频控阵雷达技术研究进展综述

王文钦 张顺生

王文钦, 张顺生. 频控阵雷达技术研究进展综述[J]. 雷达学报, 2022, 11(5): 830–849. doi: 10.12000/JR22141
引用本文: 王文钦, 张顺生. 频控阵雷达技术研究进展综述[J]. 雷达学报, 2022, 11(5): 830–849. doi: 10.12000/JR22141
WANG Wenqin and ZHANG Shunsheng. Recent advances in frequency diverse array radar techniques[J]. Journal of Radars, 2022, 11(5): 830–849. doi: 10.12000/JR22141
Citation: WANG Wenqin and ZHANG Shunsheng. Recent advances in frequency diverse array radar techniques[J]. Journal of Radars, 2022, 11(5): 830–849. doi: 10.12000/JR22141

频控阵雷达技术研究进展综述

doi: 10.12000/JR22141
基金项目: 国家自然科学基金(62171092)
详细信息
    作者简介:

    王文钦,教授,博士生导师,主要研究方向为阵列信号处理、新体制雷达、雷达信号处理等

    张顺生,研究员,博士生导师,主要研究方向为新体制雷达探测与成像、雷达侦察与定位等

    通讯作者:

    王文钦 wqwang@uestc.edu.cn

  • 责任主编:朱圣棋 Corresponding Editor: ZHU Shengqi
  • 中图分类号: TN958

Recent Advances in Frequency Diverse Array Radar Techniques

Funds: The National Natural Science Foundation of China (62171092)
More Information
  • 摘要: 由于频控阵雷达具有距离依赖性和时变性的阵列因子,能够克服传统相控阵雷达阵列因子缺失距离变量和多输入-多输出雷达发射阵列增益损失的缺点,但是,频控阵雷达在系统理论、信号处理和应用实现等方面仍存在诸多待解决的研究问题。该文分析了频控阵雷达技术的概念、内涵与外延,梳理了近五年来国内外关于频控阵雷达技术及其应用方面的最新研究进展,论述了频控阵雷达干扰与抗主瓣干扰、模糊杂波抑制与盲速目标检测以及定位欺骗方面的应用优势,并讨论了频控阵雷达技术的未来融合化发展趋势。

     

  • 图  1  普适性多功能一体化阵列雷达示意图

    Figure  1.  Schematic diagram of general multi-function integrated array radar

    图  2  频控阵雷达发射波束的脉内与脉间自动扫描特性

    Figure  2.  Intrapulse and interpulse automatic scanning characteristics of transmitted beam of FDA radar

    图  3  频控阵雷达发射波束的方位维阵列积分增益,其中${B_{\text{s}}}$为基地信号带宽

    Figure  3.  Integral array gain of FDA transmitter in azimuth, where ${B_{\text{s}}}$ is the baseband bandwidth

    图  4  频控阵雷达的发射-接收空间频率分布示意图

    Figure  4.  Illustration of FDA radar transmit-receive spatial frequency distribution

    图  5  频控阵雷达外场试验数据干扰抑制前信号功率谱

    Figure  5.  Power spectra of FDA radar real data before interference suppression

    图  6  基于实测数据处理的频控阵雷达主瓣干扰抑制结果

    Figure  6.  FDA radar mainlobe interference suppression results of FDA radar in real experimental data

    图  7  频控阵慢时间间歇采样干扰信号的产生流程图

    Figure  7.  Flowchart of FDA-based intermittent sampling jamming in slow-time dimension

    图  8  相控阵干扰机与频控阵干扰机对逆合成孔径雷达成像的干扰效果比较

    Figure  8.  Comparison of jamming effects of PA jammer and FDA jammer on ISAR imaging

    图  9  作者团队的频控阵干扰机试验现场及其干扰实测结果

    Figure  9.  FDA radar jamming experiments and measurement results carried out by the author’s team

    图  10  频控阵雷达模糊杂波抑制的改善因子比较

    Figure  10.  Comparison of improvement factors for FDA radar ambiguous clutter suppression

