基于相空间重构的辐射源个体识别技术综述

赵雨睿 黄知涛 王翔

赵雨睿, 黄知涛, 王翔. 基于相空间重构的辐射源个体识别技术综述[J]. 雷达学报, 2023, 12(4): 713–737. doi: 10.12000/JR23057
引用本文: 赵雨睿, 黄知涛, 王翔. 基于相空间重构的辐射源个体识别技术综述[J]. 雷达学报, 2023, 12(4): 713–737. doi: 10.12000/JR23057
ZHAO Yurui, HUANG Zhitao, and WANG Xiang. A review of specific emitter identification based on phase space reconstruction[J]. Journal of Radars, 2023, 12(4): 713–737. doi: 10.12000/JR23057
Citation: ZHAO Yurui, HUANG Zhitao, and WANG Xiang. A review of specific emitter identification based on phase space reconstruction[J]. Journal of Radars, 2023, 12(4): 713–737. doi: 10.12000/JR23057

基于相空间重构的辐射源个体识别技术综述

DOI: 10.12000/JR23057
基金项目: 国家自然科学基金(62271494)
详细信息
    作者简介:

    赵雨睿,博士生,主要研究方向为辐射源个体识别技术、深度学习技术

    黄知涛,博士,教授,主要研究方向为非合作信号处理、目标识别

    王 翔,博士,副教授,主要研究方向为通信信号处理、深度学习

    通讯作者:

    黄知涛 huangzhitao@nudt.edu.cn

    王翔 christopherwx@163.com

  • 责任主编:雷迎科 Corresponding Editor: LEI Yingke
  • 中图分类号: TN95

A Review of Specific Emitter Identification Based on Phase Space Reconstruction

Funds: The National Natural Science Foundation of China (62271494)
More Information
  • 摘要: 辐射源个体识别技术,起源于雷达目标精确辨识任务,旨在根据截获的电磁信号提取辐射源独有的指纹特征,并进一步辨识辐射源个体身份的技术。相空间重构技术,作为一种有效的时间序列分析技术,可以从一维时间序列中重构一个与原系统非线性动力学特性相同的相空间。相空间重构技术自2007年开始被诸多学者引入辐射源个体识别问题中。然而,该项技术研究时间较短且分布较为分散,尚未形成清楚的发展脉络。对此,该文旨在系统性地总结归纳基于相空间重构的辐射源个体识别技术。首先,在介绍相空间重构技术的基础上,论述了相空间重构技术应用于辐射源个体识别的理论依据。其次,从方法框架、算法分类、算法应用效果、算法初步对比4个维度,介绍了基于相空间重构技术的辐射源个体识别技术的研究现状。仿真实验结果表明,该项技术能够有效地捕捉辐射源硬件的非理想性,胜任目标精确辨识任务,并可通过特征融合等手段提升算法鲁棒性。最后,总结现有方法的不足并展望其未来发展前景。

     

  • 图  1  辐射源个体识别系统流程

    Figure  1.  Flowchart of Specific Emitter Identification (SEI)

    图  2  基于相空间重构的辐射源个体识别方法框架

    Figure  2.  Framework of Specific Emitter Identification based on Phase Space Reconstruction (SEI-PSR)

    图  3  基于逐点对齐点云深度学习网络的辐射源个体识别流程[52]

    Figure  3.  SEI based on Alignment Point by Point-based PointNet (APBP-PointNet) [52]

    图  4  基于逐点对齐点云深度学习网络结构[52]

    Figure  4.  Structure of the APBP-PointNet[52]

    图  5  基于重构吸引子辐射源个体识别框架[53]

    Figure  5.  SEI based on the reconstructed attractor[53]

    图  6  基于多尺度流形特征的辐射源个体识别方法[54]

    Figure  6.  SEI based on multi-level manifold features[54]

    图  7  实验中4部雷达时域脉冲信号[20]

    Figure  7.  Pulse waveforms of four radars[20]

    图  8  实验中采用AKDS700装置图[55]

    Figure  8.  The AKDS700 device[55]

    图  9  直接序列扩频信号的时域波形[45]

    Figure  9.  Waveforms of Direct Sequence Spread-Spectrum (DSSS) signals[45]

    图  10  不同信噪比下的分类识别效果[49]

    Figure  10.  Recognition results of different SNR[49]

