基于波形优化和天线位置选择的MIMO雷达波束扫描算法研究

范文 蔚保国 陈镜 张航 李淳泽

范文, 蔚保国, 陈镜, 等. 基于波形优化和天线位置选择的MIMO雷达波束扫描算法研究[J]. 雷达学报, 2022, 11(4): 530–542. doi: 10.12000/JR22135
引用本文: 范文, 蔚保国, 陈镜, 等. 基于波形优化和天线位置选择的MIMO雷达波束扫描算法研究[J]. 雷达学报, 2022, 11(4): 530–542. doi: 10.12000/JR22135
FAN Wen, YU Baoguo, CHEN Jing, et al. Joint waveform optimization and antenna position selection for MIMO radar beam scanning[J]. Journal of Radars, 2022, 11(4): 530–542. doi: 10.12000/JR22135
Citation: FAN Wen, YU Baoguo, CHEN Jing, et al. Joint waveform optimization and antenna position selection for MIMO radar beam scanning[J]. Journal of Radars, 2022, 11(4): 530–542. doi: 10.12000/JR22135

基于波形优化和天线位置选择的MIMO雷达波束扫描算法研究

DOI: 10.12000/JR22135
基金项目: 国家重点研发计划(2021YFB3900801)
详细信息
    作者简介:

    范 文(1986-),男,陕西安康人,博士,工程师。主要研究方向为波形设计、MIMO雷达、最优化理论算法以及阵列信号处理等

    蔚保国(1966-),男,内蒙古凉城人,研究员,博士生导师。主要研究方向为综合时空体系设计与通导遥一体化系统

    陈 镜(1977-),男,山西临县人,硕士,高级工程师。主要研究方向为雷达系统设计

    张 航(1983-),男,河北保定人,博士生,高级工程师。主要研究方向为自组织网络、一体化电子系统

    李淳泽(1996-),男,河北邢台人,硕士。主要研究方向为无线通信、数字信号处理

    通讯作者:

    范文 fanwen@mail.nwpu.edu.cn

  • 责任主编:梁军利 Corresponding Editor: LIANG Junli
  • 1 雷达天线单元间间距不同,且有可能大于半波长。
  • 中图分类号: TN958

Joint Waveform Optimization and Antenna Position Selection for MIMO Radar Beam Scanning

Funds: The National Key Research and Development Program (2021YFB3900801)
More Information
  • 摘要: 为实现集中式多输入多输出(MIMO)雷达波束扫描,本文在峰值平均功率比(PAPR)、能量以及布尔(天线位置选择)约束下,基于min-max波束图匹配准则,首次提出MIMO雷达天线位置和多组探测波形(一组波形对应一个独立的波束图)的联合优方法。由于非凸PAPR约束、布尔约束以及min-max目标函数的非凸非光滑性导致了优化问题成为典型的大规模NP-难问题。为求解该NP-难优化问题,该文首先利用Lawson算法将min-max问题转化为迭代加权最小二乘(ILS)问题,然后根据上界函数最小化(MM)准则简化ILS优化问题,最后用交替方向乘子法(ADMM)求解简化后的上界优化问题。数值仿真结果检验了所提算法的有效性。

     

  • 图  1  仿真样例1

    Figure  1.  Simulation example 1

    图  2  收敛性分析

    Figure  2.  Convergence performance analysis

    图  3  仿真样例2($L = 20$, $\hat L = 12$)

    Figure  3.  Simulation example 2 ($L = 20$, $\hat L = 12$)

    图  4  仿真样例2($L = 17$, $\hat L = 12$)

    Figure  4.  Simulation example 2 ($L = 17$, $\hat L = 12$)

    图  5  仿真样例2($L = 20$, $\hat L = 15$)

    Figure  5.  Simulation example 2 ($L = 20$, $\hat L = 15$)

    图  6  仿真样例3

    Figure  6.  Simulation example 3

    图  7  不同方法获得的波束图结果

    Figure  7.  Beampattern results obtained by using different method

    表  1  基于波形优化和天线位置选择的MIMO雷达波束扫描算法

    Table  1.   Algorithm for joint waveform optimization and antenna position selection for MIMO radar beam scanning

