Loading [MathJax]/jax/output/SVG/jax.js

基于频率分集阵列的多功能一体化波形设计与信号处理方法

兰岚 廖桂生 许京伟 朱圣棋 曾操 张玉洪

关键, 裴家正, 黄勇, 等. 杂波背景下的时距联合检测前聚焦方法研究[J]. 雷达学报, 2022, 11(5): 753–764. doi: 10.12000/JR22115
引用本文: 兰岚, 廖桂生, 许京伟, 等. 基于频率分集阵列的多功能一体化波形设计与信号处理方法[J]. 雷达学报, 2022, 11(5): 850–870. doi: 10.12000/JR22163
GUAN Jian, PEI Jiazheng, HUANG Yong, et al. Time-range focus-before-detect method in clutter background[J]. Journal of Radars, 2022, 11(5): 753–764. doi: 10.12000/JR22115
Citation: LAN Lan, LIAO Guisheng, XU Jingwei, et al. Waveform design and signal processing method of a multifunctional integrated system based on a frequency diverse array[J]. Journal of Radars, 2022, 11(5): 850–870. doi: 10.12000/JR22163

基于频率分集阵列的多功能一体化波形设计与信号处理方法

DOI: 10.12000/JR22163
基金项目: 国家自然科学基金(62101402, 61931016, 62071344),中国博士后科学基金(2021TQ0261, 2021M702547),中国科协青年人才托举工程(2021QNRC001),陕西省创新能力支持计划(2022TD-38),声纳技术重点实验室基金(6142109KF212202)
详细信息
    作者简介:

    兰 岚,博士,副教授,主要研究方向为新体制雷达抗干扰、波形分集阵列雷达信号处理、目标检测与参数估计

    廖桂生,博士,教授,主要研究方向为雷达系统技术与阵列处理、雷达稀疏成像处理等

    许京伟,博士,副教授,主要研究方向为雷达系统建模、阵列信号处理、波形分集雷达(频率分集阵列和空时编码阵列)等

    朱圣棋,博士,教授,主要研究方向为雷达运动目标检测、频率分集阵列、波形分集阵列雷达信号处理

    曾 操,博士,教授,主要研究方向为新体制阵列信号处理、雷达运动目标检测

    张玉洪,博士,教授,主要研究方向为阵列信号处理、微波遥感与成像、信号建模与仿真、波形分集技术等

    通讯作者:

    廖桂生 liaogs@xidian.edu.cn

  • 责任主编:胡卫东 Corresponding Editor: HU Weidong
  • 11值得注意的是,为了与相控阵形成对比,也有文献称FDA为频控阵[3,5],而本文统一使用“频率分集阵”。2广义上,发射阵元之间除了改变载频,引入波形、时延、相位调制也可得到依赖于距离和时间的方向图,即波形分集阵列[8]
  • 中图分类号: TN957

Waveform Design and Signal Processing Method of a Multifunctional Integrated System Based on a Frequency Diverse Array(in English)

Funds: The National Natural Science Foundation of China (62101402, 61931016, 62071344), China Postdoctoral Science Foundation (2021TQ0261, 2021M702547), Young Elite Scientists Sponsorship Program by CAST (2021QNRC001), The Science and Technology Innovation Team of Shaanxi Province (2022TD-38), Science and Technology on Sonar Laboratory (6142109KF212202)
More Information
  • 摘要: 频率分集阵(FDA)是在相控阵基础上的一次体制革新,其通过在发射天线阵元间进行频率步进,得到的发射方向图是角度、距离、时间的多维函数,显著提升了波束控制能力与信号处理维度,经过收发联合处理后,可应用于多维参数联合估计、主瓣欺骗式干扰抑制、模糊杂波抑制、高分宽幅成像等方面。该文从系统层面出发,研究基于FDA的多功能一体化波形设计与信号处理方法,重点对其在检测与估计一体化、解模糊与抗干扰一体化、合成孔径雷达(SAR)成像与动目标检测一体化的信号处理新方法进行综述、评述及研究,并对FDA多功能一体化系统的应用前景进行展望。

     

  • 随着诱饵技术和电磁控制技术等的不断发展,基于传统特征量的弹道目标识别技术已难以满足未来高科技战争的需求,而微动特征作为弹道目标的固有属性,难以被模仿,且弹头和诱饵、碎片等运动形式存在明显差异,因而被用来区分识别真弹头,近年来受到国内外研究学者的广泛关注[1–3]。由于目标微动会对雷达回波产生微多普勒调制,无论是宽带雷达还是窄带雷达,均可通过对回波信号参数进行估计来提取目标的微动特征,进而进行目标的分类识别。然而研究表明[4–6],单基雷达获取的目标微多普勒信息均具有较强的姿态敏感性,不同视角获得的微动特征不同,因而难以准确反映目标的真实空间结构。考虑到组网雷达能获得目标在不同视角上的观测信息,于是有望利用多部雷达联合观测对目标进行3维微动特征提取,从而克服单一视角的局限性,提高目标识别精度。

    考虑宽带雷达能得到目标的高分辨距离像,获取目标更细微的形状结构特征,目前基于宽带雷达组网的目标微动特征提取研究较多。文献[7]对MIMO雷达中的旋转目标微多普勒效应展开分析,并基于时间-距离像对目标的3维微动特征进行了提取;文献[8]利用分布式组网雷达对有翼锥体目标进行联合观测,并基于不同视角微多普勒特征的相关性,借助几何分析的方法,实现了目标的3维进动特征提取;文献[9]通过三站1维距离像融合实现了锥体目标的3维重构。由此可见,基于宽带雷达组网的目标微动特征提取技术研究已较为成熟,然而,就目前现有雷达实际装备情况来看,由于宽带高分辨雷达价格昂贵,一时间仍难以实现对窄带雷达的全面升级和替换,雷达网仍以窄带体制为主,因此研究利用窄带雷达网对弹道目标进行特征提取具有更大的实际意义,能有效解决目前理论研究与实际脱节的矛盾;文献[10]在窄带组网体制下推导了不同视角锥体散射中心瞬时频率变化关系,利用频谱熵实现了散射中心的匹配关联,并进一步提出了基于散射中心瞬时频率相关性的目标参数提取算法,但没能获取目标的3维微动特征,也无法实现空间目标的3维重构。

