无人机载双站干涉SAR系统关键技术分析与实验验证研究

朱金彪 潘洁 仇晓兰 蒋雯 刘玉泉 董勇伟 李威 蔺蓓 倪帆 上官松涛 刘鸣谦 程遥

朱金彪, 潘洁, 仇晓兰, 等. 无人机载双站干涉SAR系统关键技术分析与实验验证研究[J]. 雷达学报, 2023, 12(4): 832–848. doi: 10.12000/JR23060
引用本文: 朱金彪, 潘洁, 仇晓兰, 等. 无人机载双站干涉SAR系统关键技术分析与实验验证研究[J]. 雷达学报, 2023, 12(4): 832–848. doi: 10.12000/JR23060
ZHU Jinbiao, PAN Jie, QIU Xiaolan, et al. Analysis and experimental validation of key technologies for unmanned aerial vehicle-borne bistatic interferometric synthetic aperture radar[J]. Journal of Radars, 2023, 12(4): 832–848. doi: 10.12000/JR23060
Citation: ZHU Jinbiao, PAN Jie, QIU Xiaolan, et al. Analysis and experimental validation of key technologies for unmanned aerial vehicle-borne bistatic interferometric synthetic aperture radar[J]. Journal of Radars, 2023, 12(4): 832–848. doi: 10.12000/JR23060

无人机载双站干涉SAR系统关键技术分析与实验验证研究

DOI: 10.12000/JR23060
基金项目: 国家重点研发计划(2022YFB3902600)
详细信息
    作者简介:

    朱金彪,博士生,正高级工程师,硕士生导师,主要研究方向为航空遥感技术与应用、机载合成孔径雷达系统等

    潘 洁,博士,正高级工程师,硕士生导师,主要研究方向为航空遥感技术与应用、稀疏阵列雷达系统、雷达信号处理等

    仇晓兰,博士,研究员,博士生导师,主要研究方向为SAR成像处理、SAR图像理解

    蒋 雯,博士,教授,博士生导师,主要研究方向为信息融合、不确定人工智能

    刘玉泉,硕士,高级工程师,主要研究方向为微波遥感技术、合成孔径雷达信号处理等

    李 威,博士,副教授,主要研究方向为飞行器运动轨迹优化控制与动力学参数识别、飞行器运动控制、弹道学与飞行力学等

    通讯作者:

    朱金彪 zhujb@aircas.ac.cn

    潘洁 panjie@aircas.ac.cn

  • 责任主编:陈杰 Corresponding Editor: CHEN Jie
  • 中图分类号: TN957.52

Analysis and Experimental Validation of Key Technologies for Unmanned Aerial Vehicle-borne Bistatic Interferometric Synthetic Aperture Radar

Funds: National Key R&D Program of China (2022YFB3902600)
More Information
  • 摘要: 双站干涉合成孔径雷达(SAR)技术可突破单站双天线干涉SAR的基线限制,获得更加灵活的基线构型,有利于提升干涉测量精度。无人机载双站干涉SAR机动性好、飞行成本低,具有很高的应用价值,也能为无人机载分布式干涉、三维成像等提供关键支撑,具有重要的研究意义。中国科学院空天信息创新研究院牵头设计研制了国内首套无人机载双站干涉SAR系统,并在内蒙古百灵机场开展了飞行实验。该文简要介绍了该系统方案设计、基本构成和主要性能,并重点介绍了该系统的空间、时间及相位同步和数据处理关键技术,然后介绍了首次飞行实验的方案和实施研究情况,最后给出了实验数据处理结果,验证了关键技术和该无人机载双站干涉SAR系统0.5 m高程测量精度等主要指标,为后续多无人机平台协同开展分布式干涉数据获取及处理研究提供了基础。

     

  • 图  1  双站干涉SAR及双向同步链实物图

    Figure  1.  Bistatic InSAR and bidirectional synchronous chain

    图  2  主站L波段全极化SAR和双向同步链集成

    Figure  2.  Master L-band full-polarization SAR and bidirectional synchronous chain integration