    图  11  频控阵雷达与相控阵雷达的SIR损失比较

    Figure  11.  Comparison of SIR loss between FDA radar and PA radar

    图  12  频控阵雷达的SCNR损失因子比较

    Figure  12.  Comparison of SCNR loss factors of FDA radar

    图  13  频控阵雷达主瓣杂波抑制和盲速目标检测性能比较

    Figure  13.  Performance comparison between mainlobe clutter suppression and blind target detection in FDA radar

    图  14  频控阵雷达发射波束指向角与频偏有关联

    Figure  14.  FDA transmitting beam direction angle has relation with the frequency offset

    图  15  对相控阵和频控阵辐射源干涉测向时的干涉相位比较

    Figure  15.  Interferometric phase comparison of PA and FDA in passive direction finding

    图  16  相控阵和频控阵辐射源的GDOP结果对比

    Figure  16.  Comparison of GDOP results between PA and FDA radiators

    图  17  作者团队研制的频控阵雷达样机及外场试验现场与测试图

    Figure  17.  FDA radar prototype developed by the author’s team and outfield experiments

    图  18  西安电子科技大学研制的频控阵雷达原理样机实物图

    Figure  18.  FDA radar prototype developed by Xidian University

    图  19  面向主瓣/副瓣干扰抑制的频控阵和相控阵雷达协同工作模式

    Figure  19.  Cooperative operation mode between FDA and PA radar for mainlobe and sidelobe interference suppression

    表  1  频控阵雷达与几种相似雷达技术比较

    Table  1.   Comparison between FDA radar and several similar radar technologies

    雷达类型 基带波形 发射信号 阵列增益 发射阵列方向图
    距离依赖性 方位角依赖性
    频控阵雷达 相同波形 相干
    FDA-MIMO雷达 正交波形 非相干
    相控阵雷达 相同波形 相干
    OFDM雷达 正交子载波 非相干
    MIMO雷达 正交波形 非相干
    步进频雷达 频谱不重叠 非相干
    下载: 导出CSV
  • [1] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. 2006 IEEE Radar Conference, Verona, USA, 2006: 215–217.
    [2] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Multi-mission multi-mode waveform diversity[C]. 2006 IEEE Radar Conference, Verona, USA, 2006: 580–582.
    [3] ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Range dependent beamforming using element level waveform diversity[C]. 2006 International Waveform Diversity Design Conference, Las Vegas, USA, 2006: 1–4.
    [4] SECMEN M, DEMIR S, HIZAL A, et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 427–430.
    [5] HUANG Jingjing, TONG K F, and BAKER C J. Frequency diverse array with beam scanning feature[C]. 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, USA, 2008: 1–4.
    [6] SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099
    [7] SHIN J, CHOI J H, KIM J, et al. Full-wave simulation of frequency diverse array antenna using the FDTD method[C]. 2013 Asia-Pacific Microwave Conference, Seoul, Korea (South), 2013: 1070–1072.
    [8] WICKS M C and ANTONIK P. Frequency diverse array with independent modulation of frequency, amplitude, and phase[P]. US, 7319427, 2008.
    [9] WICKS M C and ANTONIK P. Method and apparatus for a frequency diverse array[P]. US, 20090015474, 2009.
    [10] ANTONIK P and WICKS M C. Method and apparatus for simultaneous synthetic aperture radar and moving target indication[P]. US, 20080129584, 2008.
    [11] ANTONIK P. An investigation of a frequency diverse array[D]. [Ph. D. dissertation], University College London, 2009.
    [12] AYTUN A. Frequency diverse array radar[D]. [Master dissertation], Naval Postgraduate School, 2010.
    [13] BRADY S H. Frequency diverse array radar: Signal characterization and measurement accuracy[D]. [Master dissertation], Air Force Institute of Technology, 2010.
    [14] 王哲. 频控阵波束的距离角度依赖特性研究[D]. [博士论文], 电子科技大学, 2018.

