Processing math: 100%

基于改进GOFRO的多角度SAR图像车辆目标检测方法

刘琪 禹卫东 洪文

赵博, 黄磊, 周汉飞, 张亮, 李强, 黄敏. 基于单频时变阈值的1-bit SAR成像方法研究[J]. 雷达学报, 2018, 7(4): 446-454. doi: 10.12000/JR18036
引用本文: 刘琪, 禹卫东, 洪文. 基于改进GOFRO的多角度SAR图像车辆目标检测方法[J]. 雷达学报, 2023, 12(5): 1081–1096. doi: 10.12000/JR23042
Zhao Bo, Huang Lei, Zhou Hanfei, Zhang Liang, Li Qiang, Huang Min. 1-bit SAR Imaging Method Based on Single-frequency Time-varying Threshold[J]. Journal of Radars, 2018, 7(4): 446-454. doi: 10.12000/JR18036
Citation: LIU Qi, YU Weidong, and HONG Wen. Vehicle detection in multi-aspect SAR images based on improved GOFRO[J]. Journal of Radars, 2023, 12(5): 1081–1096. doi: 10.12000/JR23042

基于改进GOFRO的多角度SAR图像车辆目标检测方法

DOI: 10.12000/JR23042
基金项目: 国家自然科学基金(61860206013)
详细信息
    作者简介:

    刘 琪,博士生,主要研究方向为目标检测、图像融合等

    禹卫东,博士,研究员,主要研究方向为SAR系统设计和研制、高分辨率SAR新体制、SAR成像处理和数据压缩等

    洪 文,博士,研究员,主要研究方向为多维度信号处理与信息提取、微波成像新概念新体制新方法等

    通讯作者:

    禹卫东 yuwd@aircas.ac.cn

  • 责任主编:殷君君 Corresponding Editor: YIN Junjun
  • 中图分类号: TN957.51

Vehicle Detection in Multi-aspect SAR Images Based on Improved GOFRO

Funds: The National Natural Science Foundation of China (61860206013)
More Information
  • 摘要: 针对城市场景中车辆目标分布状态随机,在检测过程中容易受到环境因素干扰等问题,提出一种将多角度合成孔径雷达(SAR)图像用于静止车辆目标提取的检测算法。在特征提取阶段,设计了一种适用于多角度图像上车辆目标的多尺度旋转不变的Gabor滤波器奇分量比例算子(MR-GOFRO)特征提取方法,对原有的GOFRO特征进行了滤波形式、特征尺度、特征方向、特征层次等4个方面的扩展,使其能够适应车辆目标在方向、尺度、形态等方面可能发生的变化。在图像融合阶段,设计了加权的非负矩阵分解(W-NMF)方法,根据特征质量调整来源于不同图像的特征权重,减少由于不同角度间相互干扰造成融合特征质量下降的现象。将该文所提出方法在不同的机载多角度图像数据集上进行验证,实验结果表明,该文提出的特征提取方法与同类方法相比,检测精度平均提升了3.69%;该文提出的特征融合方法与同类方法相比,检测精度提升了4.67%。

     

  • 海用雷达在对海上目标探测过程中易受海杂波影响,高海况、复杂气象条件下尤为严重。开展海杂波特性、海杂波抑制、海上目标检测跟踪与识别方法研究[1-5],需要多种条件下的海杂波和海上目标回波实测数据,海军航空大学海上目标探测课题组于2019年提出一项“雷达对海探测数据共享计划”[6],旨在利用X波段固态全相参雷达等多型雷达开展对海探测试验,获取不同海况、分辨率、擦地角条件下海杂波数据和海上目标回波数据,并同步获取海洋气象水文数据、目标位置与轨迹的真实数据,形成信息全记录的雷达试验数据集。

    2020年度主要开展了3个方面的多次试验,包括目标雷达散射截面积(Radar Cross-Section, RCS)定标数据采集试验、不同海况海杂波与目标探测数据采集试验、海上机动目标检测跟踪数据采集试验。下面针对每个方面的试验进行介绍,并给出典型数据示例。

    目标RCS定标数据采集试验,主要是在海上投放定标体(不锈钢球,RCS为0.25 m2),使其漂浮于海面以上,用船只拖拽定标体沿雷达径向慢速往返运动,在沿途部分位置点静止(漂浮),雷达工作模式固定不变,采集试验全程的雷达与配合传感器数据。