     输入参数:I, ${\boldsymbol{\varTheta }}_m^i$, ${\boldsymbol{\varTheta }}_s^i$, ${\boldsymbol{\varTheta }}_n^i$, ${\boldsymbol{\varTheta }}_t^i$, ${{\boldsymbol{W}}^i},\forall i$, ${\zeta _l},\forall l$, $\gamma $, $\hat L$, L, $\rho $, ${\delta _{{\rm{out}}} } = {10^{ - 8} }$, ${\delta _{{\rm{inner}}} } = {10^{ - 8} }$,
          $\{ \{ {{\boldsymbol{X}}^i}(0),{{\boldsymbol{Z}}^i}(0),{{\boldsymbol{\varPsi }}^i}(0)\} _{i = 1}^I,{\boldsymbol{\alpha }}(0),{\boldsymbol{\bar s}}(0)\} $, $\tilde R_{m,q}^i(0) = W_{m,q}^i\left[ {{{\boldsymbol{W}}^i}; \cdots ;{{\boldsymbol{W}}^I}} \right]$, $\forall i,\forall m,\forall q$, ${K_{{\rm{max}}} }$, $k = 0$
      1 WHILE {$|{\rm{obj}}(k) - {\rm{obj}}(k - 1)| > {\sigma _{{\rm{out}}} }$ & $k \le {K_{ {\rm{max} } } }$}(Lawson迭代)
      2 $t = 0$;
      3 WHILE $\left\{ {\dfrac{1}{I}\displaystyle\sum\limits_{i = 1}^I {\left\| { { {\boldsymbol{Z} }^i}(t) - { {\boldsymbol{Z} }^i}(t - 1)} \right\|_{\rm F}^2} > {\sigma _{{\rm{inner}}} } } \right\}$(M-ADMM迭代)
      4   $ \bullet $ 更新${\boldsymbol{d}}_m^i(t + 1)$
      5   $ \bullet $ 顺序更新$\{ {\boldsymbol{\bar s}}(t + 1),{\boldsymbol{\alpha }}(t + 1),\{ {{\boldsymbol{X}}^i}(t + 1)\} _{i = 1}^I\} $
      6   $ \bullet $ 更新$\{ {{\boldsymbol{Z}}^i}(t + 1)\} _{i = 1}^I$
      7   $ \bullet $ 更新$\{ {{\boldsymbol{\varPsi }}^i}(t + 1)\} _{i = 1}^I$
      8   $t: = t + 1$;
      9 ENDWHILE(M-ADMM迭代结束)
      10 ${{\boldsymbol{Z}}^i}(k + 1) = {{\boldsymbol{Z}}^i}(t - 1),\forall i,{\beta ^i}(k + 1) = {\bar h^i}({{\boldsymbol{Z}}^i}(k + 1)),\forall i$;
      11 更新Lawson权值$w_m^i(k)$;
      12 ${\rm{obj}}(k) = {\max _{m,i} }\{ G_m^i({ {\boldsymbol{Z} }^i}(k + 1),{\beta ^i}(k + 1))\}$;
      13 $k: = k + 1$;
      14 ENDWHILE(Lawson迭代结束)
     输出:探测波形${{\boldsymbol{Z}}^i}( \star ) = {{\boldsymbol{Z}}^i}(t),i = 1,2,\cdots,I$,天线位置${\boldsymbol{\bar s}}( \star ) = {\boldsymbol{\bar s}}(t)$。
    下载: 导出CSV
  • [1] LI Jian and STOICA P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106–114. doi: 10.1109/MSP.2007.904812
    [2] BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071
    [3] FAN Wen, LIANG Junli, and LI Jian. Constant modulus MIMO radar waveform design with minimum peak sidelobe transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4207–4222. doi: 10.1109/TSP.2018.2847636
    [4] STOICA P, LI Jian, and XIE Yao. On probing signal design for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151–4161. doi: 10.1109/TSP.2007.894398
    [5] ALDAYEI O, MONGA V, and RANGASWAMY M. Tractable transmit MIMO beampattern design under a constant modulus constraint[J]. IEEE Transactions on Signal Processing, 2017, 65(10): 2588–2599. doi: 10.1109/TSP.2017.2664040
    [6] 黎薇萍, 陈伟超, 梁家乐. 天基TDM-MIMO雷达系统抗干扰波形设计方法[J]. 无线电工程, 2022, 52(3): 429–435. doi: 10.3969/j.issn.1003-3106.2022.03.012