    图  11  无线网卡信号指纹特征[48]

    Figure  11.  Fingerprint features of wireless network cards[48]

    图  12  对讲机信号指纹特征[48]

    Figure  12.  Fingerprint features of interphones[48]

    图  13  手机型号与厂商[52]

    Figure  13.  Manufactures and models of mobile phones[52]

    图  14  手机数据集上的识别率[52]

    Figure  14.  Classification accuracy of mobile phones[52]

    图  15  实测信号样本功率谱图[51]

    Figure  15.  Power spectrum of collected signals[51]

    图  16  实测信号识别率随信噪比变化曲线[51]

    Figure  16.  Recognition results of different SNR[51]

    图  17  采用不同功率放大器的自制电路示意图[17]

    Figure  17.  Schematic of the experiment with various amplifiers[17]

    图  18  不同功率放大器对应的相空间微分分布[17]

    Figure  18.  Distributions of the phase space difference according to various amplifiers[17]

    图  19  不同硬件非理想性下信号重构相空间的可视化

    Figure  19.  Reconstructed phase space of different hardware imperfections

    图  20  不同数据集下算法的识别准确率

    Figure  20.  Classification accuracy for different datasets

    图  21  不同信噪比下算法识别准确率

    Figure  21.  Classification accuracy with different SNRs

    表  1  基于重构相空间的辐射源个体识别指纹特征总结

    Table  1.   Summary of the Specific Emitter Identification (SEI) methods based on Phase Space Reconstruction (PSR)

    分析角度特征描述意义参考文献
    统计特性关联维数时间序列的复杂性和自相似性文献[18,19,41,42]
    最大Lyapunov指数相邻轨迹的平均指数发散率文献[18,19,41,42]
    Kolmogorov熵混动系统的结构复杂程度文献[18,41,42]
    排列熵描述时间序列的复杂程度文献[4345]
    近似熵时间序列波动的规律性和不可预测性文献[43,46]
    样本熵时间序列波动的规律性和不可预测性文献[43]
    矩阵固有特性奇异值分解(SVD)矩阵特征值文献[4648]
    Low-rank子空间矩阵低秩表示文献[49]
    几何构型相点分布相点概率密度分布文献[48]
    质心重构相空间质心分布文献[50]
    交叉关联积分相点概率密度分布文献[51]
    几何特征重构相空间的几何特征文献[20]
    转移特性相点差分方法状态矢量的时间微分文献[17]
    相点转移角度与距离状态转移规律文献[47,48]
    系统等效性直接识别状态分布及其转移规律文献[52]
    重构系统吸引子系统复杂度文献[53,54]
    下载: 导出CSV

    表  2  基于重构相空间的辐射源个体识别技术在不同数据集上的应用总结

    Table  2.   Summary of the SEI-PSR applications on various datasets

    设备文献
    雷达文献[19,20,50]
    高速扩频电台文献[45]
    跳频电台文献[49]
    通用软件无线电文献[20,5254]
    无线网卡文献[4648]
    对讲机文献[48]
    手机设备文献[18,52]
    舰船通信设备文献[43]
    任意波形发生器文献[51]
    自制电路文献[17,41]
    下载: 导出CSV

    表  3  CART决策树模型在重构相空间特征下的信号“指纹”识别率(%)

    Table  3.   Accuracy with the CART decision tree (%)

    设备识别率
    雷达辐射源199.61
    雷达辐射源295.89
    雷达辐射源397.80
    雷达辐射源494.93
    下载: 导出CSV

    表  4  采用稳态信号进行识别的混淆矩阵(%)

    Table  4.   Classification confusion matrix of random payload data: Steady-state signal of radios (%)

    真实标签预测标签
    R1R2R3
    R194.704.721.62
    R22.1590.912.81
    R33.154.3795.57
    下载: 导出CSV

    表  5  采用握手信号进行识别的混淆矩阵(%)

    Table  5.   Classification confusion matrix of fixed payload data: Hand-shaking signal of radios (%)

    真实标签预测标签
    R1R2R3
    R195.133.931.55
    R22.3791.083.02
    R32.504.9995.43
    下载: 导出CSV

    表  6  不同信噪比下算法识别准确率

    Table  6.   Classification accuracy with different SNRs

    信噪比(dB)识别率(%)
    50100
    40100
    30100
    2098
    1095
    075
    下载: 导出CSV