    图1所示,试验期间,雷达架设地点为烟台养马岛试验点[6],架高约为30 m。如图2所示,渔船用尼龙绳拖拽不锈钢球沿图1中所示的航线慢速运动。不锈钢球放置在4个泡沫塑料浮子上,使其完全浮于海面以上,如图2(d)所示,渔船与不锈钢球沿雷达径向的间距为100 m以上,且二者在方位上也错开一定的角度。渔船在设定海上航线的部分位置点(见图1所示航线中的黄色圆点)处静止(漂浮),此时调整了雷达天线转速,采集多种转速条件下的雷达数据。试验期间海面状态如图2(f)所示,对应的气象水文数据如图3所示,红色原点与试验时段相对应,每15 min更新一次,综合判断海况等级为1级。

    图  1  试验点及定标体运动轨迹示意图
    Figure  1.  Experimental site and schematic diagram of calibration body’s trajectory
    图  2  试验场景
    Figure  2.  Experimental scenario
    图  3  浪(有效波高、浪向、周期、浪速)和风(风向、风速)要素信息(红色标点对应试验时段)
    Figure  3.  Wave (effective wave height, direction, period, speed) and wind (direction, speed) information (The red punctuation marks correspond to the experimental period)

    X波段试验雷达具体参数请见文献[6],此处不再赘述。试验期间,定标体在较近距离时雷达工作于3 nm量程,脉冲重复频率(Pulsed Repetitive Frequency, PRF)为3 kHz;定标体在较远距离时雷达工作于6 nm量程,PRF为1.6 kHz。整个试验过程中,雷达主要工作于2 r/min的扫描速度,在目标静止(漂浮)时天线转速有所调整。雷达工作模式调整与采集雷达数据对应的情况,在与数据配套的数据记录表中有详细对照说明。由于雷达转速较慢,单次扫描周期的数据量大,这里仅给出了目标所在扇区的回波数据,示例数据如图4所示。

    图  4  典型数据示例
    Figure  4.  Typical data examples

    试验过程中,还同步获取了渔船的自动定位系统(Automatic Identification System, AIS)数据(MMSI: 413659899,见表1),以及雷达视野内其他非合作船只目标的AIS数据。由于试验中所使用AIS设备自身原因,数据更新率为每次2~6 min,因此,AIS给出的位置信息与雷达给出的位置信息并不严格同步,在数据使用中可通过插值实现时空信息同步。

    表  1  配试船只目标AIS数据示例
    Table  1.  The sample AIS data of the experimental boat
    东经(°)北纬(°)时间
    121.6096537.474042020-07-08 09:10:00
    121.6113437.475512020-07-08 09:38:00
    121.6127537.4766852020-07-08 09:40:00
    121.6162837.4790152020-07-08 09:42:00
    ·········
    121.6250737.483452020-07-08 13:50:00
    121.6212437.4802552020-07-08 13:56:00
    121.6180337.47742020-07-08 13:58:00
    下载: 导出CSV 
    | 显示表格

    海杂波与目标探测数据采集试验,主要是采集不同海况等级条件下的海杂波数据、海上船只目标数据。此试验以天线凝视观测模式为主,采集不同方位下的雷达回波数据。

    试验期间,雷达架设地点为烟台第1海水浴场试验点,如图5所示,架高约为80 m,在不同海况等级等环境下,调整雷达天线凝视的方位,凝视海面锚泊船只或航道浮标,采集几秒至几分钟时长不等的雷达凝视模式数据。采集数据时雷达工作量程为3 nm, 6 nm,对应的PRF分别为3.0 kHz, 1.6 kHz。

    图  5  海杂波与目标探测试验场景
    Figure  5.  Sea clutter and target detection experimental scenario

    采集数据列表如表2所示。前7组数据均为天线凝视模式数据,由于采集数据期间,风速较大,雷达天线凝视方位随风有轻微偏移,具体偏移情况从雷达数据头中的“方位”信息位中可以得到;第8组数据为天线扫描模式数据,其中方位143°~274°范围内为发射屏蔽区,此区域内雷达发射静默。此外,扫描模式数据还有配套的AIS数据,但由于试验时海况等级较高,所有船只均回港避风,因此无运动目标,仅有锚泊的船只和航道浮标两类目标。