    本文在文献[10]的基础上,进一步对窄带雷达网中的锥体目标3维进动特征提取展开了研究。在详细分析了锥体进动引发的微多普勒频率调制特性的基础上,利用锥顶微多普勒频率调制系数比,实现了不同视角下散射中心匹配关联,并获取了目标的3维锥旋矢量,进而利用锥顶和底面边缘散射中心微多普勒频率相关性,结合频率补偿的方法对锥体特征参数进行了提取,在此基础上解算出每一时刻锥顶坐标,从而实现了目标空间位置的3维重构。最后,仿真分析了本文方法的有效性。

    以无翼锥形弹头为例,建立进动模型如图 1所示,由于其存在旋转对称性,因此仅考虑其做锥旋运动。假定目标以角速度ωc绕锥旋轴旋转,且锥旋轴与目标对称轴相交于点o,两者夹角为θ,以交点为坐标原点建立参考坐标系oxyz如下,目标对称轴初始方位为φ0, LOS表示雷达视线方向,其在参考坐标系中的方位角和俯仰角分别为 (ε, χ),与锥旋轴的夹角为α,与对称轴夹角为β,定义雷达视线方向与对称轴构成的平面为底面圆环的电磁波入射平面,该平面与圆环交于pq两点。锥体高度为h,底面半径为r,锥顶与进动中心的距离为h1,底面中心与进动中心的距离为h2,且目标满足远场条件,雷达与进动中心的距离为R0

    图  1  锥形弹头进动模型
    Figure  1.  The precession model of conical warhead

    根据散射中心理论,对于旋转对称目标,其高频散射特性主要由锥顶D及底面边缘两个散射中心p, q确定[1, 5]。由几何关系分析可得雷达视线与对称轴的夹角β满足:

    式中,φ为初始相位角,且由文献[6]可知是φ=ϕ0ε。进一步对各散射中心在雷达视线上的投影关系分析可知,锥体3个散射中心到雷达的距离分别为:

    考虑到锥体目标在实际运动中各部分之间存在相互遮挡,目标上各散射中心不能始终保持同时可见,使得式 (2) 的使用范围受到限制。但锥顶D和近散射点p在大部分情况下都能被观测到[3],并能够获得二者的稳定连续观测信息,因此本文主要利用D, p的微动信息展开后继研究。假设雷达波长为λ,由式 (1) 和式 (2) 可得,进动引发的D, p两点的微多普勒调制为[11]

    由式 (3) 可以看出,D点的微多普勒频率变化服从正弦规律,而p点的微多普勒频率由两部分之和组成,不再服从简单的正弦调制规律,且两点微多普勒频率均与目标的进动和结构特征有关,共包含wc, h1, h2, r, θ, α, φ 7个未知参数,其中ωc, φ可通过提取正弦曲线特征得到,而θ, α两者之间存在耦合,仅通过单部雷达,仍无法实现对目标进动角及尺寸大小的求解。考虑到多视角观测能获得更加丰富的目标信息,具有较好的解耦合性能,因此本文将采用雷达组网方式对目标特征进行提取,并进一步实现3维重构。

    首先建立窄带雷达网系统观测模型如图 2所示,图中OXYZ为全局坐标系,与参考坐标系oxyz平行,假定系统中共有N部窄带雷达同时进行观测,并都已满足时空同步要求,各雷达视线在OXYZ坐标系中的方位角和俯仰角为 (εi, χi), ni (i=1, 2, ···, N) 为雷达视线方向,满足:

    图  2  组网雷达示意图
    Figure  2.  The sketch map of netted radar

    由第2节分析可知,当采用多部雷达同时进行观测时,由于各雷达观测视角不同,同一时刻目标各散射中心在雷达视线上的投影位置排列顺序将存在差异,相对应地,同一时刻各散射中心的微多普勒频率也会不同。因此,在利用组网雷达进行特征提取之前,首先得实现不同视角散射中心的匹配关联。

    由式 (3) 可以看出,对于同一观测目标而言,锥顶D的微多普勒频率调制系数A仅与雷达观测视角有关,任取雷达网中两部雷达,其调制系数比满足:

    p点调制规律更为复杂,不具备上述比例关系,因此,通过比较观察不同雷达间的调制系数比即可实现散射中心的匹配关联。文献[10]采用频谱分析的方法,通过计算不同散射中心的频谱熵来实现散射中心的匹配关联,然而在两个散射中心回波信号无法分离的情况下,散射中心无法与各自频谱一一对应起来,因此该方法存在较大的局限性。相比而言,本文方法则更加简单实用。

    为更好地实现对锥体目标的3维重构,首先对锥旋轴方向进行估计。采用Viterbi算法提取锥顶微多普勒曲线振幅得到:

    Viterbi算法[12–14]作为信号隐状态估计的有效手段之一,能够依据各信号成分强度对信号进行逐次分离,因此常被用来对多目标信号瞬时频率进行估计。与逆Randon变换、Hough变换等曲线参数提取方法相比,Viterbi算法对各信号分量形式依赖性不高,即使是非正弦信号,同样能实现瞬时频率的准确估计。

    此外,雷达观测视角αi还满足:

    式 (7) 中,ω = (ωx,ωy,ωz)T,联立式 (4)、式 (6)、式 (7),令B=h1sinθ,此时方程组中共包含B, ωx, ωy, ωz 4个未知参数,因此,至少需要3部雷达同时进行观测才能实现对上述参数的求解。进一步将求得的参数回代到方程组,还可以确定sinai的大小。文献[10]采用基于视线角方差最小准则的频率搜索补偿方法对雷达视线角进行估计,需要经过多次循环迭代才能得到准确估计值,计算复杂,且易受噪声影响,而本文所提方法用到的只是锥顶微多普勒频率曲线的振幅和周期,且这两个曲线参数均可由Viterbi算法准确提取得到,在求得锥旋矢量的同时也能估计出各雷达视线角的大小,计算更为简单,算法稳定性更好。

    在上述分析的基础上,若要提取锥体弹头参数,还需p对点的微多普勒频率进行充分利用,观察式 (3) 可知,fdp由正弦部分和非正弦部分之和组成,且正弦部分fk=2ωch2sinθsinαcos(ωct+φ) / λ 满足fk=(-h2/h1)fd-D,而非正弦部分此时仅包含 (r, θ) 两个未知参数。若能将正弦部分完全补偿,便可利用多视角观测对 (r, θ) 联立求解。考虑到锥体目标尺寸信息仍然未知,先假设补偿系数为η,且η0=h2/h1,当η=η0时,便可实现完全补偿,于是p点补偿后的微多普勒频率满足:

    η进行遍历,利用补偿后的频率两两联立方程可求得:

    对每个η取值所对应求得的所有结果(ˆrξ|η,ˆθξ|η)做进一步处理,并定义归一化标准差σ为:

    式中,Δr=[ˆr1ˉr  ˆr2ˉrˆrC2Nˉr],Δθ=[ˆθ1ˉθ  ˆθ2ˉθˆθC2Nˉθ],ˉr,ˉθ为平均值,按照上述归一化标准差定义,对于每一个η取值均能得到对应的σ。若η=η1时,σ取得最小值,则说明此时fk被补偿得最完全,补偿系数η1也越接近η0,由此可求得:

    结合4.1节分析,将ˆθ代入B=h1sinθ中,于是求得h1=Bsinˆθ,h2=h1η1

    在求得锥体目标结构参数及旋转轴方向的基础上,为实现对目标空间位置的3维重构,还需确定各散射中心的相对位置,由于底面边缘两个散射中心会随雷达视线方向改变产生滑动,位置坐标不易确定,因而本文从锥顶散射中心入手,在锥体目标结构参数已知的条件下,只要能够求得每一时刻锥顶坐标,同样能实现对目标空间位置的3维重构。由于窄带雷达距离分辨力较低,难以直接从目标回波中获得各散射中心的径向距离变化规律,因此本文考虑在已知各散射中心运动形式和参数基础上,通过微多普勒频率反推每一时刻各散射中心相对应的径向距离变化。

    d=RDR0,由式 (2) 可得:

    式中,φi=ϕ0χi,由于每一时刻D点的微多普勒频率fdD均已获得,且fdDRD满足导数关系,因而di在每一时刻的值也能求解得到。此外,结合图 1可知,dioD在第i部雷达视线上的投影,同时还应满足:

    若令oD=(Dx, Dy, Dz)T,通过3部雷达同时进行观测可以解算出oD为:

    ODOD=[nT1nT2nT3]1[d1d2d3] (14)

    综上所述,基于窄带雷达组网的弹道目标3维微动特征提取及重构步骤为:

    步骤1建立弹道目标进动模型,分析各散射中心微多普勒调制规律;

    步骤2对目标回波进行时频分析,采用Viterbi算法提取各散射中心微多普勒曲线;

    步骤3基于锥顶微多普勒频率调制系数比,实现不同视角下散射中心匹配关联;

    步骤4提取3维锥旋矢量和目标结构参数,在此基础上解算出每一时刻锥顶坐标,从而实现锥体目标空间3维重构。

    在下述仿真中设定目标为锥体,目标参数设置为:h1=2.0 m, h2=0.5 m, r=0.5 m, h=2.5 m, θ=13°,目标对称轴初始方位角φ0=60°,目标的锥旋频率为fc=4 Hz,锥旋矢量为(23 π, 43 π ,2 π )。雷达参数设置为:载频f=8×109 Hz,信号带宽为5 MHz,雷达脉冲重复频率为2000 Hz,积累时间1 s,信噪比为10 dB。在全局坐标系中3部雷达M1, M2, M3测得的目标方位角和俯仰角 (εi, χi) 分别为 (40°, 84°), (45°, 48°), (30°, 17°)。图 3分别为该3部雷达获得的同一时间段内目标回波Cohen类时频分布重排结果,可以看出重排后的谱图不仅具有更好的时频聚集性,同时还有效抑制了各分量之间的交叉项[15, 16],有利于提高各散射中心瞬时频率的估计精度。

    图  3  3部雷达时频分布图
    Figure  3.  The Time-frequency Distribution figure of three radars

    在上述谱图重排的基础上,进一步采用Viterbi算法对各散射中心瞬时频率进行提取,并通过拟合更好地削减了交叉项所带来的不利影响,得到各雷达散射中心瞬时频率估计结果如图 4所示。然后依据第3节匹配关联准则,对各散射中心曲线幅度做进一步处理,区分出锥顶和锥底边缘散射中心。此时提取到各雷达锥顶正弦曲线的频率为ω =25.14 rad/s,振幅分别为567.6 Hz, 361.8 Hz, 307.8 Hz,而由式 (6) 计算得到的振幅理论值分别为569.2636 Hz, 362.0643 Hz, 309.5390 Hz,两者相当接近,代入方程组式 (7) 可以求解得到3维锥旋矢量ω=(10.8598,21.7937,6.2545)T,与理论值基本吻合,同时可以求得各雷达视线角分别为ˆα1=70.7025,ˆα2=36.9851,ˆα3=30.7848

    图  4  3部雷达IF提取结果
    Figure  4.  The IF result extracted by three radars

    依据4.2节中锥体弹头参数提取算法,由求得的ˆαi和各散射中心瞬时频率对 (r, θ) 进行估计,可以得到遍历时η归一化标准差σ随之变化的结果如图 5所示,当η=0.253时,σ取得最小值,接近于理论分析值η0=0.25,进一步将该η值代到方程式 (11),从而求得参数r, θ, h1, h2估计值。定义相对误差=|理论值–估计值|/理论值,各参数估计结果如表 1所示,其中α1, α2, α3估计精度相对较高,r, θ, h1, h2由于受到各散射中心瞬时频率提取误差的影响,估计精度则相对较低,通过进一步提高时频分辨率或者增加雷达网中雷达观测数量可实现上述参数估计精度的提升。但总的来说,各参数估计相对误差均小于5%,满足目标识别的精度要求,可用于下一步对锥顶坐标的求解。而在相同仿真条件下,文献[10]中的目标参数平均估计相对误差则接近于15%,明显高于本文误差,这也从侧面反映出本文参数提取算法的稳定性。

    图  5  补偿系数求解结果
    Figure  5.  The solving results of compensation coefficient
    表  1  锥体弹头进动及结构参数估计结果
    Table  1.  The estimation result of cone-shaped warhead's parameters
    参数 理论值 估计值 相对误差 (%)
    α1(°) 70.7288 70.7025 0.30
    α2(°) 36.8974 36.9851 0.037
    α3(°) 30.8829 30.7848 0.32
    θ(°) 13 13.5579 4.29
    r(m) 0.5 0.5237 4.74
    h1(m) 2.0 1.9132 4.43
    h2(m) 0.5 0.4811 3.20
    下载: 导出CSV 
    | 显示表格

    在上述目标特征参数提取的基础上,进一步按照4.3节所提算法对锥顶坐标进行求解。当时t=0.25 s,求得锥顶坐标(ˆDx,ˆDy,ˆDz)=(1.1739,1.1888,0.5898),与理论值(Dx,Dy,Dz)=(1.2050,1.2495,0.6093)基本相符,并最终得到在观测时间内0~0.25 s锥顶散射中心的实际轨迹如图 6所示,与其理论轨迹近乎重合,从而更加充分地说明了本文重构方法的准确性和有效性。