    表  7  不同信号长度、不同待识别个体数目下,所提方法的正确识别率(%)

    Table  7.   The identification accuracy of proposed method with different signal length and individuals (%)

    样本
    点数
    个体数目
    3456
    50094.7292.3189.3183.25
    60094.7893.3690.9686.03
    70095.5692.8592.7788.12
    80096.5095.7693.8590.04
    90097.2296.4194.7391.78
    100097.3596.8895.1892.46
    下载: 导出CSV
  • [1] TALBOT K I, DULEY P R, HYATT M H, et al. Specific emitter identification and verification[J]. Technology Review, 2003, 32(1): 27–33.
    [2] JAGANNATH A, JAGANNATH J, and KUMAR P S P V. A comprehensive survey on radio frequency (RF) fingerprinting: Traditional approaches, deep learning, and open challenges[J]. Computer Networks, 2022, 219: 109455. doi: 10.1016/J.COMNET.2022.109455
    [3] 史亚, 张文博, 朱明哲, 等. 雷达辐射源个体识别综述[J]. 电子与信息学报, 2022, 44(6): 2216–2229. doi: 10.11999/JEIT210161

    SHI Ya, ZHANG Wenbo, ZHU Mingzhe, et al. Specific radar emitter identification: A comprehensive review[J]. Journal of Electronics &Information Technology, 2022, 44(6): 2216–2229. doi: 10.11999/JEIT210161
    [4] 孙丽婷, 黄知涛, 王翔, 等. 辐射源指纹特征提取方法述评[J]. 雷达学报, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115

    SUN Liting, HUANG Zhitao, WANG Xiang, et al. overview of radio frequency fingerprint extraction in specific emitter identification[J]. Journal of Radars, 2020, 9(6): 1014–1031. doi: 10.12000/JR19115
    [5] GOK G, ALP Y K, and ARIKAN O. A new method for specific emitter identification with results on real radar measurements[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 3335–3346. doi: 10.1109/TIFS.2020.2988558
    [6] LIU Zhangmeng. Multi-feature fusion for specific emitter identification via deep ensemble learning[J]. Digital Signal Processing, 2021, 110: 102939. doi: 10.1016/j.dsp.2020.102939
    [7] 张振, 贾济铖, 康健, 等. 射频指纹识别技术方法综述[J]. 无线电通信技术, 2021, 47(3): 249–258. doi: 10.3969/j.issn.1003-3114.2021.03.001

    ZHANG Zhen, JIA Jicheng, KANG Jian, et al. Overview of RF fingerprint identification technology methods[J]. Radio Communications Technology, 2021, 47(3): 249–258. doi: 10.3969/j.issn.1003-3114.2021.03.001
    [8] GUO Shanzeng, AKHTAR S, and MELLA A. A method for radar model identification using time-domain transient signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 3132–3149. doi: 10.1109/TAES.2021.3074129
    [9] SA Kejin, LANG Depeng, WANG Chenggang, et al. Specific emitter identification techniques for the internet of things[J]. IEEE Access, 2020, 8: 1644–1652. doi: 10.1109/ACCESS.2019.2962626
    [10] QIAN Yunhan, QI Jie, KUAI Xiaoyan, et al. Specific emitter identification based on multi-level sparse representation in automatic identification system[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2872–2884. doi: 10.1109/TIFS.2021.3068010
    [11] WANG Yu, GUI Guan, LIN Yun, et al. Few-shot specific emitter identification via deep metric ensemble learning[J]. IEEE Internet of Things Journal, 2022, 9(24): 24980–24994. doi: 10.1109/JIOT.2022.3194967
    [12] WANG Yu, GUI Guan, GACANIN H, et al. An efficient specific emitter identification method based on complex-valued neural networks and network compression[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(8): 2305–2317. doi: 10.1109/JSAC.2021.3087243
    [13] FADUL M K M, REISING D R, and SARTIPI M. Identification of OFDM-based radios under Rayleigh fading using RF-DNA and deep learning[J]. IEEE Access, 2021, 9: 17100–17113. doi: 10.1109/ACCESS.2021.3053491
    [14] ZHANG Jingwen, WANG Fanggang, DOBRE O A, et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(6): 1192–1205. doi: 10.1109/TIFS.2016.2520908
    [15] ZHA Xiong, LI Tianyun, QIU Zhaoyang, et al. A novel anti-Doppler SEI algorithm based on the vector diagram decomposition[J]. Electronics Letters, 2021, 57(20): 785–787. doi: 10.1049/ell2.12257
    [16] ZHAO Yurui, WANG Xiang, SUN Liting, et al. A novel framework for extracting moment-based fingerprint features in specific emitter identification[J]. EURASIP Journal on Advances in Signal Processing, 2023, 2023(1): 17. doi: 10.1186/S13634-023-00978-4
    [17] CARROLL T L. A nonlinear dynamics method for signal identification[J]. Chaos, 2007, 17(2): 023109. doi: 10.1063/1.2722870
    [18] 熊小莉. 基于指纹特征提取的辐射源个体识别研究[D]. [硕士论文], 电子科技大学, 2021.

