多策略ATLAS数据优选与影像匹配相结合的SAR高程控制点提取

余洋 靳国旺 熊新 童成功 张国平

余洋, 靳国旺, 熊新, 等. 多策略ATLAS数据优选与影像匹配相结合的SAR高程控制点提取[J]. 雷达学报, 2023, 12(1): 64–75. doi: 10.12000/JR22134
引用本文: 余洋, 靳国旺, 熊新, 等. 多策略ATLAS数据优选与影像匹配相结合的SAR高程控制点提取[J]. 雷达学报, 2023, 12(1): 64–75. doi: 10.12000/JR22134
YU Yang, JIN Guowang, XIONG Xin, et al. SAR elevation control point extraction combining multistrategy ATLAS data preference and image matching[J]. Journal of Radars, 2023, 12(1): 64–75. doi: 10.12000/JR22134
Citation: YU Yang, JIN Guowang, XIONG Xin, et al. SAR elevation control point extraction combining multistrategy ATLAS data preference and image matching[J]. Journal of Radars, 2023, 12(1): 64–75. doi: 10.12000/JR22134

多策略ATLAS数据优选与影像匹配相结合的SAR高程控制点提取

doi: 10.12000/JR22134
基金项目: 国家自然科学基金(41474010, 61401509),河南省自然科学基金(182300410007)
详细信息
    作者简介:

    余 洋,硕士生,主要研究方向为微波遥感

    靳国旺,博士,教授,博士生导师,主要研究方向为微波遥感

    熊 新,博士,讲师,主要研究方向为微波遥感

    童成功,硕士,主要研究方向为合成孔径雷达数据处理

    张国平,博士生,主要研究方向为星载激光测高数据处理与应用

    通讯作者:

    靳国旺 guowang_jin@163.com

  • 责任主编:张红 Corresponding Editor: ZHANG Hong
  • 中图分类号: TP75; P237

SAR Elevation Control Point Extraction Combining Multistrategy ATLAS Data Preference and Image Matching

Funds: The National Natural Science Foundation of China (41474010, 61401509), Natural Science Foundation of Henan Province (182300410007)
More Information
  • 摘要: 为了精化星载SAR影像几何参数并提高立体定位精度,借鉴星载激光测高数据光学遥感影像高程控制点提取思路,设计了一种多策略高级地形激光测高系统(ATLAS)数据优选与影像匹配相结合的SAR高程控制点提取方法。该方法采用非夜间观测光子滤除、高置信度光子选取、SRTM DEM辅助的粗差剔除、大偏心率椭圆滤波核平坦区域光子筛选等多种策略,从ATLAS数据ATL03级产品中提取高质量、平坦区域的激光高程点,再依据SRTM DEM对斜距SAR影像进行地理编码,按激光高程点的平面坐标选取局部谷歌地球影像作为足印影像,采用秩自相似描述子进行足印影像与SAR地理编码影像的匹配,得到与激光高程点对应的SAR影像像点坐标,从而提取SAR高程控制点。采用中国登封市、日本横须贺市两个区域的ATLAS数据进行了高分三号SAR高程控制点提取实验,利用提取的高程控制点进行SAR影像几何参数精化,大幅提升了立体定位精度,验证了该文高程控制点提取方法的可行性和有效性。

     

  • 图  1  多策略ATLAS数据优选与影像匹配相结合的SAR高程控制点提取流程

    Figure  1.  Process of SAR elevation control point extraction combining multistrategy ATLAS data preference and image matching

    图  2  多策略ATLAS数据优选流程

    Figure  2.  Process of multistrategy ATLAS data preference

    图  3  物像不一致造成的高程差示意图

    Figure  3.  Schematic diagram of height difference caused by difference between object and image

    图  4  椭圆滤波核提取分析示意图

    Figure  4.  Schematic diagram of ellipse filter kernel extraction

    图  5  平坦区域光子提取结果示意图

    Figure  5.  Schematic diagram of laser points extraction result in flat area

    图  6  GE影像与SAR地理编码影像匹配示意图

    Figure  6.  Schematic diagram of matching between GE image and SAR geocoding image