    图  6  锥顶散射中心的轨迹
    Figure  6.  The trajectory of the top scattering center

    为了充分验证本文所提算法的鲁棒性,仿真分析了曲线参数估计误差对目标参数提取及重构精度的影响。由于在4.1节中3维锥旋矢量的求解精度主要受到锥顶微多普勒幅度和微动周期的影响,而微动周期通常都能被准确估计,因而在此主要分析微多普勒幅度的影响。在4.2节中,目标参数的准确提取关键在于式 (9) 的求解,且求解精度主要受瞬时频率提取误差制约,因此也有必要对瞬时频率提取误差带来的影响进行分析。为便于分析,定义归一化误差如下:

    上式中ˆX为估计值,X为真实值,进一步定义|η|为归一化绝对误差。假设锥顶微多普勒曲线幅度AD提取值以及各散射中心瞬时频率的提取值归一化误差服从[–a a]上的均匀分布,采用蒙特卡洛方法进行分析,仿真100次,可以得到目标特征参数归一化绝对误差平均值的变化如图 7所示。从图 7(a)中可以看出,当a在区间[0, 0.1]变化时,锥旋矢量各方向分量估计误差均呈线性增加趋势,但总的来说,各方向分量估计精度仍然较高。而在图 7(b)中,当a在区间[0, 0.03]变化时,进动角θ变化较为平和,h2/h1则几乎不受影响,只有底面半径r值的估计精度变化最为敏感,随着各种高性能时频分析工具的发展,完全可以将瞬时频率提取精度进一步提高,从而满足目标参数的高精度提取。

    图  7  鲁棒性分析
    Figure  7.  Robustness analysis

    综上所述可知,本文所提锥体目标参数提取及重构算法在一定程度上受到微多普勒曲线参数提取精度的影响,但由于文中所采用的基于Cohen类时频重排的Viterbi算法较好地实现瞬时频率曲线的提取,因此本文算法能保证目标参数提取及重构的可靠性,可用于目标识别。

    本文对基于窄带雷达网的锥体目标3维进动特征提取问题展开了研究。依据目标的多视角微多普勒频率调制特性,利用3部雷达获取了目标的3维锥旋矢量及特征参数,并进一步解算出每一时刻锥顶坐标,实现了目标空间位置的3维重构。仿真结果表明,本文所提方法目标参数估计精度高,重构性能好,能够有效克服目标散射中心遮挡和姿态敏感性的不利影响,为基于窄带雷达的空间目标准确识别提供了解决方案。考虑到在实际的导弹防御体系当中,可能会出现窄带雷达和宽带雷达同时对目标进行观测识别的情况,后继工作将就不同体制雷达对目标3维特征参数的融合提取问题展开研究。

  • 图  1  FDA发展动态时间线

    Figure  1.  The dynamic timeline of FDA development

    图  2  FDA-MIMO雷达不同应用的关联

    Figure  2.  Relationships among different FDA-MIMO radar applications

    图  3  FDA多维模糊函数

    Figure  3.  Multi-dimensional ambiguity function of FDA

    图  4  相干FDA发射方向图空域覆盖性分析

    Figure  4.  Analysis on the spatial coverage of the transmit beampattern for coherent FDA

    图  5  相干FDA接收机基本结构

    Figure  5.  Basic structures of coherent FDA receiver

    图  6  FDA-MIMO雷达接收匹配滤波处理流程

    Figure  6.  Processing procedurse of receive matched filtering in FDA-MIMO radar

    图  7  FDA-MIMO雷达检测与估计一体化结果

    Figure  7.  Integrated detection and estimation results in FDA-MIMO radar

    图  8  FDA-MIMO雷达解距离模糊示意图

    Figure  8.  Principle of resolving the range ambiguity in FDA-MIMO radar

    图  9  假目标产生示意图

    Figure  9.  Generation of false targets

    图  10  基于波束形成的FDA-MIMO雷达抗主瓣欺骗式干扰方法

    Figure  10.  Mainlobe deceptive jammer suppression with beamforming in FDA-MIMO radar

    图  11  FDA-MIMO雷达基于稳健波束形成抗干扰方法输出SINR结果

    Figure  11.  Output SINR with robust beamforming for jammer suppression in FDA-MIMO radar

    图  12  频率分集系统抗干扰验证

    Figure  12.  Verification of jammer suppression with FDA system

    图  13  基于FDA-MIMO STAP雷达的一体化杂波与干扰抑制

    Figure  13.  Integrated clutter and jammer suppression in FDA-MIMO STAP radar

    图  14  频分正交LFM信号模型

    Figure  14.  Signal model of orthogonal frequency diverse LFM signal

    图  15  FDA-MIMO空时频局域化处理示意图

    Figure  15.  Diagram of space-time-frequency localized processing with FDA-MIMO

    图  16  FDA-MIMO降维处理器结果

    Figure  16.  Results on dimension reduction processor in FDA-MIMO

    图  17  基于多子带FDA的高分宽幅SAR成像处理流程

    Figure  17.  Procedure of HRWS SAR imaging based on multiple sub-band FDA

    图  18  子带FDA-HRWS成像结果

    Figure  18.  Imaging results of sub-band FDA-HRWS

    图  1  The dynamic timeline of FDA development

    图  2  Relationships among different FDA-MIMO radar applications

    图  3  Multi-dimensional ambiguity function of FDA

    图  4  Analysis on the spatial coverage of the transmit beampattern for coherent FDA

    图  5  Basic structures of coherent FDA receiver

    图  6  Processing procedurse of receive matched filtering in FDA-MIMO radar

    图  7  Integrated detection and estimation results in FDA-MIMO radar

    图  8  Principle of resolving the range ambiguity in FDA-MIMO radar

    图  9  Generation of false targets

    图  10  Mainlobe deceptive jammer suppression with beamforming in FDA-MIMO radar

    图  11  Output SINR with robust beamforming for jammer suppression in FDA-MIMO radar