    XIONG Xiaoli. Research on individual radiation source identification based on fingerprint feature extraction[D]. [Master dissertation], University of Electronic Science and Technology of China, 2021.
    [19] 苏飞宇. 基于小波与混沌理论的辐射源个体识别方法研究[D]. [硕士论文], 哈尔滨工业大学, 2020.

    SU Feiyu. Research on specific emitter identification method based on wavelet and chaos theory[D]. [Master dissertation], Harbin Institute of Technology, 2020.
    [20] 张向前. 机器学习在辐射源信号指纹识别中的应用研究[D]. [硕士论文], 电子科技大学, 2018.

    ZHANG Xiangqian. Study of machine learning in fingerprint identification of emitter signals. [Master dissertation], University of Electronic Science and Technology of China, 2018.
    [21] STROGATZ S H. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering[M]. 2nd ed. Boca Raton, USA: CRC Press, 2019.
    [22] LI Cuiting and LIU Ke. Path signature-based phase space reconstruction for stock trend prediction[J]. International Journal of Data Science and Analytics, 2022, 14(3): 293–304. doi: 10.1007/s41060-022-00326-z
    [23] LI Yue, CHEN Zengqiang, and CANG Shijian. Phase space reconstruction and time series prediction of a nonlinear financial system[C]. 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), Suzhou, China, 2021: 23–28.
    [24] 聂振华. 基于重构相空间的结构损伤检测方法及可视化研究[D]. [博士论文], 暨南大学, 2012.

    NIE Zhenhua. Structural damage detection based on reconstructed phase space and the visualization of damage information[D]. [Ph. D. dissertation], Jinan University, 2012.
    [25] 郑卉. 基于相空间重构的结构损伤识别方法研究[D]. [硕士论文], 哈尔滨工业大学, 2013.

    ZHENG Hui. Study on structural damage identification based on phase space reconstruction[D]. [Master dissertation], Harbin Institute of Technology, 2013.
    [26] PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al. Geometry from a time series[J]. Physical Review Letters, 1980, 45(9): 712–716. doi: 10.1103/PhysRevLett.45.712
    [27] TAKENS F. Detecting strange attractors in turbulence[C]. Dynamical Systems and Turbulence, Warwick 1980, Coventry, UK, 2006: 366–381.
    [28] NOAKES L. The Takens embedding theorem[J]. International Journal of Bifurcation and Chaos, 1991, 1(4): 867–872. doi: 10.1142/S0218127491000634
    [29] GIBSON J F, DOYNE FARMER J, CASDAGLI M, et al. An analytic approach to practical state space reconstruction[J]. Physica D:Nonlinear Phenomena, 1992, 57(1/2): 1–30. doi: 10.1016/0167-2789(92)90085-2
    [30] ROSENSTEIN M T, COLLINS J J, and DE LUCA C J. A practical method for calculating Largest Lyapunov Exponents from small data sets[J]. Physica D:Nonlinear Phenomena, 1993, 65(1/2): 117–134. doi: 10.1016/0167-2789(93)90009-P
    [31] ROSENSTEIN M T, COLLINS J J, and DE LUCA C J. Reconstruction expansion as a geometry-based framework for choosing proper delay times[J]. Physica D:Nonlinear Phenomena, 1994, 73(1/2): 82–98. doi: 10.1016/0167-2789(94)90226-7
    [32] FRASER A M and SWINNEY H L. Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33(2): 1134–1140. doi: 10.1103/PhysRevA.33.1134
    [33] 张雨, 任成龙. 确定重构相空间维数的方法[J]. 国防科技大学学报, 2005, 27(6): 101–105. doi: 10.3969/j.issn.1001-2486.2005.06.022