    图  3  从站L波段双极化接收系统和双向同步链集成

    Figure  3.  Slave L-band dual-polarization receiving system and bidirectional synchronous chain integration

    图  4  双向飞行时间法

    Figure  4.  The method of two-way time-of-flight

    图  5  通过UWB技术实现双机协同定位技术

    Figure  5.  Dual-machine co-positioning technology is realized through UWB technology

    图  6  长机-僚机编队横航向运动

    Figure  6.  Leader-follower formation movement

    图  7  UWB测距和差分GPS定位的融合处理流程图

    Figure  7.  Flowchart of the fusion processing of UWB ranging and differential GPS positioning

    图  8  双站InSAR系统双向同步链示意图

    Figure  8.  Diagram of the bidirectional synchronous chain of bistatic InSAR system

    图  9  从站回波距离压缩后的结果

    Figure  9.  The results of range compression of the slave echo

    图  10  从站雷达时间和相位同步后的测量结果

    Figure  10.  Measurements after time and phase synchronization of slave radar

    图  11  无人机载双站InSAR成像处理流程图

    Figure  11.  Flow chart of UAV-borne bistatic InSAR imaging processing

    图  12  无人机飞行航线

    Figure  12.  UAV flight route

    图  13  无人机载双站InSAR飞行的典型航迹和姿态测量数据

    Figure  13.  Typical trajectory and attitude measurements of UAV-borne bistatic InSAR

    图  14  无人机载双站InSAR飞行照片

    Figure  14.  Photo of UAV-borne bistatic InSAR

    图  15  定标器分布图

    Figure  15.  Diagram of reflector distribution

    图  16  定标器布设照片

    Figure  16.  Photos of reflector layout

    图  17  成像结果图

    Figure  17.  Results of imaging

    图  18  某三面角成像结果的方位向曲线

    Figure  18.  Curve of trihedral corner reflector in azimuth in imaging results

    图  19  干涉相位误差与距离向像素关系

    Figure  19.  Relation of interference phase error and pixel location in range direction

    图  20  极化校正前后的主站Pauli图

    Figure  20.  Pauli diagrams of the master station before and after polarization correction

    图  21  机场局部区域SAR图像

    Figure  21.  SAR image of the airport area

    图  22  相干系数图

    Figure  22.  Coherence coefficient diagram

    图  23  相干相位图

    Figure  23.  Interference phase diagram

    图  24  去平地和滤波后的相位图

    Figure  24.  Interference phase diagram after flat-earth phase removal and filtering

    图  25  反演的高度

    Figure  25.  Elevation inversion

    图  26  机场附近小土丘区域图像

    Figure  26.  Image of the hill near the airport

    图  27  干涉相位图

    Figure  27.  Interference phase diagram

    图  28  去平地及滤波后的干涉相位图

    Figure  28.  Interference phase diagram after flat-earth phase removal and filtering

    图  29  高程反演结果

    Figure  29.  Results of elevation inversion

    表  1  无人机载双站InSAR系统误差分配

    Table  1.   Systematic error distribution of UAV-borne bistatic InSAR

    参数名称参数值
    飞行高度(相对于地面)2 km
    入射角45°
    基线角
    有效基线长度30 m
    水平基线长度42.43 m
    航迹控制精度(分配值)1 m
    时间同步引入的包络对齐误差0.1个采样单元
    运补残余误差导致的干涉相位误差
    同步链的干涉相位误差(分配值)
    去相干引入的相位误差2.54°
    基线测量误差(分配值)4 mm
    基线角误差(分配值)0.003°
    高程误差(理论分析值)0.46 m
    下载: 导出CSV

