天线阵列编码合成孔径成像

王岩飞 李和平 韩松

王岩飞, 李和平, 韩松. 天线阵列编码合成孔径成像[J]. 雷达学报, 2023, 12(1): 1–12. doi: 10.12000/JR23011
引用本文: 王岩飞, 李和平, 韩松. 天线阵列编码合成孔径成像[J]. 雷达学报, 2023, 12(1): 1–12. doi: 10.12000/JR23011
WANG Yanfei, LI Heping, and HAN Song. Synthetic aperture imaging of antenna array coded[J]. Journal of Radars, 2023, 12(1): 1–12. doi: 10.12000/JR23011
Citation: WANG Yanfei, LI Heping, and HAN Song. Synthetic aperture imaging of antenna array coded[J]. Journal of Radars, 2023, 12(1): 1–12. doi: 10.12000/JR23011

天线阵列编码合成孔径成像

doi: 10.12000/JR23011
基金项目: 国家部委基金,中科院技术支撑体系专项项目
详细信息
    作者简介:

    王岩飞,研究员,博士生导师,主要研究方向为微波成像雷达理论方法及应用、数字信号处理等

    李和平,研究员,主要研究方向为微波成像雷达新体制新方法、高速数据采集与宽带信号发生技术等

    韩 松,研究员,博士生导师,主要研究方向为微波成像理论及系统技术、实时处理技术等

    通讯作者:

    王岩飞 yfwang@mail.ie.ac.cn

  • 责任主编:邢孟道 Corresponding Editor: XING Mengdao
  • 中图分类号: TN957.51

Synthetic Aperture Imaging of Antenna Array Coded

Funds: The National Ministries Foundation, The CAS Technical Support Talents Project
More Information
  • 摘要: 合成孔径雷达(SAR)方位理论分辨率为天线长度的二分之一,使得SAR高分辨率、远距离成像对天线的要求相互矛盾。该文提出了对天线阵列编码的合成孔径成像方法,通过将长天线分解为子阵、发射不同的信号进行阵列编码、协同工作,提高空间能量利用率,实现子阵小天线的高分辨率以及全阵列长天线的高增益,从而解决了高分辨率与远距离成像难以同时兼顾的问题。在介绍阵列编码基本概念的基础上,给出了阵列编码雷达成像模型及处理流程,对系统的分辨率、信噪比、脉冲重复频率(PRF)及距离方位模糊等性能进行了理论分析与探讨。在飞行测试实验中,用4个子阵获取了方位分辨率优于0.1 m、幅宽超过8 km的连续条带图像,打破了传统SAR采用聚束模式实现高分辨率时只能小范围成像的制约,新方法为解决传统SAR的原理限制问题提供了有效的途径。同时,通过阵列编码扩展了信号维度,为雷达系统能力的增强提供了技术基础。理论分析及实验结果验证了该文天线阵列编码方法的显著优势及工程实现的可行性。

     

  • 图  1  合成孔径雷达工作模式示意图

    Figure  1.  Geometric diagram of synthetic aperture radar imaging mode

    图  2  合成孔径雷达工作示意图

    Figure  2.  Geometric diagram of synthetic aperture radar

    图  3  天线阵列编码工作示意图

    Figure  3.  Geometric diagram of multiple sub-array coding

    图  4  收发不同子天线工作示意图

    Figure  4.  Geometric diagram between different sub-array

    图  5  天线阵列编码与相干处理合成示意图

    Figure  5.  Schematic diagram of antenna array coded and coherent processing synthesis

    图  6  阵列成像工作示意图

    Figure  6.  Geometric diagram of antenna array imaging

    图  7  天线阵列工作示意图

    Figure  7.  Schematic diagram of antenna array

    图  8  天线阵列编码雷达成像处理流程图

    Figure  8.  Flow chart of antenna array coded radar imaging process

    图  9  阵列编码雷达构成框图

    Figure  9.  Schematic diagram of antenna array coded radar system

    图  10  阵列编码雷达获取的0.1 m分辨率连续条带图像

    Figure  10.  0.1 m strip map image by the antenna array coded radar system

    图  11  点目标分辨率测量结果(方位:0.086 m;距离:0.127 m)

    Figure  11.  Resolution of point target form the image (Azimuth: 0.086 m; range: 0.127 m)