    表  2  海杂波与目标回波数据列表
    Table  2.  List of sea clutter and target echo data
    序号数据类型海况等级(级)凝视方位(°)脉冲个数描述信息
    1海杂波3~41.53>1044.84 km处有一个航道浮标
    2海杂波3~442.18>104纯海杂波
    3海杂波3~448.36>104近程为纯海杂波,6 km后有岛屿回波
    4海杂波+目标3~417.36>1042.778 km和4.115 km处有2个漂浮目标(船+航道浮标)
    5海杂波+目标3~48.01>1042.81 km和4.16 km处有2个漂浮强目标(2艘锚泊船只),5.5 km后为岛屿回波
    6海杂波+目标29.58>104小快艇,回波较强,距离8.15 km进入雷达视野而后离开,存在同频异步干扰
    7海杂波+目标258.31>1043.86 km和7.15 km处有2个目标(船+岛屿)
    8海杂波+目标3~4扇区:257~360
    0~126
    9个扫描周期24 r/min扫描模式数据,有配套AIS数据
    下载: 导出CSV 
    | 显示表格

    典型的海杂波数据、海杂波+目标数据如图6(a)图6(d)所示,限于篇幅,这里仅给出两组实测数据的时域原始回波与多普勒谱。

    6  海杂波、目标回波典型数据示例
    6.  Typical sea clutter and target echo data

    海上机动目标检测跟踪数据采集试验,主要是利用小型快艇作为配试目标,沿预定航线运动,并在某些特定位置点进行机动,雷达工作于扫描模式,采集试验全程的雷达与配合传感器数据。

    试验期间,雷达架设地点为烟台第1海水浴场试验点,架高约为80 m,如图5所示。雷达工作于6 nm量程、24 r/min的扫描模式,PRF为1.6 kHz。试验时间为14:32—15:18,共采集1186个连续扫描周期数据,雷达工作模式调整与采集雷达数据对应的情况,在与数据配套的数据记录表中有详细说明。典型试验数据示例如图7所示,试验期间风和浪要素数据如图8所示,有效波高为1 m左右,综合判断海况等级为3级。

    图  7  雷达数据示例
    Figure  7.  Typical radar echo data
    图  8  浪(有效波高、浪向、周期、浪速)和风(风向、风速)要素信息(红色标点对应试验时段)
    Figure  8.  Wave (effective wave height, direction, period, speed) and wind (direction, speed) information (The red punctuation marks correspond to the experimental period)

    配试目标为约10 m长小型快艇,如图9所示,沿预定航线行驶,示意图如图10所示,受海上航道来往船只影响,小快艇的实际航线与预定航线有偏差。快艇上安装了AIS设备,具体位置信息可查阅AIS数据(MMSI: 413659899),如表3所示。此外,试验时还同步记录了雷达视野内非合作目标的AIS信息,可用作参考。

    图  9  配试目标
    Figure  9.  Experimental target
    图  10  设定航线
    Figure  10.  Set trajectory
    表  3  配试船只目标AIS数据示例
    Table  3.  The sample AIS data for experimental boat
    东经(°)北纬(°)时间
    121.420637.5512582020-07-22 14:32:00
    121.42177637.5532262020-07-22 14:34:00
    121.428837.5611042020-07-22 14:40:00
    121.4301637.5591052020-07-22 14:42:00
    ·········
    121.4365137.5536542020-07-22 15:14:00
    121.4317737.548672020-07-22 15:16:00
    121.428837.5476382020-07-22 15:18:00
    下载: 导出CSV 
    | 显示表格

    “雷达对海探测数据共享计划”2020年度完成了雷达目标RCS定标数据采集试验、不同海况海杂波与目标探测数据采集试验、海上机动目标检测跟踪数据采集试验3个方面的多次试验,获取了不同海况、目标以及雷达工作模式下的海杂波与目标回波数据,并同步获取了风和浪要素数据、目标AIS数据、可见光/红外数据等配合传感器数据。同时在试验过程中也发现了一些问题,例如目标AIS信息更新率过慢,导致将目标AIS数据作为真值数据使用时,与雷达数据存在严重的数据时空不匹配;可见光/红外设备数据在恶劣天气下获取图像不清晰或难以获取远距离目标图像;现有雷达在高海况、恶劣天气下天线凝视方位不稳定等问题,后续还需不断解决。

    X波段雷达对海探测实测数据的公开共享将依托雷达学报官方网站进行,试验数据于每次试验后上传至“数据/雷达对海探测数据”页面中(如附图1所示),具体网址为http://radars.ie.ac.cn/web/data/getData?dataType=DatasetofRadarDetectingSea,数据将根据对海探测试验进度定期更新。