    表  2  无人机载双站InSAR系统总体构成

    Table  2.   Overall composition of the UAV-borne bistatic InSAR system

    名称说明
    L-SAR(主站)由L波段全极化SAR和双向同步链组成,其中,L波段全极化SAR由信号产生与发射通道、功放、双极化接收通道、天线及天线支架、开关组合、数据采集存储模块等组成
    L-接收系统(从站)由L波段双极化接收系统和双向同步链组成,其中L波段双极化接收系统由双极化接收通道、天线及天线支架、数据采集存储模块等组成
    无人机双机编队由两架固定翼HC-140无人机和两套协同控制器组成,其中,单架无人机最大作业载荷30 kg、最大翼展尺寸5.4 m,最大飞行速度45 m/s
    位姿测量系统由差分GPS模块和微型惯性测量组成;测量数据更新频率为200 Hz,地面后处理后,航迹测量精度0.05 m,偏航角测量精度0.02°,横滚和俯仰角测量精度0.015°
    下载: 导出CSV

    表  3  L-SAR载荷参数

    Table  3.   L-SAR load parameters

    名称参数名称参数值
    系统波段L波段
    系统同步误差≤5°
    噪声等效后向散射系数(NEσ0)≤40 dB
    主站分辨率≤0.5 m
    最大信号带宽400 MHz
    最大作用距离≥6 km
    最大测绘带宽≥3 km
    主站/从站极化方式全极化
    极化隔离度≥25 dBc
    极化通道相位不平衡度≤8°
    幅度不平衡度≤0.3 dB
    下载: 导出CSV

    表  4  双站InSAR构型参数

    Table  4.   Configuration parameters of bistatic InSAR

    模式飞行高度(m)基线(m)说明
    模式1100030双站角0.87o,基线长度探底双机协同飞行安全距离的下限
    模式2200050双站角0.72o,各项参数均比较合适
    下载: 导出CSV

    表  5  分辨率测试结果

    Table  5.   Results of resolution test

    分辨率距离向(m)方位向(m)
    主站0.37470.4534
    从站0.37470.4860
    下载: 导出CSV

    表  6  主站数据极化定标前后的三面角极化质量评价

    Table  6.   Polarization quality evaluation of master data before and after polarization calibration based on trihedral corners

    状态三面角编号隔离度(dB)幅度不平衡(dB)相位不平衡(°)
    极化校正前J2*29.32170.2198399.8529
    J336.68580.4435997.3340
    J428.0391–0.05674 98.3664
    极化校正后J2*322.35425.786E–15–7.2788E–15
    J332.24670.15738–3.2333
    J437.7835–0.32067 –1.2498
    注:表中带*的J2为定标中使用的三面角,其余定标中未用
    下载: 导出CSV

    表  7  从站数据极化定标前后的三面角极化质量评价

    Table  7.   Polarization quality evaluation of slave data before and after polarization calibration based on trihedral corners

    状态三面角编号隔离度(dB)幅度不平衡(dB)相位不平衡(°)
    极化校正前J2*28.4590–0.23950 –90.2117
    J326.8158–0.08019–87.2605
    J427.9540–0.71433–86.5173
    极化校正后J2*311.252–2.893E–153.317E–14
    J331.8702 0.0658332.3704
    J433.8167–0.4939603.3900
    注:表中带*的J2为定标中使用的三面角,其余定标中未用
    下载: 导出CSV

    表  8  双站SAR干涉反演高度误差表

    Table  8.   Table of elevation inversion error of bistatic interferometric SAR

    定标点相干系数反演高度(m)实测高度(m)误差(m)
    J10.971385.891385.710.18
    J20.891383.391383.230.17
    J30.931385.141384.860.28
    J40.971382.561383.68–1.12
    J50.861383.231384.45–1.21
    J60.981383.811384.38–0.56
    J70.991382.401382.110.29
    J80.961387.601387.050.55
    J90.921383.411384.28–0.87
    J100.871380.681383.05–2.37
    J110.981382.761383.38–0.61
    J120.961383.261383.61–0.35
    J130.981383.291382.980.31
    J140.961385.931386.03–0.09
    J150.661386.801387.79–1.00
    J160.891388.001387.680.32
    J170.481385.261387.25–1.99
    J180.881386.491386.65–0.17
    J190.971385.821386.09–0.27
    J200.931385.391385.57–0.18
    J210.981385.531385.230.30
    下载: 导出CSV
  • [1] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic aperture radar interferometry[J]. Proceedings of the IEEE, 2000, 88(3): 333–382. doi: 10.1109/5.838084
    [2] 仇晓兰, 丁赤飚, 胡东辉. 双站SAR成像处理技术[M]. 北京: 科学出版社, 2010: 8–11.