    图  12  Verification of jammer suppression with FDA system

    图  13  Integrated clutter and jammer suppression in FDA-MIMO STAP radar

    图  14  Signal model of orthogonal frequency diverse LFM signal

    图  15  Diagram of space-time-frequency localized processing with FDA-MIMO

    图  16  Results on dimension reduction processor in FDA-MIMO

    图  17  Procedure of HRWS SAR imaging based on multiple sub-band FDA

    图  18  Imaging results of sub-band FDA-HRWS

    表  1  多功能FDA-MIMO优势及信号处理方法

    Table  1.   Advantages and signal processing methods of multifunctional FDA-MIMO

    雷达功能任务 面临问题 FDA优势 具体方法
    参数估计 中高重频带来的距离模糊问题严重 实现距离和角度的同步估计;
    能够估计距离模糊数
    子空间(MUSIC, ESPRIT)方法、
    最大似然类方法、单脉冲法
    杂波抑制 区分不同距离模糊区间对应的回波 二次距离补偿、STAP、空时距离三维自适应处理
    高分宽幅成像 区分不同距离模糊区间对应的回波 距离相关补偿、发射通道与慢时间编码
    目标检测 小样本、未知非均匀环境 提升未知非均匀环境下的检测性能 基于GLRT的自适应检测器设计
    抗干扰 主瓣欺骗式干扰难以抑制 在联合收发二维平面对干扰进行置零 自适应波束形成、空间投影类、
    基于方向图设计抗干扰
    下载: 导出CSV

    表  1  Advantages and signal processing methods of multifunctional FDA-MIMO

    Functions of radars Problems Advantages of FDA Methods
    Parameter estimation Range ambiguity reduced by high pulse repetition frequency Estimating joint range, angle,
    and range ambiguity number
    Subspace-based methods (MUSIC and ESPRIT), ML, monopulse-based methods
    Clutter suppression Discriminating echoes corresponding to different range ambiguity regions Secondary range compensation, STAP, space-time-range adaptive processing
    HRWS-SAR imaging Discriminating echoes corresponding to different range ambiguity regions Range compensation, transmit channel and slow-time processing
    Target detection Insufficient samples, nonhomogeneous environment Improving the detection performance in a nonhomogeneous environment Design of adaptive detectors based on GLRT
    Jammer suppression Mainlobe deceptive jammers Nulling the jammers in the joint transmit-receive spatial Data-dependent beamforming, space projection, beampattern synthesis-based methods
    下载: 导出CSV
  • [1] WICKS M C. A brief history of waveform diversity[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 328–333.
    [2] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Multi-mission multi-mode waveform diversity[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006: 580–582.
    [3] 王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153–166. doi: 10.12000/JR18029.

    WANG Wenqin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153–166. doi: 10.12000/JR18029.
    [4] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023.

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023.
    [5] 王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235.

    WANG Wenqin, SHAO Huaizong, and CHEN Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics&Information Technology, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235.
    [6] XU Jingwei, LAN Lan, HE Xiongpeng, et al. System design and signal processing for frequency diverse array radar[J]. Journal of Beijing Institute of Technology, 2021, 30(1): 1–19. doi: 10.15918/j.jbit1004-0579.2021.004.
    [7] SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099.
    [8] LAN Lan, LIAO Guisheng, XU Jingwei, et al. Control and utilization of range-dependent beampattern with waveform diverse array radars[J]. Chinese Journal of Aeronautics, in press, 2022.
    [9] XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. doi: 10.1109/TSP.2015.2422680.
    [10] LAN Lan, ROSAMILIA M, AUBRY A, et al. Single-snapshot angle and incremental range estimation for FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3705–3718. doi: 10.1109/TAES.2021.3083591.
    [11] FENG Maoyuan, CUI Zhongma, YANG Yunxiu, et al. A reduced-dimension MUSIC algorithm for monostatic FDA-MIMO radar[J]. IEEE Communications Letters, 2021, 25(4): 1279–1282. doi: 10.1109/LCOMM.2020.3045440.
    [12] 刘润东, 薛峰涛, 杨赟秀, 等. FDA-MIMO雷达实值降维求根MUSIC参数估计算法[J]. 现代雷达, 2022, 44(4): 31–37. doi: 10.16592/j.cnki.1004-7859.2022.04.005.

    LIU Rundong, XUE Fengtao, YANG Yunxiu, et al. Real-value reducing-dimension Root-MUSIC method in monostatic FDA-MIMO radar[J]. Modern Radar, 2022, 44(4): 31–37. doi: 10.16592/j.cnki.1004-7859.2022.04.005.
    [13] YAN Yisheng, CAI Jingye, and WANG Wenqin. Two-stage ESPRIT for unambiguous angle and range estimation in FDA-MIMO radar[J]. Digital Signal Process, 2019, 92: 151–165. doi: 10.1016/j.dsp.2019.06.002.
    [14] LI Binbin, BAI Weixiong, and ZHENG Guimei. Successive ESPRIT algorithm for joint DOA-range-polarization estimation with polarization sensitive FDA-MIMO radar[J]. IEEE Access, 2018, 6: 36376–36382. doi: 10.1109/ACCESS.2018.2844948.
    [15] GONG Shiqi, WANG Shuai, CHEN Sheng, et al. Time-invariant joint transmit and receive beampattern optimization for polarization-subarray based frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2018, 66(20): 5364–5379. doi: 10.1109/TSP.2018.2868041.
    [16] XIONG Jie, WANG Wenqin, and GAO Kuandong. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. doi: 10.1109/TAES.2017.2756498.
    [17] LI Xingxing, WANG Dangwei, WANG Wenqin, et al. Range-angle localization of targets with planar frequency diverse subaperturing MIMO radar[J]. IEEE Access, 2018, 6: 12505–12517. doi: 10.1109/ACCESS.2018.2810139.
    [18] 陈慧, 田湘, 李子豪, 等. 共形FDA-MIMO雷达降维目标参数估计研究[J]. 雷达学报, 2021, 10(6): 811–821. doi: 10.12000/JR21197.

    CHEN Hui, TIAN Xiang, LI Zihao, et al. Reduced-dimension target parameter estimation for conformal FDA-MIMO radar[J]. Journal of Radars, 2021, 10(6): 811–821. doi: 10.12000/JR21197.
    [19] MAO Zihuan, LIU Shengheng, ZHANG Y D, et al. Joint DOA-range estimation using space-frequency virtual difference coarray[J]. IEEE Transactions on Signal Processing, 2022, 70: 2576–2592. doi: 10.1109/TSP.2022.3173150.
    [20] TANG Wengen, JIANG Hong, and ZHANG Qi. Range-angle decoupling and estimation for FDA-MIMO radar via atomic norm minimization and accelerated proximal gradient[J]. IEEE Signal Processing Letters, 2020, 27: 366–370. doi: 10.1109/LSP.2020.2972470.
    [21] 巩朋成, 刘刚, 黄禾, 等. 频控阵MIMO雷达中基于稀疏迭代的多维信息联合估计方法[J]. 雷达学报, 2018, 7(2): 194–201. doi: 10.12000/JR16121.

