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5746–5760. doi: 10.1109/TSP.2019.2945991
    [28] WU Hao, CHENG Yongqiang, CHEN Xixi, et al. Adaptive matrix information geometry detector with local metric tensor[J]. IEEE Transactions on Signal Processing, 2022, 70: 3758–3773. doi: 10.1109/TSP.2022.3189179
    [29] 高永婵, 潘丽燕, 李亚超, 等. 空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法[J]. 雷达学报, 2022, 11(5): 765–777. doi: 10.12000/JR22013

    GAO Yongchan, PAN Liyan, LI Yachao, et al. Multi-rank range-spread target detection method for space/time symmetric array radar under non-Gaussian clutter background[J]. Journal of Radars, 2022, 11(5): 765–777. doi: 10.12000/JR22013
    [30] 丁昊, 薛永华, 黄勇, 等. 均匀和部分均匀杂波中子空间目标的斜对称自适应检测方法[J]. 雷达学报, 2015, 4(4): 418–430. doi: 10.12000/JR14133

    DING Hao, XUE Yonghua, HUANG Yong, et al. Persymmetric adaptive detectors of subspace signals in homogeneous and partially homogeneous clutter[J]. Journal of Radars, 2015, 4(4): 418–430. doi: 10.12000/JR14133
    [31] 邹鲲, 来磊, 骆艳卜, 等. 子空间干扰非高斯杂波的抑制[J]. 雷达学报, 2020, 9(4): 715–722. doi: 10.12000/JR19050

    ZOU Kun, LAI Lei, LUO Yanbo, et al. Suppression of non-Gaussian clutter from subspace interference[J]. Journal of Radars, 2020, 9(4): 715–722. doi: 10.12000/JR19050
    [32] CABANES Y, BARBARESCO F, ARNAUDON M, et al. Unsupervised machine learning for pathological radar clutter clustering: The p-mean-shift algorithm[C]. C&ESAR 2019, Rennes, France, 2019: 1–21.
    [33] AMARI S I. Information Geometry and Its Applications[M]. Tokyo: Springer, 2016: 1–376.
    [34] MOAKHER M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2005, 26(3): 735–747. doi: 10.1137/S0895479803436937
    [35] MOAKHER M. On the averaging of symmetric positive-definite tensors[J]. Journal of Elasticity, 2006, 82(3): 273–296. doi: 10.1007/s10659-005-9035-z
    [36] HIAI F and PETZ D. Riemannian metrics on positive definite matrices related to means[J]. Linear Algebra and its Applications, 2009, 430(11/12): 3105–3130. doi: 10.1016/j.laa.2009.01.025
    [37] ARSIGNY V, FILLARD P, PENNEC X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2007, 29(1): 328–347. doi: 10.1137/050637996
    [38] MOAKHER M and BATCHELOR P G. Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization[M]. WEICKERT J and HAGEN H. Visualization and Processing of Tensor Fields. Berlin: Springer, 2006: 285–298.
    [39] CHERIAN A, SRA S, BANERJEE A, et al. Jensen-Bregman LogDet divergence with application to efficient similarity search for covariance matrices[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2161–2174. doi: 10.1109/TPAMI.2012.259
    [40] ZHANG Xianda. Matrix Analysis and Applications[M]. Cambridge: Cambridge University Press, 2017: 1–723.
    [41] HUA Xiaoqiang, CHENG Yongqiang, WANG Hongqiang, et al. Robust covariance estimators based on information divergences and riemannian manifold[J]. Entropy, 2018, 20(4): 219. doi: 10.3390/e20040219
    [42] ZHAO Wenjing, LIU Chang, LIU Wenlong, et al. Maximum eigenvalue-based target detection for the K-distributed clutter environment[J]. IET Radar, Sonar & Navigation, 2018, 12(11): 1294–1306. doi: 10.1049/iet-rsn.2018.5229
    [43] MAO Linlin, GAO Yongchan, YAN Shefeng, et al. Persymmetric subspace detection in structured interference and non-homogeneous disturbance[J]. IEEE Signal Processing Letters, 2019, 26(6): 928–932. doi: 10.1109/LSP.2019.2913332
    [44] LIU Weijian, LIU Jun, and HUANG Lei. Rao tests for distributed target detection in interference and noise[J]. Signal Processing, 2015, 117: 333–342. doi: 10.1016/j.sigpro.2015.06.012
    [45] IPIX Radar File. IPIX radar dataset files in Grimsby on the shores of Lake Ontario[OL]. http://soma.mcmaster.ca/ipix. 1998.
    [46] 刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi: 10.12000/JR19089

    LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089
    [47] 刘宁波, 丁昊, 黄勇, 等. X波段雷达对海探测试验与数据获取年度进展[J]. 雷达学报, 2021, 10(1): 173–182. doi: 10.12000/JR21011

    LIU Ningbo, DING Hao, HUANG Yong, et al. Annual progress of the sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2021, 10(1): 173–182. doi: 10.12000/JR21011
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  992
  • HTML全文浏览量:  350
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 修回日期:  2023-06-13
  • 网络出版日期:  2023-07-06
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回