    WANG Zhe. Research on range-angle-dependent characteristics of frequency diverse array beampattern[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2018.
    [15] BAIZERT P. Forward-looking radar clutter suppression using frequency diverse arrays[D]. [Master dissertation], Air Force Institute of Technology, 2006.
    [16] JONES A M. Frequency diverse array receiver architectures[D]. [Master dissertation], Wright State University, 2007.
    [17] HUANG J J. Frequency diversity array: Theory and design[D]. [Ph. D. dissertation], University College London, 2010.
    [18] FAROOQ J L. Frequency diversity for improving synthetic aperture radar imaging[D]. [Ph. D. dissertation], Air Force Institute of Technology, 2009.
    [19] WANG Wenqin. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4073–4081. doi: 10.1109/TAP.2013.2260515
    [20] WANG Wenqin and SHAO Huaizong. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 106–114. doi: 10.1109/JSTSP.2013.2285528
    [21] WANG Wenqin and SO H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2000–2011. doi: 10.1109/TSP.2014.2305638
    [22] WANG Wenqin. Moving-target tracking by cognitive RF stealth radar using frequency diverse array antenna[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3764–3773. doi: 10.1109/TGRS.2016.2527057
    [23] WANG Wenqin. Cognitive frequency diverse array radar with situational awareness[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 359–369. doi: 10.1049/iet-rsn.2015.0211
    [24] 王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235

    WANG Wenqin, SHAO Huaizong, and CHEN Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics &Information Technology, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235
    [25] 王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153–166. doi: 10.12000/JR18029

    WANG Wenqin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153–166. doi: 10.12000/JR18029
    [26] WANG Wenqin, SO H C, and FARINA A. An overview on time/frequency modulated array processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 228–246. doi: 10.1109/JSTSP.2016.2627182
    [27] WANG Wenqin. Frequency diverse array antenna: New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 145–152. doi: 10.1109/MAP.2015.2414692
    [28] 许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023
    [29] 兰岚, 许京伟, 朱圣棋, 等. 波形分集阵列雷达抗干扰进展[J]. 系统工程与电子技术, 2021, 43(6): 1437–1451. doi: 10.12305/j.issn.1001-506X.2021.06.01

    LAN Lan, XU Jingwei, ZHU Shengqi, et al. Advances in anti-jamming using waveform diverse array radar[J]. Systems Engineering and Electronics, 2021, 43(6): 1437–1451. doi: 10.12305/j.issn.1001-506X.2021.06.01
    [30] 朱圣棋, 余昆, 许京伟, 等. 波形分集阵列新体制雷达研究进展与展望[J]. 雷达学报, 2021, 10(6): 795–810. doi: 10.12000/JR21188

    ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188
    [31] YAO Amin, WU Wen, FANG Dagang, et al. Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4434–4446. doi: 10.1109/TAP.2016.2594075
    [32] YAO Amin, ROCCA P, WU Wen, et al. Synthesis of time-modulated frequency diverse arrays for short-range multi-focusing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 282–294. doi: 10.1109/JSTSP.2016.2615267
    [33] YAO Amin, WU Wen, FANG Dagang, et al. Solutions of time-invariant spatial focusing for multi-targets using time modulated frequency diverse antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 552–566. doi: 10.1109/TAP.2016.2633902
    [34] RANISZEWSKI A. Radiation pattern synthesis for RADAR application using Genetic Algorithm[C]. 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, Poland, 2016: 1–4. doi: 10.1109/MIKON.2016.7492086.
    [35] WANG Yuxi, LI Wei, HUANG Guoce, et al. Time-invariant range-angle-dependent beampattern synthesis for FDA radar targets tracking[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2375–2379. doi: 10.1109/LAWP.2017.2718580
    [36] CHEN Baoxin, CHEN Xiaolong, HUANG Yong, et al. Transmit beampattern synthesis for the FDA radar[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 98–101. doi: 10.1109/LAWP.2017.2776957
    [37] XU Wei, ZHANG Lihua, BI Hui, et al. FDA beampattern synthesis with both nonuniform frequency offset and array spacing[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2354–2358. doi: 10.1109/LAWP.2021.3110847
    [38] XU Yanhong, SHI Xiaowei, LI Wentao, et al. Flat-top beampattern synthesis in range and angle domains for frequency diverse array via second-order cone programming[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1479–1482. doi: 10.1109/LAWP.2015.2513758
    [39] XIONG Jie, WANG Wenqin, SHAO Huaizong, et al. Frequency diverse array transmit beampattern optimization with genetic algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 469–472. doi: 10.1109/LAWP.2016.2584078
    [40] WANG Yuxi, HUANG Guoce, and LI Wei. Transmit beampattern design in range and angle domains for MIMO frequency diverse array radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1003–1006. doi: 10.1109/LAWP.2016.2616193
    [41] LI Qiang, HUANG Lei, SO H C, et al. Beampattern synthesis for frequency diverse array via reweighted L1 iterative phase compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 467–475. doi: 10.1109/TAES.2017.2735638
    [42] YANG Yuqian, WANG Hao, WANG Haiqing, et al. Optimization of sparse frequency diverse array with time-invariant spatial-focusing beampattern[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(2): 351–354. doi: 10.1109/LAWP.2018.2789979
    [43] WANG Wenqin. Ultrawideband frequency-diverse array antennas: Range-dependent and autoscanning beampattern applications[J]. IEEE Antennas and Propagation Magazine, 2018, 60(3): 48–56. doi: 10.1109/MAP.2018.2818023
    [44] GONG Shiqi, WANG Shuai, CHEN Sheng, et al. Time-invariant joint transmit and receive beampattern optimization for polarization-subarray based frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2018, 66(20): 5364–5379. doi: 10.1109/TSP.2018.2868041
    [45] CHENG Qian, ZHU Jiang, XIE Tao, et al. Time-invariant angle-range dependent directional modulation based on time-modulated frequency diverse arrays[J]. IEEE Access, 2017, 5: 26279–26290. doi: 10.1109/ACCESS.2017.2772246
    [46] LIAO YI, WANG Wenqin, and ZHENG Zhi. Frequency diverse array beampattern synthesis using symmetrical logarithmic frequency offsets for target indication[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3505–3509. doi: 10.1109/TAP.2019.2900353
    [47] LI Wentao, CUI Can, YE Xiutiao, et al. Quasi-time-invariant 3-D focusing beampattern synthesis for conformal frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 2684–2697. doi: 10.1109/TAP.2019.2955199
    [48] ZUBAIR M, AHMED S, and ALOUINI M S. Frequency diverse array radar: New results and discrete Fourier transform based beampattern[J]. IEEE Transactions on Signal Processing, 2020, 68: 2670–2681. doi: 10.1109/TSP.2020.2985587
    [49] LIAO Yi, WANG Jian, and LIU Qinghuo. Transmit beampattern synthesis for frequency diverse array with particle swarm frequency offset optimization[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 892–901. doi: 10.1109/TAP.2020.3027576
    [50] WU Xuehan, SHAO Huaizong, LIN Jingran, et al. High-speed user-centric beampattern synthesis via frequency diverse array[J]. IEEE Transactions on Signal Processing, 2021, 69: 1226–1241. doi: 10.1109/TSP.2021.3054988
    [51] WANG Wenqin. Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3057–3067. doi: 10.1109/TAES.2014.120804
    [52] XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. doi: 10.1109/TSP.2015.2422680
    [53] WANG Chuanzhi and ZHU Xiaohua. Three-dimensional parameter estimation of uniform circular frequency diverse array radar with two-stage estimator[J]. IEEE Sensors Journal, 2021, 21(16): 17775–17784. doi: 10.1109/JSEN.2021.3083709
    [54] XIONG Jie, WANG Wenqin, and GAO Kuandong. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. doi: 10.1109/TAES.2017.2756498
    [55] ZHENG Guimei and SONG Yuwei. Signal model and method for joint angle and range estimation of low-elevation target in meter-wave FDA-MIMO radar[J]. IEEE Communications Letters, 2022, 26(2): 449–453. doi: 10.1109/LCOMM.2021.3126935
    [56] GUI Ronghua, WANG Wenqin, PAN Ye, et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 76–89. doi: 10.1109/JSTSP.2018.2793761
    [57] LAN Lan, ROSAMILIA M, AUBRY A, et al. Single-snapshot angle and incremental range estimation for FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3705–3718. doi: 10.1109/TAES.2021.3083591
    [58] 陈慧, 田湘, 李子豪, 等. 共形FDA-MIMO雷达降维目标参数估计研究(英文)[J]. 雷达学报, 2021, 10(6): 811–821. doi: 10.12000/JR21197