    2020年度对海探测实测数据量巨大,因此截取具有代表性的试验段数据分3期发布,数据发布信息表如附表1所示。

    第1期主要发布海杂波与目标凝视模式探测数据,分为两组,包括纯海杂波数据、海杂波+目标回波数据,数据量约17 GB;第2期主要发布雷达目标RCS定标试验数据,提供下载的数据为截取的配试船拖不锈钢球向雷达运动阶段的数据,数据量大于20 GB;第3期主要发布海上机动目标检测跟踪试验数据,提供下载的数据是截取的配试快艇沿图10所示航线中右上方第1个圆运动的数据,数据量不低于40 GB。

    1  雷达对海探测数据发布地址
    1.  Release address of sea-detecting radar data
    1  2020年度数据发布信息表
    1.  Annual data release information table of 2020
    发布期号试验日期海况等级(级)数据量(GB)雷达天线
    工作模式
    发射脉冲
    模式
    目标位置
    信息记录
    气象水文
    数据
    12021.01.04~
    2021.01.06
    2~4>10凝视、扫描模式2有距离方位记录
    22020.07.081~2>20扫描(2 r/min为主)模式2有船只AIS数据
    32020.07.223>40扫描(24 r/min为主)模式2有船只AIS数据+5个航道浮标距离方位记录
    注:① 所有雷达数据均为脉压后的I/Q复数据;② 发射脉冲模式2,对应每个重复周期雷达相继发射1个单载频脉冲和1个LFM脉冲;③ AIS数据更新周期较长,约2 min更新一次,与雷达目标数据率不匹配;④ 数据格式与2019年度第1期数据格式相同[6]
    下载: 导出CSV 
    | 显示表格
  • 图  1  多角度SAR图像中的车辆目标举例

    Figure  1.  Vehicle targets in multi-aspect SAR images

    图  2  多角度图像预处理流程图

    Figure  2.  Multi-aspect image preprocessing procedure

    图  3  多角度图像车辆目标检测流程图

    Figure  3.  Vehicle detection in multi-aspect image

    图  4  LoG和高斯滤波器在SAR图像上的滤波效果对比

    Figure  4.  Comparison of the filtering effects of LoG and Gaussian filter on SAR image

    图  5  GOFRO和MR-GOFRO方法的原理示意图

    Figure  5.  Schematic diagram of GOFRO and MR-GOFRO

    图  6  直线模型下多角度图像的成像几何

    Figure  6.  The imaging geometry of multi-aspect images under near-linear flight model

    图  7  阳江飞行实验现场图像

    Figure  7.  Images from the Yangjiang flight experiment

    图  8  待检测场景在城区中的具体分布位置展示

    Figure  8.  Locations of the detected scenes in urban area

    图  9  场景5在不同方位角度下的SAR图像

    Figure  9.  Vehicle targets in multi-aspect SAR images in scene 5

    图  10  真值图的生成过程示意图(以场景2为例)

    Figure  10.  The truth map generating process (Taking scene 2as an example)

    图  11  不同场景的真值图标注结果

    Figure  11.  Truth maps of different scenes

    图  12  不同场景相应的光学图像参考

    Figure  12.  Reference optical images of different scenes

    图  13  各场景中的检测结果

    Figure  13.  Detection results in different scenes

    图  14  舟山飞行实验数据集中不同场景的车辆目标检测结果

    Figure  14.  Vehicle detection results in different scenes in Zhoushan flight experiment dataset

    图  15  MR-GOFRO尺度缩放功能增加前后,同一场景中车辆目标的检测结果

    Figure  15.  The vehicle detection results in the same scene before and after the addition of MR-GOFRO scaling step

    图  16  MR-GOFRO方向调节功能增加前后,同一场景中车辆目标的检测结果

    Figure  16.  The vehicle detection results in the same scene before and after the addition of MR-GOFRO direction adjustment step

    图  17  MR-GOFRO纹理信息保留前后,同一场景中车辆目标的检测结果

    Figure  17.  The vehicle detection results in the same scene before and after retaining MR-GOFRO texture information

    图  18  场景2中使用不同检测方法所获取的实验结果

    Figure  18.  Detection results obtained by different methods in scene 2

    图  19  不同图像数量条件下的检测结果

    Figure  19.  Detection results under different image quantity conditions

    表  1  阳江飞行实验参数

    Table  1.   Yangjiang flight experiment parameters

    实验参数参数值
    中心频率9.6 GHz
    带宽3600 MHz
    脉宽15 μs
    采样频率4400 MHz
    脉冲重复频率3000 Hz
    中心角度65.5°
    平台速度83.04 m/s
    平台高度3605.44 m
    场景中心纬度21.88°
    场景中心经度111.97°
    图像分辨率1 m
    下载: 导出CSV