    GONG Pengcheng, LIU Gang, HUANG He, et al. Multidimensional parameter estimation method based on sparse iteration in FDA-MIMO radar[J]. Journal of Radars, 2018, 7(2): 194–201. doi: 10.12000/JR16121.
    [22] ZHU Yu, LIU Lei, LU Zheng, et al. Target detection performance analysis of FDA-MIMO radar[J]. IEEE Access, 2019, 7: 164276–164285. doi: 10.1109/ACCESS.2019.2943082.
    [23] LI Shengyuan, ZHANG Linrang, LIU Nan, et al. Adaptive detection with conic rejection to suppress deceptive jamming for frequency diverse MIMO radar[J]. Digital Signal Processing, 2017, 69: 32–40. doi: 10.1016/j.dsp.2017.06.008.
    [24] LI Shengyuan, ZHANG Linrang, LIU Nan, et al. Range-angle dependent detection for FDA-MIMO radar[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 6629–6632.
    [25] LAN Lan, MARINO A, AUBRY A, et al. GLRT-based adaptive target detection in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485.
    [26] GUI Ronghua, WANG Wenqin, FARINA A, et al. FDA radar with Doppler-spreading consideration: Mainlobe clutter suppression for blind-Doppler target detection[J]. Signal Processing, 2021, 179: 107773. doi: 10.1016/j.sigpro.2020.107773.
    [27] XU Ziting, HUANG Bang, and WANG Wenqin. Performance prediction of FDA-MIMO radar detector[C]. 2020 IEEE Radar Conference, Florence, Italy, 2020: 1–6.
    [28] CHEN Xiaolong, CHEN Baoxin, GUAN Jian, et al. Space-range-Doppler focus-based low-observable moving target detection using frequency diverse array MIMO radar[J]. IEEE Access, 2018, 6: 43892–43904. doi: 10.1109/access.2018.2863745.
    [29] XU Jingwei, LIAO Guisheng, ZHANG Yuhong, et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 309–320. doi: 10.1109/JSTSP.2016.2615269.
    [30] XU Jingwei, ZHU Shengqi, and LIAO Guisheng. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620–1631. doi: 10.1109/JSTSP.2015.2465353.
    [31] XU Jingwei, LIAO Guisheng, and SO H C. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5352–5364. doi: 10.1109/TGRS.2016.2561308.
    [32] WEN Cai, TAO Mingliang, PENG Jinye, et al. Clutter suppression for airborne FDA-MIMO radar using multi-waveform adaptive processing and auxiliary channel STAP[J]. Signal Processing, 2019, 154: 280–293. doi: 10.1016/j.sigpro.2018.09.016.
    [33] WEN Cai, MA Changzheng, PENG Jinye, et al. Bistatic FDA-MIMO radar space-time adaptive processing[J]. Signal Processing, 2019, 163: 201–212. doi: 10.1016/j.sigpro.2019.05.025.
    [34] XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Signal Processing, 2015, 113: 9–17. doi: 10.1016/j.sigpro.2015.01.014.
    [35] 陈浩, 李荣锋, 戴凌燕, 等. 基于FVE法的FDA-MIMO雷达主瓣密集假目标干扰抑制[J]. 空军预警学院学报, 2018, 32(6): 397–401, 406. doi: 10.3969/j.issn.2095-5839.2018.06.002.

    CHEN Hao, LI Rongfeng, DAI Lingyan, et al. FDA-MIMO radar mainlobe dense false target jamming suppression based on feature vector eliminating[J]. Journal of Air Force Early Warning Academy, 2018, 32(6): 397–401, 406. doi: 10.3969/j.issn.2095-5839.2018.06.002.
    [36] 张昭建, 谢军伟, 李欣, 等. 基于FDA-MIMO的距离欺骗干扰鉴别方法[J]. 北京航空航天大学学报, 2017, 43(4): 738–746. doi: 10.13700/j.bh.1001-5965.2016.0257.

    ZHANG Zhaojian, XIE Junwei, LI Xin, et al. Discrimination method of range deception jamming based on FDA-MIMO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 738–746. doi: 10.13700/j.bh.1001-5965.2016.0257.
    [37] 谭清莉, 张艺乐, 张伟, 等. FDA-MIMO雷达主瓣欺骗干扰对抗方法[J]. 雷达科学与技术, 2017, 15(6): 671–676. doi: 10.3969/j.issn.1672-2337.2017.06.017.

    TAN Qingli, ZHANG Yile, ZHANG Wei, et al. A method of mainlobe deception jamming countermeasure in FDA-MIMO radar[J]. Radar Science and Technology, 2017, 15(6): 671–676. doi: 10.3969/j.issn.1672-2337.2017.06.017.
    [38] GE Jiaang, XIE Junwei, and WANG Bo. A cognitive active anti-jamming method based on frequency diverse array radar phase center[J]. Digital Signal Processing, 2021, 109: 102915. doi: 10.1016/j.dsp.2020.102915.
    [39] 兰岚, 廖桂生, 许京伟, 等. FDA-MIMO雷达主瓣距离欺骗式干扰抑制方法[J]. 系统工程与电子技术, 2018, 40(5): 997–1003. doi: 10.3969/j.issn.1001-506X.2018.05.06.

    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Main-beam range deceptive jamming suppression approach with FDA-MIMO radar[J]. Systems Engineering and Electronics, 2018, 40(5): 997–1003. doi: 10.3969/j.issn.1001-506X.2018.05.06.
    [40] 兰岚, 许京伟, 朱圣棋, 等. 波形分集阵列雷达抗干扰进展[J]. 系统工程与电子技术, 2021, 46(6): 1437–1451. doi: 10.12305/j.issn.1001-506X.2021.06.01.

    LAN Lan, XU Jingwei, ZHU Shengqi, et al. Advances in anti-jamming using waveform diverse array radar[J]. Systems Engineering and Electronics, 2021, 46(6): 1437–1451. doi: 10.12305/j.issn.1001-506X.2021.06.01.
    [41] LAN Lan, LIAO Guisheng, XU Jingwei, et al. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection[J]. IEEE Access, 2018, 6: 34582–34597. doi: 10.1109/access.2018.2850816.
    [42] WANG Yuzhuo and ZHU Shengqi. Main-beam range deceptive jamming suppression with simulated annealing FDA-MIMO radar[J]. IEEE Sensors Journal, 2020, 20(16): 9056–9070. doi: 10.1109/JSEN.2020.2982194.
    [43] 许京伟, 廖桂生, 张玉洪, 等. 波形分集阵雷达抗欺骗式干扰技术[J]. 电子学报, 2019, 47(3): 545–551. doi: 10.3969/j.issn.0372-2112.2019.03.005.