    CHEN Hui, TIAN Xiang, LI Zihao, et al. Reduced-dimension target parameter estimation for conformal FDA-MIMO radar[J]. Journal of Radars, 2021, 10(6): 811–821. doi: 10.12000/JR21197
    [59] ZHAO Zhihao, WANG Zhimin, and SUN Yang. Joint angle, range and velocity estimation for bi-static FDA-MIMO radar[C]. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2017: 818–824. doi: 10.1109/IAEAC.2017.8054129.
    [60] GUI Ronghua and WANG Wenqin. Adaptive transmit power allocation for FDA radar with spectral interference avoidance[C]. IEEE Radar Conference, Florence, Italy, 2020: 1–6.
    [61] CHENG Jie, HUANG Bang, TANG Wanru, et al. A deceptive jamming against spaceborne SAR based on Doppler-shift convolutional using FDA[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–5. doi: 10.1109/APSAR46974.2019.9048528.
    [62] YU Jianfei, NIE Wei, ZHOU Mu, et al. Scattered wave deception jamming against squint SAR using frequency diverse array[C]. 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 2020: 979–981. doi: 10.1109/APMC47863.2020.9331697.
    [63] TAN Ming, WANG Chunyang, XUE Bin, et al. A novel deceptive jamming approach against frequency diverse array radar[J]. IEEE Sensors Journal, 2021, 21(6): 8323–8332. doi: 10.1109/JSEN.2020.3045757
    [64] LIAO Yi, TANG Hu, WANG Wenqin, et al. A low sidelobe deceptive jamming suppression beamforming method with a frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4884–4889. doi: 10.1109/TAP.2021.3138529
    [65] XU Jingwei, LIAO Guisheng, HUANG Lei, et al. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 973–984. doi: 10.1109/TSP.2016.2628340
    [66] LAN Lan, MARINO A, AUBRY A, et al. GLRT-based adaptive target detection in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485
    [67] HUANG Bang, BASIT A, GUI Ronghua, et al. Adaptive moving target detection without training data for FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 220–232. doi: 10.1109/TVT.2021.3126781
    [68] HUANG Bang, WANG Wenqin, BASIT A, et al. Bayesian detection in Gaussian clutter for FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2655–2667. doi: 10.1109/TVT.2021.3139894
    [69] HUANG Bang, BASIT A, WANG Wenqin, et al. Adaptive detection with Bayesian framework for FDA-MIMO radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3509505. doi: 10.1109/LGRS.2021.3123654
    [70] XU Jingwei, LIAO Guisheng, ZHANG Yuhong, et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 309–320. doi: 10.1109/JSTSP.2016.2615269
    [71] WANG Wenqin. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1001–1012. doi: 10.1049/iet-rsn.2015.0464
    [72] GUI Ronghua, WANG Wenqin, CUI Can, et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 200–214. doi: 10.1109/TSP.2017.2764860
    [73] 许京伟, 兰岚, 朱圣棋, 等. 相干频率分集阵雷达匹配滤波器设计[J]. 系统工程与电子技术, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08