    QIU Xiaolan, DING Chibiao, and HU Dong-hui. Bistatic SAR Imaging Algorithms[M]. Beijing: Science Press, 2010: 8–11.
    [3] 孙亚飞, 江利明, 柳林, 等. TanDEM-X双站SAR干涉测量及研究进展[J]. 国土资源遥感, 2015, 27(1): 16–22. doi: 10.6046/gtzyyg.2015.01.03

    SUN Yafei, JIANG Liming, LIU Lin, et al. TanDEM-X bistatic SAR interferometry and its research progress[J]. Remote Sensing for Natural Resources, 2015, 27(1): 16–22. doi: 10.6046/gtzyyg.2015.01.03
    [4] 章皖秋, 岳彩荣, 颜培东. TanDEM-X极化干涉SAR森林冠层高度反演[J]. 东北林业大学学报, 2017, 45(1): 47–54. doi: 10.3969/j.issn.1000-5382.2017.01.011

    ZHANG Wanqiu, YUE Cairong, and YAN Peidong. Forest canopy height retrieval by PolInSAR with TanDEM-X data[J]. Journal of Northeast Forestry University, 2017, 45(1): 47–54. doi: 10.3969/j.issn.1000-5382.2017.01.011
    [5] LIANG Da, LIU Kaiyu, ZHANG Heng, et al. The processing framework and experimental verification for the noninterrupted synchronization scheme of LuTan-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5740–5750. doi: 10.1109/TGRS.2020.3024561
    [6] LIN Haoyu, DENG Yunkai, ZHANG Heng, et al. On the processing of dual-channel receiving signals of the LuTan-1 SAR System[J]. Remote Sensing, 2022, 14(3): 515. doi: 10.3390/rs14030515
    [7] HENDRIKS I, META A, TRAMPUZ C, et al. MetaSensing’s novel L-band airborne SAR sensors for the BelSAR project: First Bistatic results[EB/OL]. https://www.researchgate.net/profile/Izzy-Hendriks/publication/326317566_MetaSensing%27s_Novel_L-Band_Airborne_SAR_Sensors_for_the_BelSAR_Project_First_Bistatic_Results/links/5b45af4b0f7e9b1c72236322/MetaSensings-Novel-L-Band-Airborne-SAR-Sensors-for-the-BelSAR-Project-First-Bistatic-Results.pdf, 2017.
    [8] META A, TRAMPUZ C, COCCIA A, et al. First results of the BelSAR L band airborne bistatic fully polarimetric Synthetic aperture radar campaign[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 1040–1042.
    [9] YANG Jianyu, HUANG Yulin, YANG Haiguang, et al. A first experiment of airborne bistatic forward-looking SAR - Preliminary results[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 4202–4204.
    [10] LI Zhongyu, WU Junjie, YI Qingying, et al. Bistatic forward-looking SAR ground moving target detection and imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1000–1016. doi: 10.1109/TAES.2014.130539
    [11] LI Zhongyu, YE Hongda, LIU Zhutian, et al. Bistatic SAR clutter-ridge matched STAP method for nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216914. doi: 10.1109/TGRS.2021.3125043
    [12] 傅志豪. 无人机载干涉SAR系统性能分析及应用研究[D]. [硕士论文], 应急管理部国家自然灾害防治研究院, 2021.

    FU Zhihao. Performance analysis and application of UAV SAR system[D]. [Master dissertation], National Institute of Natural Hazards, 2021.
    [13] 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027

    QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027
    [14] LV Zexin, QIU Xiaolan, CHENG Yao, et al. Multi-rotor UAV-borne PolInSAR data processing and preliminary analysis of height inversion in urban area[J]. Remote Sensing, 2022, 14(9): 2161. doi: 10.3390/rs14092161
    [15] 林春辉. 单基/双基SAR成像若干关键问题研究[D]. [博士论文], 西安电子科技大学, 2019.