    图  7  匹配窗口示意图

    Figure  7.  Matching window diagram

    图  8  匹配点及邻域点示意图

    Figure  8.  Schematic diagram of matching points and neighborhood points

    图  9  各区域地理位置及影像范围图

    Figure  9.  Geographical location and topographic map of each area

    图  10  高程残差直方图

    Figure  10.  Elevation difference histogram

    图  11  匹配结果示意图

    Figure  11.  Schematic diagram of matching results

    图  12  激光高程点分布示意图

    Figure  12.  Schematic diagram of laser elevation point distribution

    图  13  区域1部分检查点示意图

    Figure  13.  Schematic diagram of some checkpoints in the area 1

    图  14  检查点分布情况示意图

    Figure  14.  Schematic diagram of the distribution of checkpoints

    图  15  检查点误差情况

    Figure  15.  Checkpoint error condition

    表  1  算法使用到的ATL03参数

    Table  1.   ATL03 parameters used by the algorithm

    参数含义本文符号
    lat_ph每个接收光子纬度(WGS84)B
    lon_ph每个接收光子经度(WGS84)L
    h_ph每个接收光子高程(WGS84椭球高)H
    signal_conf_ph每个接收光子置信度C
    data_start_utc数据开始时间${t_0}$
    dist_ph_along每个接收光子在该组中的沿轨距离${l_i}$
    segment_length每组沿轨距离(19.8~20.2 m)${L_i}$
    segment_ph_cnt每组内光子数${w_i}$
    下载: 导出CSV

    表  2  SAR影像数据基本参数

    Table  2.   Basic parameters of SAR image data

    区域序号成像日期轨道类型入射角尺寸(像素)中心经纬度
    区域1影像120191021升轨23.31°~24.58°32966$ \times $12576(113.114°E, 34.514°N)
    影像220191206降轨42.52°~43.18°30944$ \times $15648(113.120°E, 34.512°N)
    影像320190829降轨46.24°~46.82°28224$ \times $16056(113.130°E, 34.511°N)
    区域2影像420190116升轨38.65°~39.38°30558$ \times $14624(139.645°E, 35.290°N)
    影像520190116降轨25.16°~26.32°31920$ \times $12576(139.645°E, 35.296°N)
    影像620190121降轨35.46°~36.25°30638$ \times $13600(139.642°E, 35.296°N)
    下载: 导出CSV

    表  3  不同筛选条件下光子数量

    Table  3.   The number of photons under different screening conditions

    数据类型区域1区域2
    光子数量(个)数据剔除率(%)光子数量(个)数据剔除率(%)
    原始数据7 221 63405 651 8080
    夜间观测数据208 93597.11309 83294.52
    高置信度数据171 24218.04276 93810.62
    粗差剔除数据157 635 7.95276 890 0.02
    平坦区域数据6 60995.8125 64190.74
    下载: 导出CSV

    表  4  区域1 SAR高程控制点高程信息

    Table  4.   Elevation information of SAR elevation control points in area 1

    序号高程(m)序号高程(m)序号高程(m)序号高程(m)序号高程(m)
    1457.0911402.2821426.6031359.6641368.92
    2430.5312397.5822373.9932355.8042375.77
    3435.5413404.5123351.4533352.6743377.07
    4435.3214403.8924348.6834343.6344373.36
    5435.4315385.8825333.2235336.5045372.15
    6435.1016384.2326412.3236336.4146371.26
    7439.4217382.3827390.6037322.3047370.16
    8408.4718407.0528389.6238334.3748368.57
    9406.2819403.9929363.3339334.76
    10404.0420407.5930360.9840351.15
    下载: 导出CSV