    XU Jingwei, LAN Lan, ZHU Shengqi, et al. Design of matched filter for coherent FDA radar[J]. Systems Engineering and Electronics, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08
    [74] XU Yanhong, WANG Anyi, and XU Jingwei. Range-angle transceiver beamforming based on semicircular-FDA scheme[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 834–843. doi: 10.1109/TAES.2021.3111792
    [75] CHEN Kejin, YANG Shiwen, CHEN Yikai, et al. Accurate models of time-invariant beampatterns for frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3022–3029. doi: 10.1109/TAP.2019.2896712
    [76] FARTOOKZADEH M. Comments on “Optimization of sparse frequency diverse array with time-invariant spatial-focusing beampattern”[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2521. doi: 10.1109/LAWP.2018.2870602
    [77] YANG Yuqian, WANG Hao, WANG Haiqing, et al. Reply to “Comments on ‘Optimization of sparse frequency diverse array with time-invariant spatial-focusing beampattern’”[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2522. doi: 10.1109/LAWP.2018.2870513
    [78] FARTOOKZADEH M. Comments on “Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern”[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1211–1212. doi: 10.1109/TAP.2019.2955155
    [79] WU Wen and FANG Dagang. Reply to comments on “Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern”[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1213. doi: 10.1109/TAP.2019.2955162
    [80] SHI Jiantao, SUN Jun, YANG Yuhao, et al. Comments on “frequency diverse array beam-pattern synthesis using symmetrical logarithmic frequency offsets for target indication”[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8270–8271. doi: 10.1109/TAP.2020.3028547
    [81] LIU Gang, HUANG He, and WANG Wenqin. Frequency diverse array radar in counteracting mainlobe jamming signals[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1228–1232.
    [82] SHI Jiantao, SUN Jun, YANG Yuhao, et al. Mainlobe jamming suppression with frequency diverse array radar[C]. 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 2019: 1–4.
    [83] SUN Wenhao, LAN Lan, LIAO Guisheng, et al. Compound interference suppression for bistatic FDA-MIMO radar based on joint two-stage processing[C]. 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM), Trondheim, Norway, 2022: 375–379. doi: 10.1109/SAM53842.2022.9827793.
    [84] XU Jingwei, KANG Jialin, LIAO Guisheng, et al. Mainlobe deceptive jammer suppression with FDA-MIMO radar[C]. 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 1–5.
    [85] WANG Wenqin, SO H C, and FARINA A. FDA-MIMO signal processing for mainlobe jammer suppression[C]. The 27th European Signal Processing Conference, A Coruna, Spain, 2019: 1–4.
    [86] LIU Yibin, WANG Chunyang, GONG Jian, et al. Discrimination of mainlobe deceptive target with meter-wave FDA-MIMO radar[J]. IEEE Communications Letters, 2022, 26(5): 1131–1135. doi: 10.1109/LCOMM.2022.3155371
    [87] GUI Ronghua, WANG Wenqin, FARINA A, et al. FDA radar with Doppler-spreading consideration: Mainlobe clutter suppression for blind-Doppler target detection[J]. Signal Processing, 2021, 179(9): 107773. doi: 10.1016/j.sigpro.2020.107773
    [88] LAN Lan, LIAO Guisheng, XU Jingwei, et al. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection[J]. IEEE Access, 2018, 6: 34582–34597. doi: 10.1109/ACCESS.2018.2850816
    [89] CAI Wen, PENG Jinye, ZHOU Yan, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154–4166. doi: 10.1109/JSEN.2018.2820905
    [90] WANG Yuzhuo and ZHU Shengqi. Main-beam range deceptive jamming suppression with simulated annealing FDA-MIMO radar[J]. IEEE Sensors Journal, 2020, 20(16): 9056–9070. doi: 10.1109/JSEN.2020.2982194
    [91] CHENG Jie, WANG Wenqin, and ZHANG Shunsheng. Joint MIMO and frequency diverse array for suppressing mainlobe interferences[C]. 2020 International Symposium on Antennas and Propagation, Osaka, Japan, 2021: 1–4.
    [92] ZHU Yu, WANG Hui, ZHANG Shunsheng, et al. Deceptive jamming on space-borne SAR using frequency diverse array[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 1–4.
    [93] WANG Hui, ZHANG Shunsheng, and WANG Wenqin. Homogeneously distributed multiple false targets jamming using frequency diverse array[C]. 2018 International Radar Conference, Brisbane, Australia, 2018: 1–6.
    [94] HUANG Libing, ZONG Zhulin, WANG Hui, et al. Multi-targets deception jamming for ISAR with frequency diverse array[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1–4.
    [95] ZONG Zhulin, HUANG Libing, WANG Hui, et al. Micro-motion deception jamming on SAR using frequency diverse array[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1–4.
    [96] HUANG Bang, WANG Wenqin, ZHANG Shunsheng, et al. A novel approach for spaceborne SAR scattered-wave deception jamming using frequency diverse array[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1568–1572. doi: 10.1109/LGRS.2019.2950454
    [97] HUANG Bang, WANG Wenqin, ZHANG Shunsheng, et al. FDA-based space-time-frequency deceptive jamming against SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2127–2140. doi: 10.1109/TAES.2021.3130212
    [98] CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/TGRS.2012.2201260
    [99] KREYENKAMP O and KLEMM R. Doppler compensation in forward-looking STAP radar[J]. IEE Proceedings - Radar, Sonar and Navigation, 2001, 148(5): 253–258. doi: 10.1049/ip-rsn:20010557
    [100] XU Jingwei, ZHU Shengqi, and LIAO Guisheng. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620–1631. doi: 10.1109/JSTSP.2015.2465353
    [101] WANG Kayi, LIAO Guisheng, XU Jingwei, et al. Clutter rank analysis in airborne FDA-MIMO radar with range ambiguity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1416–1430. doi: 10.1109/TAES.2021.3122822
    [102] 王娈婧, 张顺生, 王文钦. 机载前视FDA-MIMO雷达距离模糊杂波抑制[J]. 信号处理, 2022, 38(4): 854–862. doi: 10.16798/j.issn.1003-0530.2022.04.020