    LI Weiping, CHEN Weichao, and LIANG Jiale. An anti-jamming waveform design method for space-based TDM-MIMO radar system[J]. Radio Engineering, 2022, 52(3): 429–435. doi: 10.3969/j.issn.1003-3106.2022.03.012
    [7] 杨力萍, 廖可非, 欧阳缮. 分布式MIMO雷达时间与阵面资源自适应调度算法[J]. 无线电工程, 2022, 52(7): 1136–1144. doi: 10.3969/j.issn.1003-3106.2022.07.005

    YANG Liping, LIAO Kefei, and OUYANG Shan. Adaptive scheduling algorithm for time and array resources of distributed MIMO radar[J]. Radio Engineering, 2022, 52(7): 1136–1144. doi: 10.3969/j.issn.1003-3106.2022.07.005
    [8] LIU Yanhui, LIU Qinghuo, and NIE Zaiping. Reducing the number of elements in multiple-pattern linear arrays by the extended matrix pencil methods[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(2): 652–660. doi: 10.1109/TAP.2013.2292529
    [9] VESCOVO R. Reconfigurability and beam scanning with phase-only control for antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(6): 1555–1565. doi: 10.1109/TAP.2008.923297
    [10] ZHANG Xuan, LIANG Junli, FAN Xuhui, et al. Reconfigurable array beampattern synthesis via conceptual sensor network modeling and computation[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6): 4512–4525. doi: 10.1109/TAP.2020.2972401
    [11] FUHRMANN D R and ANTONIO G S. Transmit beamforming for MIMO radar systems using signal cross-correlation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(1): 171–186. doi: 10.1109/TAES.2008.4516997
    [12] HE Hao, STOICA P, and LI Jian. Wideband MIMO systems: Signal design for transmit beampattern synthesis[J]. IEEE Transactions on Signal Processing, 2011, 59(2): 618–628. doi: 10.1109/TSP.2010.2091410
    [13] FAN Wen, LIANG Junli, YU Guoyang, et al. MIMO radar waveform design for quasi-equiripple transmit beampattern synthesis via weighted l p-minimization[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3397–3411. doi: 10.1109/TSP.2019.2917871
    [14] ROBERTS W, XU Luzhou, LI Jian, et al. Sparse antenna array design for MIMO active sensing applications[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(3): 846–858. doi: 10.1109/TAP.2010.2103550
    [15] CHENG Ziyang, LU Yanxi, HE Zishu, et al. Joint optimization of covariance matrix and antenna position for MIMO radar transmit beampattern matching design[C]. 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, USA, 2018: 1073–1077.
    [16] 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [17] LIPOR J, AHMED S, and ALOUINI M S. Fourier-based transmit beampattern design using MIMO radar[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2226–2235. doi: 10.1109/TSP.2014.2307838
    [18] STOICA P, LI Jian, and ZHU Xumin. Waveform synthesis for diversity-based transmit beampattern design[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2593–2598. doi: 10.1109/TSP.2007.916139
    [19] AHMED S and ALOUINI M. A survey of correlated waveform design for multifunction software radar[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(3): 19–31. doi: 10.1109/MAES.2016.150051
    [20] HUA G and ABEYSEKERA S S. MIMO radar transmit beampattern design with ripple and transition band control[J]. IEEE Transactions on Signal Processing, 2013, 61(11): 2963–2974. doi: 10.1109/TSP.2013.2252173
    [21] 何子述, 韩春林, 刘波. MIMO雷达概念及其技术特点分析[J]. 电子学报, 2005, 33(12A): 2441–2445.