    表  5  区域2 SAR高程控制点高程信息

    Table  5.   Elevation information of SAR elevation control points in area 2

    序号高程(m)序号高程(m)序号高程(m)序号高程(m)序号高程(m)
    195.58895.691539.422240.072939.47
    238.719204.95 1639.322340.053069.25
    3107.14 10205.64 1740.422439.7331104.99
    4107.19 1171.391839.082539.953271.12
    5107.19 1271.531940.332638.903371.23
    657.8413222.95 2040.442778.163460.62
    783.251438.982139.632839.443560.64
    下载: 导出CSV

    表  6  检查点信息

    Table  6.   Information of checkpoints

    序号经度(°)纬度(°)高程(m)
    1*.**3996*.**7348459.38
    2*.**0267*.**2819487.50
    3*.**6372*.**4978438.96
    4*.**2031*.**1293399.94
    5*.**9026*.**1702384.47
    6*.**7216*.**9004405.98
    7*.**4967*.**1815430.68
    8*.**3398*.**2909374.35
    9*.**8198*.**0609323.37
    10*.**9957*.**5764383.76
    11*.**2113*.**4711343.14
    下载: 导出CSV

    表  7  定位结果

    Table  7.   Results of positioning

    定位
    方法
    SAR高程控制
    点数(个)
    检查
    点数(个)
    平面中
    误差(m)
    高程中
    误差(m)
    方法101110.4230.42
    方法21011 7.35 3.77
    方法34811 7.34 3.69
    下载: 导出CSV
  • [1] WANG Taoyang, LI Xin, ZHANG Guo, et al. Large-scale orthorectification of GF-3 SAR images without ground control points for China’s land area[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–17. doi: 10.1109/TGRS.2022.3142372
    [2] 润一. 高分三号卫星在轨几何定标及与高分二号光学卫星影像联合定位[D]. [硕士论文], 武汉大学, 2017.

    RUN Yi. On-orbit geometric calibration of GF-3 satellite and joint-positioning of GF-3 and GF-2 satellite images[D]. [Master dissertation], Wuhan University, 2017.
    [3] 张红敏, 靳国旺, 徐青, 等. 利用单个地面控制点的SAR图像高精度立体定位[J]. 雷达学报, 2014, 3(1): 85–91. doi: 10.3724/SP.J.1300.2014.13138

    ZHANG Hongmin, JIN Guowang, XU Qing, et al. Accurate positioning with stereo SAR images and one ground control point[J]. Journal of Radars, 2014, 3(1): 85–91. doi: 10.3724/SP.J.1300.2014.13138
    [4] 魏钜杰, 张继贤, 赵争, 等. 稀少控制下TerraSAR-X影像高精度直接定位方法[J]. 测绘科学, 2011, 36(1): 58–60, 50. doi: 10.16251/j.cnki.1009-2307.2011.01.006

    WEI Jujie, ZHANG Jixian, ZHAO Zheng, et al. High-precisely direct geo-location method for TerraSAR-X image with sparse GCPs[J]. Science of Surveying and mapping, 2011, 36(1): 58–60, 50. doi: 10.16251/j.cnki.1009-2307.2011.01.006
    [5] 张祖勋, 陶鹏杰. 谈大数据时代的“云控制”摄影测量[J]. 测绘学报, 2017, 46(10): 1238–1248. doi: 10.11947/j.AGCS.2017.20170337

    ZHANG Zuxun and TAO Pengjie. An overview on “cloud control” photogrammetry in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1238–1248. doi: 10.11947/j.AGCS.2017.20170337
    [6] 方勇, 龚辉, 张丽, 等. 从全球激光点云到三维数字地球空间框架: 全球精确测绘进阶之路[J]. 激光与光电子学进展, 2022, 59(12): 1200002. doi: 10.3788/LOP202259.1200002