    ZHANG Yu and REN Chenglong. The methods to confirm the dimension of re-constructed phase space[J]. Journal of National University of Defense Technology, 2005, 27(6): 101–105. doi: 10.3969/j.issn.1001-2486.2005.06.022
    [34] KENNEL M B, BROWN R, and ABARBANEL H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3403–3411. doi: 10.1103/PhysRevA.45.3403
    [35] CAO Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D:Nonlinear Phenomena, 1997, 110(1/2): 43–50. doi: 10.1016/S0167-2789(97)00118-8
    [36] BROOMHEAD D S and KING G P. Extracting qualitative dynamics from experimental data[J]. Physica D:Nonlinear Phenomena, 1986, 20(2/3): 217–236. doi: 10.1016/0167-2789(86)90031-X
    [37] KUGIUMTZIS D. State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length[J]. Physica D:Nonlinear Phenomena, 1996, 95(1): 13–28. doi: 10.1016/0167-2789(96)00054-1
    [38] KIM H S, EYKHOLT R, and SALAS J D. Nonlinear dynamics, delay times, and embedding windows[J]. Physica D:Nonlinear Phenomena, 1999, 127(1/2): 48–60. doi: 10.1016/S0167-2789(98)00240-1
    [39] KENINGTON P B. High-Linearity RF Amplifier Design[M]. Boston, USA: Artech House, 2000.
    [40] 秦鑫, 黄洁, 王建涛, 等. 基于无意调相特性的雷达辐射源个体识别[J]. 通信学报, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084

    QIN Xin, HUANG Jie, WANG Jiantao, et al. Radar emitter identification based on unintentional phase modulation on pulse characteristic[J]. Journal on Communications, 2020, 41(5): 104–111. doi: 10.11959/j.issn.1000-436x.2020084
    [41] 郭辉明. 水声通信辐射源指纹特征提取方法研究[D]. [硕士论文], 厦门大学, 2018.

    GUO Huiming. The study of the method for emitter fingerprint feature extraction in underwater acoustic communication[D]. [Master dissertation], Xiamen University, 2018.
    [42] 毛毅, 胡远泽, 王景琳, 等. 基于相空间重构的未知辐射源信号特征提取与盲聚类[C]. 第十届中国指挥控制大会论文集, 北京, 2022.

    MAO Yi, HU Yuanze, WANG Jinglin, et al. Feature extraction and blind clustering of unknown radiation sources based on phase space reconstruction[C]. 10th China Conference on Command and Control, Beijing, China, 2022.
    [43] 任东方, 张涛, 韩洁. 结合ITD与非线性分析的通信辐射源个体识别方法[J]. 信号处理, 2018, 34(3): 331–339. doi: 10.16798/j.issn.1003-0530.2018.03.010

    REN Dongfang, ZHANG Tao, and HAN Jie. Approach of specific communication emitter identification combining ITD and nonlinear analysis[J]. Journal of Signal Processing, 2018, 34(3): 331–339. doi: 10.16798/j.issn.1003-0530.2018.03.010
    [44] 余沁, 程伟, 杨瑞娟. 基于排列熵分形维数特征提取的通信辐射源个体识别[J]. 空军预警学院学报, 2017, 31(3): 184–189. doi: 10.3969/j.issn.2095-5839.2017.03.007

    YU Qin, CHENG Wei, and YANG Ruijuan. Specific emitter identification based on extraction of permutation entropy and fractal dimension[J]. Journal of Air Force Early Warning Academy, 2017, 31(3): 184–189. doi: 10.3969/j.issn.2095-5839.2017.03.007
    [45] DENG Shouyun, HUANG Zhitao, WANG Xiang, et al. Radio frequency fingerprint extraction based on multidimension permutation entropy[J]. International Journal of Antennas and Propagation, 2017, 2017: 1538728. doi: 10.1155/2017/1538728
    [46] SUN Liting, WANG Xiang, YANG Afeng, et al. Radio frequency fingerprint extraction based on multi-dimension approximate entropy[J]. IEEE Signal Processing Letters, 2020, 27: 471–475. doi: 10.1109/LSP.2020.2978333
    [47] YUAN Yingjun, HUANG Zhitao, WANG Fenghua, et al. Radio specific emitter identification based on nonlinear characteristics of signal[C]. 2015 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Constanta, Romania, 2015: 77–81.
    [48] 袁英俊. 通信辐射源个体识别关键技术研究[D]. [博士论文], 国防科技大学, 2014.