    表  2  阳江飞行实验多角度图像方位角度参数

    Table  2.   Aspect parameters in Yangjiang flight experiment

    序列号方位角度
    (°)
    角度间隔
    (°)
    角度范围
    (°)
    角度140.800
    角度232.68.28.2
    角度322.610.018.2
    角度411.011.629.8
    角度5011.040.8
    角度6–1.71.742.5
    角度7–14.112.454.9
    角度8–25.411.366.2
    角度9–34.99.575.7
    角度10–42.37.483.1
    下载: 导出CSV

    表  3  舟山飞行实验参数

    Table  3.   Zhoushan flight experiment parameters

    实验参数参数值
    中心频率9.6 GHz
    带宽1200 MHz
    脉宽20 μs
    采样频率1400 MHz
    脉冲重复频率3000 Hz
    中心角度55.0°
    平台高度7000 m
    平台速度137.34 m/s
    场景中心经度29.97°
    场景中心纬度122.29°
    图像分辨率0.7 m
    下载: 导出CSV

    表  4  舟山飞行实验多角度图像方位角度参数

    Table  4.   Aspect parameters of the multi-aspect images in Zhoushan flight experiment

    序列号方位角度(°)角度间隔(°)角度范围(°)
    角度140.400
    角度230.210.210.2
    角度320.59.719.9
    角度410.89.729.6
    角度50.410.440.0
    角度6–10.010.450.4
    角度7–19.89.860.2
    角度8–28.99.169.3
    角度9–39.210.379.6
    下载: 导出CSV

    表  5  实验中检测算法所选取的参数

    Table  5.   Detection experiment parameters

    实验参数参数值
    MR-GOFRO尺度12/15/19/24/30
    MR-GOFRO方向 [0,π/2]
    [π/6,2π/3]
    [π/4,3π/4]
    [π/3,5π/6]
    NMF输出特征维数12
    车辆目标平均尺寸13×26
    检测窗口半径12
    车辆目标与检测窗口面积比0.6
    检测窗口步长12
    检测窗口采样点距离6
    检测窗口采样点数量5
    下载: 导出CSV

    表  6  阳江飞行实验数据集中不同场景车辆目标检测结果的衡量指标

    Table  6.   Indexes of vehicle detection results in different scenes in Yangjiang flight experiment dataset

    序列号精确率(%)准确率(%)漏警率(%)虚警率(%)
    场景185.4093.496.976.32
    场景272.4994.1111.395.07
    场景371.3697.578.002.11
    场景472.5096.485.071.76
    场景582.7989.6310.137.88
    平均值76.9094.258.314.63
    下载: 导出CSV

    表  7  舟山飞行实验数据集中不同场景车辆目标检测结果的衡量指标

    Table  7.   Indexes of vehicle detection results in different scenes in Zhoushan flight experiment dataset

    序列号精确率(%)准确率(%)漏警率(%)虚警率(%)
    场景688.2895.6419.833.43
    场景786.6294.9914.854.35
    平均值87.4595.3217.343.89
    下载: 导出CSV

    表  8  MR-GOFRO改进前后的检测结果衡量指标

    Table  8.   Indexes of detection results before and after the MR-GOFRO improvements

    检测
    方法
    精确率
    (%)
    准确率
    (%)
    漏警率
    (%)
    虚警率
    (%)
    GOFRO(场景1)85.4093.496.976.32
    GOFRO(场景7)86.6294.9914.854.53
    尺度缩放59.2183.7620.685.31
    方向调节61.0884.1330.424.29
    纹理信息66.1983.915.8620.44
    下载: 导出CSV

    表  9  不同方法检测结果的衡量指标

    Table  9.   Indexes of the detection results obtained by different methods

    检测
    方法
    精确率
    (%)
    准确率
    (%)
    漏警率
    (%)
    虚警率
    (%)
    方法166.9689.0028.508.31
    方法271.3793.0618.525.13
    方法360.8989.8921.188.29
    方法472.9284.5913.955.64
    方法568.2890.019.1510.11
    本文方法79.9194.5610.894.42
    下载: 导出CSV

    表  10  不同图像数量条件下的检测结果衡量指标

    Table  10.   Indexes of detection results under different image quantity conditions