    FANG Yong, GONG Hui, ZHANG Li, et al. From global laser point cloud acquisition to 3D digital geospatial framework: The advanced road of global accurate mapping[J]. Laser &Optoelectronics Progress, 2022, 59(12): 1200002. doi: 10.3788/LOP202259.1200002
    [7] NEUMANN T A, MARTINO A J, MARKUS T, et al. The ice, cloud, and land elevation satellite-2 mission: A global geolocated photon product derived from the advanced topographic laser altimeter system[J]. Remote Sensing of Environment, 2019, 233: 111325. doi: 10.1016/j.rse.2019.111325
    [8] XIE Huan, XU Qi, YE Dan, et al. A comparison and review of surface detection methods using MBL, MABEL, and ICESat-2 photon-counting laser altimetry data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7604–7623. doi: 10.1109/JSTARS.2021.3094195
    [9] ICE, CLOUD, and land elevation satellite-2 (ICESat-2) algorithm theoretical basis document (ATBD) for global geolocated photons (ATL03)[EB/OL]. https://nsidc.org/sites/default/files/icesat2_atl03_atbd_r005_0.pdf, 2021.
    [10] LIN Xiaojuan, XU Min, CAO Chunxiang, et al. Estimates of forest canopy height using a combination of ICESat-2/ATLAS data and stereo-photogrammetry[J]. Remote Sensing, 2020, 12(21): 3649. doi: 10.3390/rs12213649
    [11] 张帅台, 李国元, 周晓青, 等. 基于多特征自适应的单光子点云去噪算法[J]. 红外与激光工程, 2022, 51(6): 20210949. doi: 10.3788/IRLA20210949

    ZHANG Shuaitai, LI Guoyuan, ZHOU Xiaoqing, et al. Single photon point cloud denoising algorithm based on multi-features adaptive[J]. Infrared and Laser Engineering, 2022, 51(6): 20210949. doi: 10.3788/IRLA20210949
    [12] ZHU Xiaoxiao, NIE Sheng, WANG Cheng, et al. A ground elevation and vegetation height retrieval algorithm using micro-pulse photon-counting Lidar data[J]. Remote Sensing, 2018, 10(12): 1962. doi: 10.3390/rs10121962
    [13] MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260–273. doi: 10.1016/j.rse.2016.12.029
    [14] ROSIEK M R, KIRK R L, ARCHINAL B A, et al. Utility of Viking orbiter images and products for Mars mapping[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(10): 1187–1195. doi: 10.14358/PERS.71.10.1187
    [15] 何钰, 吴绍民, 邢帅. 基于RFM的嫦娥一号CCD影像区域网平差研究[J]. 测绘科学, 2013, 38(6): 5–6, 15. doi: 10.16251/j.cnki.1009-2307.2013.06.034

    HE Yu, WU Shaomin, and XING Shuai. Block adjustment of Chang’e-1 CCD images based on RFM[J]. Science of Surveying and Mapping, 2013, 38(6): 5–6, 15. doi: 10.16251/j.cnki.1009-2307.2013.06.034
    [16] 耿迅. 火星形貌摄影测量技术研究[D]. [博士论文], 解放军信息工程大学, 2014.

    GENG Xun. Research on photogrammetric processing for Mars topographic mapping[D]. [Ph. D. dissertation], Information Engineering University, 2014.
    [17] 王晋, 张勇, 张祖勋, 等. ICESat激光高程点辅助的天绘一号卫星影像立体区域网平差[J]. 测绘学报, 2018, 47(3): 359–369. doi: 10.11947/j.AGCS.2018.20170425

    WANG Jin, ZHANG Yong, ZHNAG Zuxun, et al. ICESat laser points assisted block adjustment for mapping Satellite-1 stereo imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3): 359–369. doi: 10.11947/j.AGCS.2018.20170425
    [18] 张鑫磊, 邢帅, 徐青, 等. ATLAS数据与资源三号02星影像联合区域网平差[J]. 红外与激光工程, 2020, 49(S2): 20200194. doi: 10.3788/IRLA20200194