    图  12  编码阵雷达短时连续系列成像图

    Figure  12.  Continuous instantaneous imaging of antenna array coded radar system

    图  13  编码阵雷达短时连续系列成像局部放大图

    Figure  13.  Continuous instantaneous zoomed image of antenna array coded radar system

    图  14  对应图12同一区域的SAR图像

    Figure  14.  SAR image of the same area of Fig. 12

    表  1  编码阵雷达系统工作参数

    Table  1.   Parameters of antenna array coded radar

    参数数值
    波段Ku
    方位向天线长度0.5 m
    子阵数4
    系统带宽1.2 GHz
    子阵发射信号带宽300 MHz
    各子阵发射峰值功率200 W
    发射信号脉冲宽度30 μs
    飞行平台速度80 m/s
    作用距离25 km
    下载: 导出CSV
  • [1] 张澄波. 综合孔径雷达[M]. 北京: 科学出版社, 1989.

    ZHANG Chengbo. Synthetic Aperture Radar[M]. Beijing: Science Press, 1989.
    [2] CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [3] CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: Wiley, 1991.
    [4] CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
    [5] JAKOWATZ C V JR, WAHL D E, EICHEL P H, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach[M]. New York: Springer, 1996.
    [6] MITTERMAYER J, LORD R, and BORNER E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. The 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1462–1464.
    [7] PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 770–780. doi: 10.1109/TGRS.2009.2027701
    [8] SUN Guangcai, XING Mengdao, WANG Yong, et al. Sliding spotlight and TOPS SAR data processing without subaperture[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(6): 1036–1040. doi: 10.1109/LGRS.2011.2151174
    [9] 唐禹, 王岩飞, 张冰尘. 滑动聚束SAR成像模式研究[J]. 电子与信息学报, 2007, 29(1): 26–29. doi: 10.3724/SP.J.1146.2005.00585

    TANG Yu, WANG Yanfei, and ZHANG Bingchen. A study of sliding spotlight SAR imaging mode[J]. Journal of Electronics &Information Technology, 2007, 29(1): 26–29. doi: 10.3724/SP.J.1146.2005.00585
    [10] ENDER J H G. MIMO-SAR[C]. International Radar Symposium, Cologne, Germany, 2007: 580–588.
    [11] CRISTALLINI D, PASTINA D, and LOMBARDO P. Exploiting MIMO SAR potentialities with efficient cross-track constellation configurations for improved range resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 38–52. doi: 10.1109/TGRS.2010.2053715
    [12] WANG Wenqin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. doi: 10.1109/TGRS.2011.2116030
    [13] KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934
    [14] 周伟, 刘永祥, 黎湘, 等. MIMO-SAR技术发展概况及应用浅析[J]. 雷达学报, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074

    ZHOU Wei, LIU Yongxiang, LI Xiang, et al. Brief analysis on the development and application of multi-input multi-output synthetic aperture radar[J]. Journal of Radars, 2014, 3(1): 10–18. doi: 10.3724/SP.J.1300.2013.13074
    [15] SABRY R and GELING G W. A new approach for radar/SAR target detection and imagery based on MIMO system concept and adaptive space-time coding[R]. DRDC Ottawa TM 2007-087, 2007.
    [16] 武其松, 井伟, 邢孟道, 等. MIMO-SAR大测绘带成像[J]. 电子与信息学报, 2009, 31(4): 772–775. doi: 10.3724/SP.J.1146.2007.01959

    WU Qisong, JING Wei, XING Mengdao, et al. Wide swath imaging with MIMO-SAR[J]. Journal of Electronics &Information Technology, 2009, 31(4): 772–775. doi: 10.3724/SP.J.1146.2007.01959
    [17] FAROOQ J, TEMPLE M A, and SAVILLE M A. Application of frequency diverse arrays to synthetic aperture radar imaging[C]. 2007 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 2007: 447–449.
    [18] FAROOQ J, TEMPLE M A, and SAVILLE M A. Exploiting frequency diverse array processing to improve SAR image resolution[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–5.
    [19] CHEN Zhen, ZHANG Zhimin, ZHOU Yashi, et al. Elevated frequency diversity array: A novel approach to high resolution and wide swath imaging for synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4001505. doi: 10.1109/LGRS.2020.3021043
    [20] ZHOU Yashi, WANG Wei, CHEN Zhen, et al. High-resolution and wide-swath SAR imaging mode using frequency diverse planar array[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 321–325. doi: 10.1109/lgrs.2020.2974041
    [21] LAN Lan, LIAO Guisheng, XU Jingwei, et al. Transceive beamforming with accurate nulling in FDA-MIMO radar for imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4145–4159. doi: 10.1109/TGRS.2019.2961324
    [22] 朱圣棋, 余昆, 许京伟, 等. 波形分集阵列新体制雷达研究进展与展望[J]. 雷达学报, 2021, 10(6): 795–810. doi: 10.12000/JR21188

    ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188
    [23] 王岩飞, 李和平, 韩松. 雷达脉冲编码理论方法及应用[J]. 雷达学报, 2019, 8(1): 1–16. doi: 10.12000/JR19023

    WANG Yanfei, LI Heping, and HAN Song. The theory and method of pulse coding for radar and its applications[J]. Journal of Radars, 2019, 8(1): 1–16. doi: 10.12000/JR19023
    [24] 张庆君, 韩晓磊, 刘杰. 星载合成孔径雷达遥感技术进展及发展趋势[J]. 航天器工程, 2017, 26(6): 1–8. doi: 10.3969/j.issn.1673-8748.2017.06.001

    ZHANG Qingjun, HAN Xiaolei, and LIU Jie. Technology progress and development trend of spaceborne synthetic aperture radar remote sensing[J]. Spacecraft Engineering, 2017, 26(6): 1–8. doi: 10.3969/j.issn.1673-8748.2017.06.001
    [25] SKOLNIK M I. Radar Handbook[M]. 2nd ed. New York: McGraw-Hill, 1990.
    [26] COOK C E and BERNFELD M. Radar Signals: An Introduction to Theory and Application[M]. Amsterdam: Elsevier, 1967.
    [27] COSTAS J P. A study of a class of detection waveforms having nearly ideal range—Doppler ambiguity properties[J]. Proceedings of the IEEE, 1984, 72(8): 996–1009. doi: 10.1109/PROC.1984.12967
    [28] KRIEGER G, GEBERT N, and MOREIRA A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 31–46. doi: 10.1109/TGRS.2007.905974
    [29] SKOLNIK M I, 左群声, 徐国良, 马林, 等译. 雷达系统导论[M]. 3版. 北京: 电子工业出版社, 2014.

    SKOLNIK M I, ZUO Qunsheng, XU Guoliang, MA Lin, et al. translation. Introduction to Radar Systems[M]. 3rd ed. Beijing: Publishing House of Electronics Industry, 2014.
    [30] 赵永波, 刘宏伟. MIMO雷达技术综述[J]. 数据采集与处理, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001

    ZHAO Yongbo and LIU Hongwei. Overview on MIMO radar[J]. Journal of Data Acquisition and Processing, 2018, 33(3): 389–399. doi: 10.16337/j.1004-9037.2018.03.001
    [31] 袁赛柏, 金胜, 朱天林. MIMO雷达技术发展综述[J]. 现代雷达, 2017, 39(8): 5–8, 66. doi: 10.16592/j.cnki.1004-7859.2017.08.002

    YUAN Saibai, JIN Sheng, and ZHU Tianlin. The development review of MIMO radar technology[J]. Modern Radar, 2017, 39(8): 5–8, 66. doi: 10.16592/j.cnki.1004-7859.2017.08.002
    [32] PAPOULIS A. Signal Analysis[M]. New York: McGraw-Hill, 1977.
    [33] 王岩飞, 刘畅, 詹学丽, 等. 无人机载合成孔径雷达系统技术与应用[J]. 雷达学报, 2016, 5(4): 333–349. doi: 10.12000/JR16089

    WANG Yanfei, LIU Chang, ZHAN Xueli, et al. Technology and applications of UAV synthetic aperture radar system[J]. Journal of Radars, 2016, 5(4): 333–349. doi: 10.12000/JR16089
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  1268
  • HTML全文浏览量:  687
  • PDF下载量:  248
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-26
  • 修回日期:  2023-02-18
  • 网络出版日期:  2023-02-22
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回