    图像
    数量
    精确率
    (%)
    准确率
    (%)
    漏警率
    (%)
    虚警率
    (%)
    处理
    时间(s)
    180.9082.5643.175.989.08
    275.8384.0230.569.6362.28
    480.2089.7211.6710.56100.81
    682.7989.6310.137.88146.98
    下载: 导出CSV
  • [1] LEITLOFF J, HINZ S, and STILLA U. Vehicle detection in very high resolution satellite images of city areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(7): 2795–2806. doi: 10.1109/TGRS.2010.2043109
    [2] PALUBINSKAS G and RUNGE H. Change detection for traffic monitoring in TerraSAR-X imagery[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008: I-169–I-172,
    [3] MITTERMAYER J, WOLLSTADT S, PRATS-IRAOLA P, et al. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3695–3706. doi: 10.1109/TGRS.2013.2274821
    [4] ZOU Bin, QIN Jiang, and ZHANG Lamei. Vehicle detection based on semantic-context enhancement for high-resolution SAR images in complex background[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4503905. doi: 10.1109/LGRS.2021.3139605
    [5] MAKSYMIUK O, SCHMITT M, BRENNER A R, et al. First investigations on detection of stationary vehicles in airborne decimeter resolution SAR data by supervised learning[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 3584–3587.
    [6] BAUMGARTNER S V and KRIEGER G. Real-time road traffic monitoring using a fast a priori knowledge based SAR-GMTI algorithm[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 1843–1846.
    [7] NOVAK L M, OWIRKA G J, and BROWER W S. Performance of 10- and 20-target MSE classifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1279–1289. doi: 10.1109/7.892675
    [8] EL-DARYMLI K, GILL E W, MCGUIRE P, et al. Automatic target recognition in synthetic aperture radar imagery: A state-of-the-art review[J]. IEEE Access, 2016, 4: 6014–6058. doi: 10.1109/ACCESS.2016.2611492
    [9] CHENG Gong and HAN Junwei. A survey on object detection in optical remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 11–28. doi: 10.1016/j.isprsjprs.2016.03.014
    [10] WANG Zhixu, XIN Zhihui, HUANG Xiaoqiao, et al. Overview of SAR Image Feature Extraction and Target Recognition[M]. JAIN L C, KOUNTCHEV R, and SHI Junsheng. 3D Imaging Technologies—Multi-dimensional Signal Processing and Deep Learning. Singapore: Springer, 2021: 69–75.
    [11] LI Lu, DU Yuang, and DU Lan. Vehicle target detection network in SAR images based on rectangle-invariant rotatable convolution[J]. Remote Sensing, 2022, 14(13): 3086. doi: 10.3390/rs14133086
    [12] YANG Xinpeng, ZHANG Qiang, ZHAO Shixiang, et al. Focal-pyramid-based vehicle segmentation in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4028705. doi: 10.1109/LGRS.2022.3224904
    [13] BRENNER A R, ESSEN H, and STILLA U. Representation of stationary vehicles in ultra-high resolution SAR and turntable ISAR images[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 147–150.
    [14] WANG Guoli, WANG Xinchao, FAN Bin, et al. Feature extraction by rotation-invariant matrix representation for object detection in aerial image[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(6): 851–855. doi: 10.1109/LGRS.2017.2683495
    [15] SUN Yi, WANG Wenna, ZHANG Qianyu, et al. Improved YOLOv5 with transformer for large scene military vehicle detection on SAR image[C]. The 2022 7th International Conference on Image, Vision and Computing, Xi’an, China, 2022: 87–93.
    [16] 龙泓琳, 皮亦鸣, 曹宗杰. 基于非负矩阵分解的SAR图像目标识别[J]. 电子学报, 2010, 38(6): 1425–1429.

    LONG Honglin, PI Yiming, and CAO Zongjie. Non-negative matrix factorization for target recognition[J]. Acta Electronica Sinica, 2010, 38(6): 1425–1429.
    [17] ZHANG Haichao, NASRABADI N M, ZHANG Yanning, et al. Multi-view automatic target recognition using joint sparse representation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2481–2497. doi: 10.1109/TAES.2012.6237604
    [18] MA Wenping, WEN Zelian, WU Yue, et al. Remote sensing image registration with modified SIFT and enhanced feature matching[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 3–7. doi: 10.1109/LGRS.2016.2600858
    [19] XIANG Yuming, WANG Feng, WAN Ling, et al. An advanced multiscale edge detector based on Gabor filters for SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1522–1526. doi: 10.1109/LGRS.2017.2720684
    [20] PAUL S and PATI U C. A Gabor odd filter-based ratio operator for SAR image matching[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(3): 397–401. doi: 10.1109/LGRS.2018.2872979
    [21] 张之光, 雷宏. 基于SAR图像样本的本征维数检测人造目标[J]. 电子测量技术, 2016, 39(9): 34–39. doi: 10.3969/j.issn.1002-7300.2016.09.009