    XU Jingwei, LIAO Guisheng, ZHANG Yuhong, et al. On anti-jamming technique with waveform diverse array radar[J]. Acta Electronica Sinica, 2019, 47(3): 545–551. doi: 10.3969/j.issn.0372-2112.2019.03.005.
    [44] LIU Qi, XU Jingwei, DING Zhi, et al. Target localization with jammer removal using frequency diverse array[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11685–11696. doi: 10.1109/TVT.2020.3016948.
    [45] LAN Lan, XU Jingwei, LIAO Guisheng, et al. Suppression of mainbeam deceptive jammer with FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2020, 69(10): 11584–11598. doi: 10.1109/TVT.2020.3014689.
    [46] LAN Lan, LIAO Guisheng, XU Jingwei, et al. Mainlobe deceptive jammer suppression using element-pulse coding with MIMO radar[J]. Signal Processing, 2021, 182: 107955. doi: 10.1016/j.sigpro.2020.107955.
    [47] FAROOQ J, TEMPLE M A, and SAVILLE M A. Application of frequency diverse arrays to synthetic aperture radar imaging[C]. 2007 International Conference on Electromagnetics in Advanced Applications, Turin, Italy, 2007: 447–449.
    [48] FAROOQ J, TEMPLE M A, and SAVILLE M A. Exploiting frequency diverse array processing to improve SAR image resolution[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–5.
    [49] WANG Wenqin, SO H C, and SHAO Huaizong. Nonuniform frequency diverse array for range-angle imaging of targets[J]. IEEE Sensors Journal, 2014, 14(8): 2469–2476.
    [50] WANG Chenghao, XU Jingwei, LIAO Guisheng, et al. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 336–346. doi: 10.1109/JSTSP.2016.2605064.
    [51] GUO Yifan, LIAO Guisheng, ZHANG Qingjun, et al. A robust radial velocity estimation method for FDA-SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(4): 646–650. doi: 10.1109/LGRS.2019.2929493.
    [52] WANG Hanbing, ZHANG Yuhong, XU Jingwei, et al. A novel range ambiguity resolving approach for high-resolution and wide-swath SAR imaging utilizing space-pulse phase coding[J]. Signal Processing, 2020, 168: 107323. doi: 10.1016/j.sigpro.2019.107323.
    [53] HE Xiongpeng, LIAO Guisheng, ZHU Shengqi, et al. Range-ambiguous clutter suppression for the SAR-GMTI system based on extended azimuth phase coding[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 8147–8162. doi: 10.1109/TGRS.2020.2987630.
    [54] NUSENU S Y, SHAO Huaizong, PAN Ye, et al. Dual-function radar-communication system design via sidelobe manipulation based on FDA butler matrix[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 452–456. doi: 10.1109/LAWP.2019.2894015.
    [55] JI Shilong, CHEN Hui, HU Quan, et al. A dual-function radar-communication system using FDA[C]. 2018 IEEE Radar Conference, Oklahoma, USA, 2018: 23–27.
    [56] BASIT A, WANG Wenqin, NUSENU S Y, et al. FDA based QSM for mmWave wireless communications: Frequency diverse transmitter and reduced complexity receiver[J]. IEEE Transactions on Wireless Communications, 2021, 20(7): 4571–4584. doi: 10.1109/TWC.2021.3060512.
    [57] NUSENU S Y and SHAO Huaizong. Green secure communication range-angle focusing quadrature spatial modulation using frequency modulated diverse retrodirective array for mmWave wireless communications[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6867–6877. doi: 10.1109/TVT.2019.2919921.
    [58] DING Y, ZHANG J, and FUSCO V. Frequency diverse array OFDM transmitter for secure wireless communication[J]. Electronics Letters, 2015, 51(17): 1374–1376. doi: 10.1049/el.2015.1491.
    [59] GUI Ronghua, ZHENG Zhi, and WANG Wenqin. Cognitive FDA radar transmit power allocation for target tracking in spectrally dense scenario[J]. Signal Processing, 2021, 183: 108006. doi: 10.1016/j.sigpro.2021.108006.
    [60] SUN Yan, ZHENG Zhi, WANG Wenqin, et al. DOA estimation and tracking for FDA-MIMO radar signal[J]. Digital Signal Processing, 2020, 106: 102858. doi: 10.1016/j.dsp.2020.102858.
    [61] WANG Yuxi, LI Wei, HUANG Guoce, et al. Time-invariant range-angle-dependent beampattern synthesis for FDA radar targets tracking[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2375–2379. doi: 10.1109/LAWP.2017.2718580.
    [62] GUI Ronghua, WANG Wenqin, PAN Ye, et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 76–89. doi: 10.1109/JSTSP.2018.2793761.
    [63] 巩朋成, 吴云韬. 基于ADMM改进的低截获FDA-MIMO雷达发射波束设计[J]. 通信学报, 2022, 43(4): 133–142. doi: 10.11959/j.issn.1000-436x.2022065.

    GONG Pengcheng and WU Yuntao. Improved transmit beamforming design based on ADMM for low probability of intercept of FDA-MIMO radar[J]. Journal on Communications, 2022, 43(4): 133–142. doi: 10.11959/j.issn.1000-436x.2022065.
    [64] WANG Liu, WANG Wenqin, GUAN Haoliang, et al. LPI property of FDA transmitted signal[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3905–3915. doi: 10.1109/TAES.2021.3083402.
    [65] WANG Wenqin, DAI Miaomiao, and ZHENG Zhi. FDA radar ambiguity function characteristics analysis and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1368–1380. doi: 10.1109/TAES.2017.2785598.
    [66] 于雷, 何峰, 董臻, 等. 一种基于非线性调频信号和空域编码的FDA雷达波形设计方法[J]. 雷达学报, 2021, 10(6): 822–832. doi: 10.12000/JR21008.