    LIN Chunhui. Study on some imaging issues of monostatic and bistatic SAR[D]. [Ph.D. dissertation], Xidian University, 2019.
    [16] 刘松林. 双基SAR时频同步系统研究[D]. [硕士论文], 南京航空航天大学, 2016.

    LIU Songlin. Research on time and frequency synchronization system of bistatic SAR[D]. [Master dissertation], Nanjing University of Aeronautics and Astronautics, 2016.
    [17] 汤晓涛, 楼良盛, 刘志铭. 编队卫星InSAR系统的相位同步分析[J]. 地球信息科学, 2008, 10(6): 798–801. doi: 10.3969/j.issn.1560-8999.2008.06.020

    TANG Xiaotao, LOU Liangsheng, and LIU Zhiming. Analyses of phase synchronization on InSAR system based on formation- flying satellites[J]. Journal of Geo-information Science, 2008, 10(6): 798–801. doi: 10.3969/j.issn.1560-8999.2008.06.020
    [18] 丁赤飚, 李芳芳, 胡东辉, 等. 机载干涉合成孔径雷达数据处理技术[M]. 北京: 科学出版社, 2017: 17–36.

    DING Chibiao, LI Fangfang, HU Donghui, et al. Data Processing Technology of Airborne Interferometric Synthetic Aperture Radar[M]. Beijing: Science Press, 2017: 17–36.
    [19] 李芳芳, 仇晓兰, 孟大地, 等. 机载双天线InSAR运动补偿误差的影响分析[J]. 电子与信息学报, 2013, 35(3): 559–567. doi: 10.3724/SP.J.1146.2012.00850

    LI Fangfang, QIU Xiaolan, MENG Dadi, et al. Effects of motion compensation errors on performance of airborne dual-antenna InSAR[J]. Journal of Electronics &Information Technology, 2013, 35(3): 559–567. doi: 10.3724/SP.J.1146.2012.00850
    [20] 刘琦, 岳彩荣, 章皖秋, 等. 极化干涉SAR森林冠层高反演的地形坡度改正[J]. 东北林业大学学报, 2017, 45(1): 55–60, 70. doi: 10.3969/j.issn.1000-5382.2017.01.012

    LIU Qi, YUE Cairong, ZHANG Wanqiu, et al. Terrain slope correction on PolInSAR forest canopy height inversion[J]. Journal of Northeast Forestry University, 2017, 45(1): 55–60, 70. doi: 10.3969/j.issn.1000-5382.2017.01.012
    [21] 朱刚. 超宽带(UWB)原理与干扰[M]. 北京: 清华大学出版社, 2009: 2–5.

    ZHU Gang. Ultra Wideband (UWB) Principle and Interference[M]. Beijing: Tsinghua University Press, 2009: 2–5.
    [22] LUECKEN H, STEINER C, and WITTNEBEN A. Location-aware UWB communication with generalized energy detection receivers[J]. IEEE Transactions on Wireless Communications, 2012, 11(9): 3068–3078. doi: 10.1109/TWC.2012.070912.110101
    [23] 潘莉娟. 星间高精度时间同步和测距系统的研究[D]. [硕士论文], 中国科学技术大学, 2008.

    PAN Lijuan. Research on high-precision time synchronization and ranging systems between satellites[D]. [Master dissertation], University of Science and Technology of China, 2008.
    [24] 张方辉, 梁兴东, 周良将. 双站SAR时间同步误差建模及分析[J]. 国外电子测量技术, 2010, 29(8): 36–40. doi: 10.3969/j.issn.1002-8978.2010.08.013

    ZHANG Fanghui, LIANG Xingdong, and ZHOU Liangjiang. Modeling and analyzing of time synchronization errors in bistatic SAR[J]. Foreign Electronic Measurement Technology, 2010, 29(8): 36–40. doi: 10.3969/j.issn.1002-8978.2010.08.013
    [25] YOUNIS M, METZIG R, and KRIEGER G. Performance prediction of a phase synchronization link for Bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(3): 429–433. doi: 10.1109/LGRS.2006.874163
    [26] 雷科. 机载双基地合成孔径雷达系统同步问题研究[D]. [硕士论文], 电子科技大学, 2008.