    YUAN Yingjun. Research on key technologies of communication specific emitter identification[D]. [Ph. D. dissertation], National University of Defense Technology, 2014.
    [49] 眭萍, 郭英, 李红光, 等. 基于混沌吸引子重构和Low-rank聚类的跳频信号电台分选[J]. 电子与信息学报, 2019, 41(12): 2965–2971. doi: 10.11999/JEIT180947

    SUI Ping, GUO Ying, LI Hongguang, et al. Frequency-hopping transmitter classification based on chaotic attractor reconstruction and low-rank clustering[J]. Journal of Electronics &Information Technology, 2019, 41(12): 2965–2971. doi: 10.11999/JEIT180947
    [50] 杨立波. 雷达辐射源无意调制特征提取算法研究[D]. [硕士论文], 电子科技大学, 2014.

    YANG Libo. Research on unintentional modulation feature extraction for radar emitter[D]. [Master dissertation], University of Electronic Science and Technology of China, 2014.
    [51] 许丹. 辐射源指纹机理及识别方法研究[D]. [博士论文], 国防科学技术大学, 2008.

    XU Dan. Research on mechanism and methodology of specific emitter identification[D]. [Ph. D. dissertation], National University of Defense Technology, 2008.
    [52] ZHAO Yurui, WANG Xiang, and HUANG Zhitao. Concentrate on hardware imperfection via aligning reconstructed States[J]. IEEE Communications Letters, 2022, 26(12): 2934–2938. doi: 10.1109/LCOMM.2022.3204170
    [53] 赵雨睿, 宋川江, 王翔, 等. 采用重构吸引子的辐射源个体识别技术[J]. 国防科技大学学报, 待出版.

    ZHAO Yurui, SONG Chuanjiang, WANG Xiang, et al. Specific emitter identification using reconstructed attractors[J]. Journal of National University of Defense Technology, in press.
    [54] ZHAO Yurui, WANG Xiang, SUN Liting, et al. A novel signal representation in SEI: Manifold[J]. Journal of the Franklin Institute, 2023, 360(7): 5292–5318. doi: 10.1016/j.jfranklin.2023.03.010
    [55] AnyKey. AKDS700高速宽带扩频电台[EB/OL]. http://www.ekey.com.cn/productShow.asp?id=178, 2021.

    Anykey. AKDS700 radios[EB/OL]. http://www.ekey.com.cn/productShow.asp?id=178, 2021.
    [56] UZUNDURUKAN E, DALVEREN Y, and KARA A. A database for the radio frequency fingerprinting of bluetooth devices[J]. Data, 2020, 5(2): 55. doi: 10.3390/data5020055
    [57] MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 160–167. doi: 10.1109/JSTSP.2018.2796446
    [58] 翁琳天然, 彭进霖, 何元, 等. 基于深度残差网络的ADS-B信号辐射源个体识别[J]. 航空兵器, 2021, 28(4): 24–29. doi: 10.12132/ISSN.1673-5048.2020.0095

    WENG Lintianran, PENG Jinlin, HE Yuan, et al. Specific emitter identification of ADS-B signal based on deep residual network[J]. Aero Weaponry, 2021, 28(4): 24–29. doi: 10.12132/ISSN.1673-5048.2020.0095
    [59] XIAO Yao and WEI Xizhang. Specific emitter identification of radar based on one dimensional convolution neural network[J]. Journal of Physics:Conference Series, 2020, 1550: 032114. doi: 10.1088/1742-6596/1550/3/032114
    [60] BITAR N, MUHAMMAD S, and REFAI H H. Wireless technology identification using deep convolutional neural networks[C]. 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, Canada, 2017: 1–6.
  • 加载中
图(21) / 表(7)
计量
  • 文章访问数:  1258
  • HTML全文浏览量:  648
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-26
  • 修回日期:  2023-06-29
  • 网络出版日期:  2023-07-19
  • 刊出日期:  2023-08-28

目录

    /

    返回文章
    返回