    HE Zishu, HAN Chunlin, and LIU Bo. MIMO radar and its technical characteristic analyses[J]. Acta Electronica Sinica, 2005, 33(12A): 2441–2445.
    [22] IMANI S, NAYEBI M M, and ALI GHORASHI S. Transmit signal design in colocated MIMO radar without covariance matrix optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(5): 2178–2186. doi: 10.1109/TAES.2017.2686618
    [23] CHENG Ziyang, HE Zishu, ZHANG Shengmiao, et al. Constant modulus waveform design for MIMO radar transmit beampattern[J]. IEEE Transactions on Signal Processing, 2017, 65(18): 4912–4923. doi: 10.1109/TSP.2017.2718976
    [24] YU Xianxiang, CUI Guolong, YANG Jing, et al. Wideband MIMO radar waveform design[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3487–3501. doi: 10.1109/TSP.2019.2916732
    [25] CHENG Ziyang, HAN Chunlin, LIAO Bin, et al. Communication-aware waveform design for MIMO radar with good transmit beampattern[J]. IEEE Transactions on Signal Processing, 2018, 66(21): 5549–5562. doi: 10.1109/TSP.2018.2868042
    [26] ALHUJAILI K, MONGA V, and RANGASWAMY M. Transmit MIMO radar beampattern design via optimization on the complex circle manifold[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3561–3575. doi: 10.1109/TSP.2019.2914884
    [27] 王璐璐, 王宏强, 王满喜, 等. 雷达目标检测的最优波形设计综述[J]. 雷达学报, 2016, 5(5): 487–498. doi: 10.12000/JR16084

    WANG Lulu, WANG Hongqiang, WANG Manxi, et al. An overview of radar waveform optimization for target detection[J]. Journal of Radars, 2016, 5(5): 487–498. doi: 10.12000/JR16084
    [28] 何子述, 李军, 刘红明, 等. MIMO雷达[M]. 北京: 国防工业出版社, 2017.