    LEI Ke. Research on synchronization of airborne bistatic synthetic-aperture radar system[D]. [Master dissertation], University of Electronic Science and Technology of China, 2008.
    [27] WEIB M. Synchronisation of bistatic radar systems[C]. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 1750–1753.
    [28] 向建冰, 吕孝雷, 付希凯, 等. 天绘二号双星InSAR成像与DSM生成技术[J]. 测绘学报, 2022, 51(12): 2493–2500. doi: 10.11947/j.AGCS.2022.20210373

    XIANG Jianbing, LÜ Xiaolei, FU Xikai, et al. Bistatic InSAR interferometry imaging and DSM generation for TH-2[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(12): 2493–2500. doi: 10.11947/j.AGCS.2022.20210373
    [29] 孟大地. 机载合成孔径雷达运动补偿算法研究[D]. [博士论文], 中国科学院电子学研究所, 2006.

    MENG Dadi. Research on motion compensation algorithm for airborne SAR[D]. [Ph. D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2006.
    [30] QIU Xiaolan, HAN Bin, MENG Dadi, et al. An azimuth resample method for bistatic SAR motion compensation[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
    [31] DALL J, GRINDER-PEDERSEN J, and MADSEN S N. Calibration of a high resolution airborne 3D SAR[C]. IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development, Singapore, 1997: 1018–1021.
    [32] 张薇. 机载双天线干涉SAR定标方法研究[D]. [博士学位论文], 中国科学院电子学研究所, 2009.

    ZHANG Wei. Airborne dual-antenna InSAR’s interferometric calibration method research[D]. [Ph.D. dissertation], Institute of Electrics, Chinese Academy of Sciences, 2009.
    [33] 吴迪, 李焱磊, 周良将, 等. 一种基于Whitt算法的SAR极化定标改进方法[J]. 雷达科学与技术, 2018, 16(2): 125–132. doi: 10.3969/j.issn.1672-2337.2018.02.002

    WU Di, LI Yanlei, ZHOU Liangjiang, et al. An improved method for SAR polarimetric calibration based on Whitt algorithm[J]. Radar Science and Technology, 2018, 16(2): 125–132. doi: 10.3969/j.issn.1672-2337.2018.02.002
    [34] LI Fangfang, DING Chibiao, ZHANG Yueting, et al. Airborne InSAR interferometric phase analysis, unwrapping method, and fast implementation in low coherence areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 5241–5250. doi: 10.1109/JSTARS.2020.3020148
    [35] 黄海风, 张永胜, 董臻. 星载合成孔径雷达干涉新技术[M]. 北京: 科学出版社, 2015: 52–55.

    HUANG Haifeng, ZHANG Yongsheng, and DONG Zhen. New Interferometric Technology of Spaceborne Synthetic Aperture Radar[M]. Beijing: Science Press, 2015: 52–55.
    [36] GOLDSTEIN R M and WERNER C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035–4038. doi: 10.1029/1998GL900033
    [37] BARAN I, STEWART M P, KAMPES B M, et al. A modification to the Goldstein radar interferogram filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 2114–2118. doi: 10.1109/TGRS.2003.817212
    [38] 张俊娜, 邓喀中, 范洪冬, 等. InSAR相位解缠方法应用比较[J]. 现代测绘, 2011, 34(4): 4. doi: 10.3969/j.issn.1672-4097.2011.04.004

    ZHANG Junna, DENG Kazhong, FAN Hongdong, et al. Comparison on application of InSAR phase unwrapping methords[J]. Modern Surveying and Mapping, 2011, 34(4): 4. doi: 10.3969/j.issn.1672-4097.2011.04.004
  • 加载中
图(29) / 表(8)
计量
  • 文章访问数:  1388
  • HTML全文浏览量:  411
  • PDF下载量:  263
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-27
  • 修回日期:  2023-07-19
  • 网络出版日期:  2023-08-11
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回