    WANG Luanjing, ZHANG Shunsheng, and WANG Wenqin. Range-ambiguous clutter suppression for forward-looking FDA-MIMO radar[J]. Journal of Signal Processing, 2022, 38(4): 854–862. doi: 10.16798/j.issn.1003-0530.2022.04.020
    [103] LYNCH D JR. Introduction to RF Stealth[M]. Raleigh: SciTech Publishing Inc. , 2004.
    [104] 樊依晨. 机载战场侦察雷达射频隐身波形设计[D]. [硕士论文], 中国电子科技集团公司电子科学研究院, 2021.

    FAN Yichen. Research on RF stealth waveform design of airborne battlefield surveillance radar[D]. [Master dissertation], China Academic of Electronics and Information Technology, 2021.
    [105] 梁海珊. 下一代战斗机雷达隐身技术[J]. 现代雷达, 2018, 40(3): 11–14. doi: 10.16592/j.cnki.1004-7859.2018.03.003

    LIANG Haishan. Stealth technology for radar onboard next generation fighter[J]. Modern Radar, 2018, 40(3): 11–14. doi: 10.16592/j.cnki.1004-7859.2018.03.003
    [106] 时晨光. 机载雷达组网射频隐身技术研究[D]. [博士论文], 南京航空航天大学, 2017.

    SHI Chenguang. Research on radio frequency stealth technology in airborne radar networks[D]. [Ph. D. dissertation], Nanjing University of Aeronautics and Astronautics, 2017.
    [107] 张杰, 江涛, 张怀根, 等. 雷达射频隐身技术研究与发展[J]. 现代雷达, 2019, 41(6): 13–19, 36. doi: 10.16592/j.cnki.1004-7859.2019.06.003

    ZHANG Jie, JIANG Tao, ZHANG Huaigen, et al. Radar RF stealth technology research and development[J]. Modern Radar, 2019, 41(6): 13–19, 36. doi: 10.16592/j.cnki.1004-7859.2019.06.003
    [108] 肖永生. 射频隐身雷达信号设计与目标识别研究[D]. [博士论文], 南京航空航天大学, 2014.

    XIAO Yongsheng. Study on radio stealth radar signal design and recognition method[D]. [Ph. D. dissertation], Nanjing University of Aeronautics and Astronautics, 2014.
    [109] 杨少委. 正交波形MIMO雷达射频隐身技术研究[D]. [博士论文], 电子科技大学, 2015.

    YANG Shaowei. Research on radio frequency stealth technology for orthogonal waveform MIMO radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2015.
    [110] WANG Wenqin. Adaptive RF stealth beamforming for frequency diverse array radar[C]. The 23rd European Signal Processing Conference, Nice, France, 2015: 1–4.
    [111] WANG Liu, PAN Ye, WANG Wenqin, et al. On FDA RF localization deception under sum difference beam reconnaissance[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1–5.
    [112] GUAN Haoliang, ZHANG Shunsheng, WANG Wenqin, et al. Localization deception approach using frequency diverse array against bi-satellite positioning reconnaissance[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 1–4.
    [113] WANG Liu, WANG Wenqin, GUAN Haoliang, et al. LPI property of FDA transmitted signal[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3905–3915. doi: 10.1109/TAES.2021.3083402
    [114] 关浩亮, 张顺生, 王文钦. 基于频控阵的无源定位对抗技术[J]. 雷达学报, 2021, 10(6): 833–841. doi: 10.12000/JR21091