    HE Zishu, LI Jun, LIU Hongming, et al. MIMO Radar[M]. Beijing: National Defense Industry Press, 2017.
    [29] DENG Minglong, CHENG Ziyang, and HE Zishu. Co-Design of Waveform correlation matrix and antenna positions for MIMO radar transmit beampattern formation[J]. IEEE Sensors Journal, 2020, 20(13): 7326–7336. doi: 10.1109/JSEN.2020.2977686
    [30] ROCCA P, OLIVERI G, MAILLOUX R J, et al. Unconventional phased array architectures and design methodologies—A review[J]. Proceedings of the IEEE, 2016, 104(3): 544–560. doi: 10.1109/JPROC.2015.2512389
    [31] LIU Yanhui, CHENG Juan, XU Kaida, et al. Reducing the number of elements in the synthesis of a broadband linear array with multiple simultaneous frequency-invariant beam patterns[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 5838–5848. doi: 10.1109/TAP.2018.2862361
    [32] SHEN Haiou and WANG Buhong. An effective method for synthesizing multiple-pattern linear arrays with a reduced number of antenna elements[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(5): 2358–2366. doi: 10.1109/TAP.2017.2679344
    [33] HE Hao, LI Jian, and STOICA P. Waveform Design for Active Sensing Systems: A Computational Approach[M]. Cambridge: Cambridge University Press, 2012.
    [34] CUI Guolong, YU Xianxiang, YANG Ya, et al. Cognitive phase-only sequence design with desired correlation and stopband properties[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2924–2935. doi: 10.1109/TAES.2017.2721238
    [35] FAN Wen, LIANG Junli, CHEN Zihao, et al. Spectrally compatible aperiodic sequence set design with low cross and auto-correlation PSL[J]. Signal Processing, 2021, 183: 107960. doi: 10.1016/j.sigpro.2020.107960
    [36] FAN Wen, LIANG Junli, YU Guoyang, et al. Minimum local peak sidelobe level waveform design with correlation and/or spectral constraints[J]. Signal Processing, 2020, 171: 107450. doi: 10.1016/j.sigpro.2019.107450
    [37] FAN Wen, LIANG Junli, SO H C, et al. Min-max metric for spectrally compatible waveform design via log-exponential smoothing[J]. IEEE Transactions on Signal Processing, 2020, 68: 1075–1090. doi: 10.1109/TSP.2020.2969043
    [38] AUBRY A, MAIO A D, and HUANG Yongwei. MIMO radar beampattern design via PSL/ISL optimization[J]. IEEE Transactions on Signal Processing, 2016, 64(15): 3955–3967. doi: 10.1109/TSP.2016.2543207
    [39] TSENG C Y and GRIFFITHS L J. A simple algorithm to achieve desired patterns for arbitrary arrays[J]. IEEE Transactions on Signal Processing, 1992, 40(11): 2737–2746. doi: 10.1109/78.165660
    [40] LORENZ R G and BOYD S P. Robust minimum variance beamforming[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1684–1696. doi: 10.1109/TSP.2005.845436
    [41] NAI S E, SER W, YU Zhuliang, et al. Beampattern synthesis for linear and planar arrays with antenna selection by convex optimization[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(12): 3923–3930. doi: 10.1109/TAP.2010.2078446
    [42] LAWSON C. Contributions to the theory of linear least maximum approximation[D]. [Ph. D. dissertation], University of California, 1961.
    [43] RICE J and USOW K. The Lawson algorithm and extensions[J]. Mathematics of Computation, 1968, 22(101): 118–127. doi: 10.1090/S0025-5718-1968-0232137-4
    [44] ELLACITT S and WILLIAMS J. Linear Chebyshev approximation in the complex plane using Lawson’s algorithm[J]. Mathematics of Computation, 1976, 30(133): 35–44. doi: 10.2307/2005427
    [45] WANG Yu, YIN Wotao, and ZENG Jinshan. Global convergence of ADMM in nonconvex nonsmooth optimization[J]. Journal of Scientific Computing, 2019, 78(1): 29–63. doi: 10.1007/s10915-018-0757-z
    [46] HONG Mingyi, LUO Zhiquan, and RAZAVIYAYN M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems[J]. SIAM Journal on Optimization, 2016, 26(1): 337–364. doi: 10.1137/140990309
    [47] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 2011, 3(1): 1–122. doi: 10.1561/2200000016
    [48] FAN Wen, LIANG Junli, FAN Xuhui, et al. A unified sparse array design framework for beampattern Synthesis[J]. Signal Processing, 2021, 182: 107930. doi: 10.1016/j.sigpro.2020.107930
    [49] SUN Ying, BABU P, and PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 794–816. doi: 10.1109/TSP.2016.2601299
    [50] RAZAVIYAYN M, HONG Mingyi, and LUO Zhiquan. A unified convergence analysis of block successive minimization methods for nonsmooth optimization[J]. SIAM Journal on Optimization, 2013, 23(2): 1126–1153. doi: 10.1137/120891009
    [51] HONG Mingyi, RAZAVIYAYN M, LUO Zhiquan, et al. A unified algorithmic framework for block-structured optimization involving big data: With applications in machine learning and signal processing[J]. IEEE Signal Processing Magazine, 2016, 33(1): 57–77. doi: 10.1109/MSP.2015.2481563
    [52] FAN Wen, LIANG Junli, LU Guangshan, et al. Spectrally-agile waveform design for wideband MIMO radar transmit beampattern synthesis via majorization-ADMM[J]. IEEE Transactions on Signal Processing, 2021, 69: 1563–1578. doi: 10.1109/TSP.2021.3052997
    [53] TROPP J A, DHILLON I S, HEATH R W, et al. Designing structured tight frames via an alternating projection method[J]. IEEE Transactions on Information Theory, 2005, 51(1): 188–209. doi: 10.1109/TIT.2004.839492
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  1681
  • HTML全文浏览量:  614
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-06
  • 修回日期:  2022-08-12
  • 网络出版日期:  2022-08-25
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回