    ZHANG Zhiguang and LEI Hong. Man-made targets detection based on intrinsic dimension of SAR image samples[J]. Electronic Measurement Technology, 2016, 39(9): 34–39. doi: 10.3969/j.issn.1002-7300.2016.09.009
    [22] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. HOG-ShipCLSNet: A novel deep learning network with HOG feature fusion for SAR ship classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210322. doi: 10.1109/TGRS.2021.3082759
    [23] OLUKANMI P O and TWALA B. K-means-sharp: Modified centroid update for outlier-robust k-means clustering[C]. 2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics, Bloemfontein, South Africa, 2017: 14–19,
    [24] WU Xin, HONG Danfeng, TIAN Jiaojiao, et al. ORSIm detector: A novel object detection framework in optical remote sensing imagery using spatial-frequency channel features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 57(7): 5146–5158. doi: 10.1109/TGRS.2019.2897139
  • 期刊类型引用(35)

    1. 方蕊,彭章友. 基于广播电视卫星的双基海杂波建模与实测数据分析. 工业控制计算机. 2025(01): 58-59+62 . 百度学术
    2. 薛健,孙孟玲,潘美艳. 基于支持向量回归和分位数的雷达K分布海杂波形状参数估计方法. 电子与信息学报. 2024(04): 1399-1407 . 百度学术
    3. 田华飞,魏广芬,简涛,周战,罗沅. 子空间干扰加高斯杂波背景下基于GLRT的斜对称方向检测器设计. 海军航空大学学报. 2024(02): 224-234 . 百度学术
    4. 杨诗曼,王中训,李珊,韩孟孟,刘宁波. 海上目标雷达与AIS航迹时空匹配方法. 海军航空大学学报. 2024(02): 199-204+274 . 百度学术
    5. 田凯祥,李保珠,王中训,刘宁波. 低海况下多姿态海上目标特征分析. 雷达科学与技术. 2024(02): 126-134 . 百度学术
    6. 连静,杨勇,谢晓霞,王雪松. 大掠射角对海雷达导引头实测回波特性分析. 系统工程与电子技术. 2024(05): 1535-1543 . 百度学术
    7. 汪翔,汪育苗,陈星宇,臧传飞,崔国龙. 基于深度学习的多特征融合海面目标检测方法. 雷达学报. 2024(03): 554-564 . 本站查看
    8. 黄胜彬,潘大鹏,陈涛. 基于多维特征融合的海面目标检测. 舰船电子对抗. 2024(03): 84-91 . 百度学术
    9. 田凯祥,于恒力,王中训,刘宁波,韩孟孟. 基于雷达目标特征可分性的一维特征选择方法. 海军航空大学学报. 2024(04): 453-460+500 . 百度学术
    10. 韩喆璇,于恒力,王中训,刘宁波,孙艳丽. 基于相对多普勒峰高特征的OS-CFAR改进方法. 海军航空大学学报. 2024(04): 475-484 . 百度学术
    11. 陈胜垚,胡晨康,程智勇,席峰,刘中. 基于残差单元与注意力门的非对称编解码海杂波抑制网络. 电子学报. 2024(08): 2628-2640 . 百度学术
    12. 关键,姜星宇,刘宁波,丁昊,黄勇. 海杂波背景下的双极化最大特征值目标检测. 系统工程与电子技术. 2024(11): 3715-3725 . 百度学术
    13. 陈铎,范一飞,粟嘉,郭子薰,陶明亮. 基于广义逆高斯纹理结构的目标检测算法. 系统工程与电子技术. 2024(12): 4018-4025 . 百度学术