    GUAN Haoliang, ZHANG Shunsheng, and WANG Wenqin. Passive localization countermeasure based on frequency diverse array[J]. Journal of Radars, 2021, 10(6): 833–841. doi: 10.12000/JR21091
    [115] CUI Can, XIONG Jie, WANG Wenqin, et al. Localization performance analysis of FDA radar receiver with two-stage estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2873–2887. doi: 10.1109/TAES.2018.2831818
    [116] XU Jingwei, LAN Lan, LIAO Guisheng, et al. Range-angle matched receiver for coherent FDA radars[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1–5.
    [117] WANG Chuanzhi and ZHU Xiaohua. A novel receiver design based on FrFT for frequency diversity array radar[C]. 2021 IEEE 6th International Conference on Signal and Image Processing, Nanjing, China, 2021: 1–4.
    [118] ZHU Jingjing, ZHU Shengqi, XU Jingwei, et al. Cooperative range and angle estimation with PA and FDA radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 907–921. doi: 10.1109/TAES.2021.3117050
    [119] GONG Pengcheng, ZHANG Zhuoyu, WU Yuntao, et al. Joint design of transmit waveform and receive beamforming for LPI FDA-MIMO radar[J]. IEEE Signal Processing Letters, 2022, 29: 1938–1942. doi: 10.1109/LSP.2022.3205206
    [120] WANG Liu, WANG Wenqin, and SO H C. Covariance matrix estimation for FDA-MIMO adaptive transmit power allocation[J]. IEEE Transactions on Signal Processing, 2022, 70(1): 3386–3399. doi: 10.1109/TSP.2022.3184780
    [121] BADEAU R, DAVID B, and RICHARD G. Fast approximated power iteration subspace tracking[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2931–2941. doi: 10.1109/TSP.2005.850378
    [122] HIGGINS T. Waveform diversity and range-coupled adaptive radar signal processing[D]. [Ph. D. dissertation], University of Kansas, 2011.
    [123] WEN Cai, HUANG Yan, PANG Jinye, et al. Slow-time FDA-MIMO technique with application to STAP radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 74–95. doi: 10.1109/TAES.2021.3098100
    [124] WEN Chao, XIE Yu, QIAO Zhiwei, et al. A tensor generalized weighted linear predictor for FDA-MIMO radar parameter estimation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6059–6072. doi: 10.1109/TVT.2022.3157938
    [125] JANG S, IM C, LEE H, et al. A single-snapshot localization for monostatic FDA-MIMO radar[J]. IEEE Communications Letters, 2022.
    [126] 于雷, 何峰, 董臻, 等. 一种基于非线性调频信号和空域编码的FDA雷达波形设计方法[J]. 雷达学报, 2021, 10(6): 822–832. doi: 10.12000/JR21008

    YU Lei, HE Feng, DONG Zhen, et al. A waveform design method based on nonlinear frequency modulation and space-coding for coherent frequency diverse array radar[J]. Journal of Radars, 2021, 10(6): 822–832. doi: 10.12000/JR21008
    [127] BASIT A, WANG Wenqin, NUSENU S Y, et al. Cognitive FDA-MIMO with channel uncertainty information for target tracking[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4): 963–975. doi: 10.1109/TCCN.2019.2928799
    [128] DING Zihang and XIE Junwei. Joint transmit and receive beamforming for cognitive FDA-MIMO radar with moving target[J]. IEEE Sensors Journal, 2021, 21(18): 20878–20885. doi: 10.1109/JSEN.2021.3100332
    [129] RUBINSTEIN N and TABRIKIAN J. Frequency diverse array signal optimization: From non-cognitive to cognitive radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 6206–6220. doi: 10.1109/TSP.2021.3122091
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  1477
  • HTML全文浏览量:  885
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-10-11
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-10-28

目录

    /

    返回文章
    返回