    YU Lei, HE Feng, DONG Zhen, et al. A waveform design method based on nonlinear frequency modulation and space-coding for coherent frequency diverse array radar[J]. Journal of Radars, 2021, 10(6): 822–832. doi: 10.12000/JR21008.
    [67] FAN Wen, LIANG Junli, and LI Jian. Constant modulus MIMO radar waveform design with minimum peak sidelobe transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4207–4222. doi: 10.1109/TSP.2018.2847636.
    [68] DE MAIO A, DE NICOLA S, HUANG Yongwei, et al. Code design to optimize radar detection performance under accuracy and similarity constraints[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5618–5629. doi: 10.1109/TSP.2008.929657.
    [69] YU Xianxiang, CUI Guolong, KONG Lingjiang, et al. Constrained waveform design for colocated MIMO radar with uncertain steering matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(1): 356–370. doi: 10.1109/TAES.2018.2852200.
    [70] HE Hao, STOICA P, and LI Jian. Designing unimodular sequence sets with good correlations—Including an application to MIMO radar[J]. IEEE Transactions on Signal Processing, 2009, 57(11): 4391–4405. doi: 10.1109/TSP.2009.2025108.
    [71] STOICA P, HE Hao, and LI Jian. Optimization of the receive filter and transmit sequence for active sensing[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 1730–1740. doi: 10.1109/TSP.2011.2179652.
    [72] CUI Guolong, LI Hongbin, and RANGASWAMY M. MIMO radar waveform design with constant modulus and similarity constraints[J]. IEEE Transactions on Signal Processing, 2014, 62(2): 343–353. doi: 10.1109/TSP.2013.2288086.
    [73] CUI Guolong, YU Xianxiang, CAROTENUTO V, et al. Space-time transmit code and receive filter design for colocated MIMO radar[J]. IEEE Transactions on Signal Processing, 2017, 65(5): 1116–1129. doi: 10.1109/TSP.2016.2633242.
    [74] HERBERT S, HOPGOOD J R, and MULGREW B. MMSE adaptive waveform design for active sensing with applications to MIMO radar[J]. IEEE Transactions on Signal Processing, 2018, 66(5): 1361–1373. doi: 10.1109/tsp.2017.2786277.
    [75] MISHRA K V, ELDAR Y C, SHOSHAN E, et al. A cognitive sub-Nyquist MIMO radar prototype[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 937–955. doi: 10.1109/TAES.2019.2924163.
    [76] COHEN D, COHEN D, and ELDAR Y C. High resolution FDMA MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 2806–2822. doi: 10.1109/TAES.2019.2958193.
    [77] RABASTE O, SAVY L, CATTENOZ M, et al. Signal waveforms and range/angle coupling in coherent colocated MIMO radar[C]. 2013 International Conference on Radar, Adelaide, Australia, 2013: 157–162.
    [78] 许京伟, 兰岚, 朱圣棋, 等. 相干频率分集阵雷达匹配滤波器设计[J]. 系统工程与电子技术, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08.

    XU Jingwei, LAN Lan, ZHU Shengqi, et al. Design of matched filter for coherent FDA radar[J]. Systems Engineering and Electronics, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08.
    [79] AUBRY A, DE MAIO A, MARANO S, et al. Single-pulse simultaneous target detection and angle estimation in a multichannel phased array radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 6649–6664. doi: 10.1109/TSP.2020.3039883.
    [80] XU Jingwei, ZHANG Yuhong, LIAO Guisheng, et al. Resolving range ambiguity via multiple-input multiple-output radar with element-pulse coding[J]. IEEE Transactions on Signal Processing, 2020, 68: 2770–2783. doi: 10.1109/TSP.2020.2988371.
    [81] 兰岚, 廖桂生, 许京伟, 等. FDA-MIMO雷达非自适应波束形成抗主瓣欺骗式干扰研究[J]. 信号处理, 2019, 35(6): 944–950. doi: 10.16798/j.issn.1003-0530.2019.06.002.

    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Main-beam deceptive jamming suppression with non-adaptive beam-forming in FDA-MIMO radar[J]. Journal of Signal Processing, 2019, 35(6): 944–950. doi: 10.16798/j.issn.1003-0530.2019.06.002.
    [82] 朱圣棋, 余昆, 许京伟, 等. 波形分集阵列新体制雷达研究进展与展望[J]. 雷达学报, 2021, 10(6): 795–810. doi: 10.12000/JR21188.

    ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188.
    [83] 许京伟. 频率分集阵列雷达运动目标检测方法研究[D]. [博士论文], 西安电子科技大学, 2015.

    XU Jingwei. Study on moving target detection with frequency diverse array radar[D]. [Ph. D. dissertation], Xidian University, 2015.
    [84] ZHANG Mengdi, LIAO Guisheng, XU Jingwei, et al. High-resolution and wide-swath SAR imaging with sub-band frequency diverse array[J]. IEEE Transactions on Aerospace and Electronic Systems, in press, 2022.
    [85] 金林. 智能化认知雷达综述[J]. 现代雷达, 2013, 35(11): 6–11. doi: 10.3969/j.issn.1004-7859.2013.11.002.

    JIN Lin. Overview of cognitive radar with intelligence[J]. Modern Radar, 2013, 35(11): 6–11. doi: 10.3969/j.issn.1004-7859.2013.11.002.
    [86] 王晓海. 认知雷达系统技术发展综述[J]. 数字通信世界, 2018(S1): 40–43.

    WANG Xiaohai. An overview of cognitive radar system technology developments[J]. Digital Communication World, 2018(S1): 40–43.
  • 期刊类型引用(4)

    1. 刘燕,万显荣,易建新. 基于数据失真的雷达通信一体化OFDM波形设计方法. 雷达学报. 2024(01): 160-173 . 本站查看
    2. 布锦钶,李鹏飞,周鹏,周志一,曾祥祝,胡城志,孙兴赛,赵青,张文理. 基于杂波知识图谱驱动的空时自适应处理方法. 物联网技术. 2024(11): 122-126 . 百度学术
    3. 张云骥,蔡玖良. 基于正负分频信号的测速与测距方法. 电子技术与软件工程. 2023(05): 76-82 . 百度学术
    4. 刘柳,梁兴东,李焱磊,曾致远,唐海波. 一种基于分布式孔径的雷达通信一体化波形设计方法. 雷达学报. 2023(02): 297-311 . 本站查看

    其他类型引用(8)

  • 加载中
图(36) / 表(2)
计量
  • 文章访问数: 1794
  • HTML全文浏览量: 686
  • PDF下载量: 338
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-08-02
  • 修回日期:  2022-10-05
  • 网络出版日期:  2022-10-14
  • 刊出日期:  2022-10-28

目录

/

返回文章
返回