    14. ZANG Chuanfei,WANG Yumiao,WANG Xiang,XU Congan,CUI Guolong. Sea clutter suppression via cuttable encoder-decoderaugmentation network. Journal of Systems Engineering and Electronics. 2024(06): 1428-1440 . 必应学术
    15. 陈佳音,郭山红,朱海锐,盛卫星,韩玉兵. 基于多特征融合的海面目标智能检测算法. 现代雷达. 2024(12): 24-30 . 百度学术
    16. 张俊玲,董玫,陈伯孝. 基于可调Q因子小波变换的海杂波抑制算法. 系统工程与电子技术. 2023(02): 343-351 . 百度学术
    17. 陈鹏,许震,曹振新,王宗新. 基于图特征学习的海杂波抑制算法. 兵工学报. 2023(02): 534-544 . 百度学术
    18. 黄瀚仪,胡仕友,郭胜龙,李珊君,舒勤. 基于稀疏分解的海面微动目标识别. 系统工程与电子技术. 2023(04): 1016-1023 . 百度学术
    19. 张梦雨,王中训,李飞,刘宁波,董云龙. CNN海况等级分类方法的性能. 烟台大学学报(自然科学与工程版). 2023(02): 196-203 . 百度学术
    20. 关键,刘宁波,王国庆,丁昊,董云龙,黄勇,田凯祥,张梦雨. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集. 雷达学报. 2023(02): 456-469 . 本站查看
    21. 许述文,焦银萍,白晓惠,蒋俊正. 基于频域多通道图特征感知的海面小目标检测. 电子与信息学报. 2023(05): 1567-1574 . 百度学术
    22. 关键,伍僖杰,丁昊,刘宁波,黄勇,曹政,魏嘉彧. 基于三维凹包学习算法的海面小目标检测方法. 电子与信息学报. 2023(05): 1602-1610 . 百度学术
    23. 邓稼麒,李正周,党楚佳,陈文豪,秦天奇. 基于海面场景感知的雷达目标检测方法. 中国电子科学研究院学报. 2023(02): 129-137 . 百度学术
    24. 董云龙,张兆祥,刘宁波,黄勇,丁昊,张梦雨. 雷达回波三特征联合海况分类方法. 雷达科学与技术. 2023(02): 189-198 . 百度学术
    25. 马全鑫,杜晓林,董军,李建波,田团伟. 基于几何方法的结构化协方差矩阵估计. 雷达科学与技术. 2023(02): 143-150 . 百度学术
    26. 刘言,刘宁波,黄勇,王中训. 利用相位特征筛选参考单元的改进CFAR方法. 烟台大学学报(自然科学与工程版). 2023(03): 371-378 . 百度学术
    27. 田凯祥,于晓涵,王中训,刘宁波. 基于实测数据的海杂波与海面小目标特征分析. 海军航空大学学报. 2023(04): 313-322 . 百度学术
    28. 董云龙,张兆祥,刘宁波,黄勇,丁昊. 海杂波多普勒谱Hurst指数特性分析及目标检测. 雷达科学与技术. 2023(04): 355-363+374 . 百度学术
    29. 杨政,程永强,吴昊,黎湘,王宏强. 基于正交投影的子带信息几何雷达弱小目标检测方法. 雷达学报. 2023(04): 776-792 . 本站查看
    30. 杨金龙,成勇,刘佳. 基于多核相关滤波X波段雷达多目标跟踪算法. 信息与控制. 2023(05): 561-573 . 百度学术
    31. 杜延磊,杨晓峰,汪胜,殷君君,杨会章,杨健. 海面雷达散射及其杂波幅度统计特性的空间遍历性数值仿真研究. 系统工程与电子技术. 2023(12): 3806-3818 . 百度学术
    32. 马红光,郭金库,姜勤波,刘志强. 一种基于自适应滤波的海杂波背景下多目标检测方法. 现代信息科技. 2022(04): 72-76 . 百度学术
    33. 董云龙,刘洋,刘宁波,丁昊,关键. 基于雷达方程修正的目标探测距离评估方法. 信号处理. 2022(10): 2102-2113 . 百度学术
    34. 杜延磊,高帆,刘涛,杨健. 基于数值仿真的X波段极化SAR海杂波统计建模与特性分析. 系统工程与电子技术. 2021(10): 2742-2755 . 百度学术
    35. 刘用功,尹勇. 目标船感知技术综述. 广州航海学院学报. 2021(04): 1-4+30 . 百度学术

    其他类型引用(41)

  • 加载中
图(19) / 表(10)
计量
  • 文章访问数: 1078
  • HTML全文浏览量: 377
  • PDF下载量: 242
  • 被引次数: 76
出版历程
  • 收稿日期:  2023-04-10
  • 修回日期:  2023-05-14
  • 网络出版日期:  2023-06-20
  • 刊出日期:  2023-10-28

目录

/

返回文章
返回