    ZHANG Xinlei, XING Shuai, XU Qing, et al. Joint block adjustment for ATLAS data and ZY3-02 stereo imagery[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200194. doi: 10.3788/IRLA20200194
    [19] ZHANG Guo, JIANG Boyang, WANG Taoyang, et al. Combined block adjustment for optical satellite stereo imagery assisted by spaceborne SAR and laser altimetry data[J]. Remote Sensing, 2021, 13(16): 3062. doi: 10.3390/rs13163062
    [20] 谭建伟, 程春泉. 建筑影像高程控制点的激光测高全波形分解提取[J]. 测绘科学, 2021, 46(8): 1–7, 13. doi: 10.16251/j.cnki.1009-2307.2021.08.001

    TAN Jianwei and CHENG Chunquan. Extracting building image elevation control points by decomposing full waveform of laser altimetry[J]. Science of Surveying and Mapping, 2021, 46(8): 1–7, 13. doi: 10.16251/j.cnki.1009-2307.2021.08.001
    [21] 王密, 韦钰, 杨博, 等. ICESat-2/ATLAS全球高程控制点提取与分析[J]. 武汉大学学报:信息科学版, 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531

    WANG Mi, WEI Yu, YANG Bo, et al. Extraction and analysis of global elevation control points from ICESat-2/ATLAS data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531
    [22] 郑迎辉, 张艳, 王涛, 等. 基于ICESat-2数据的高程控制点提取和精度验证[J]. 地球信息科学学报, 2022, 24(7): 1234–1244. doi: 10.12082/dqxxkx.2022.210667

    ZHENG Yinghui, ZHANG Yan, WANG Tao, et al. Elevation control points extraction and accuracy validation based on ICESat-2 data[J]. Journal of Geo-Information Science, 2022, 24(7): 1234–1244. doi: 10.12082/dqxxkx.2022.210667
    [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12341-2008 1: 25000 1: 50000 1: 100000 地形图航空摄影测量外业规范[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China. GB/T 12341-2008 Specifications for aerophotogrammetric field work of 1∶25000 1∶50000 1∶100000 topographic maps[S]. Beijing: Standards Press of China, 2008.
    [24] 曹宁, 周平, 王霞, 等. 激光测高数据辅助卫星成像几何模型精化处理[J]. 遥感学报, 2018, 22(4): 599–610. doi: 10.11834/jrs.20187252

    CAO Ning, ZHOU Ping, WANG Xia, et al. Refined processing of laser altimeter data-aided satellite geometry model[J]. Journal of Remote Sensing, 2018, 22(4): 599–610. doi: 10.11834/jrs.20187252
    [25] 唐新明, 刘昌儒, 张恒, 等. 高分七号卫星立体影像与激光测高数据联合区域网平差[J]. 武汉大学学报:信息科学版, 2021, 46(10): 1423–1430. doi: 10.13203/j.whugis20210417

    TANG Xinming, LIU Changru, ZHANG Heng, et al. GF-7 satellite stereo images block adjustment assisted with laser altimetry data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1423–1430. doi: 10.13203/j.whugis20210417
    [26] XIONG Xin, XU Qing, JIN Guowang, et al. Rank-based local self-similarity descriptor for optical-to-SAR image matching[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(10): 1742–1746. doi: 10.1109/LGRS.2019.2955153
    [27] 王国安, 米鸿涛, 邓天宏, 等. 太阳高度角和日出日落时刻太阳方位角一年变化范围的计算[J]. 气象与环境科学, 2007, 30(S1): 161–164. doi: 10.16765/j.cnki.1673-7148.2007.s1.031

    WANG Guoan, MI Hongtao, DENG Tianhong, et al. Calculation of the change range of the sun high angle and the azimuth of sunrise and sunset in one year[J]. Meteorological and Environmental Sciences, 2007, 30(S1): 161–164. doi: 10.16765/j.cnki.1673-7148.2007.s1.031
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  500
  • HTML全文浏览量:  287
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-01
  • 修回日期:  2022-11-10
  • 网络出版日期:  2022-11-20
  • 刊出日期:  2023-02-28

目录

    /

    返回文章
    返回