极化干涉SAR面向城区不同处理模式的误差影响分析

吕泽鑫 仇晓兰 张柘 丁赤飚

钱李昌, 许稼, 胡国旭. 非合作无源双基地雷达弱目标长时间积累技术[J]. 雷达学报, 2017, 6(3): 259-266. doi: 10.12000/JR16137
引用本文: 吕泽鑫, 仇晓兰, 张柘, 等. 极化干涉SAR面向城区不同处理模式的误差影响分析[J]. 雷达学报, 2022, 11(4): 600–617. doi: 10.12000/JR22059
Qian Lichang, Xu Jia, Hu Guoxu. Long-time Integration of a Multi-waveform for Weak Target Detection in Non-cooperative Passive Bistatic Radar[J]. Journal of Radars, 2017, 6(3): 259-266. doi: 10.12000/JR16137
Citation: LYU Zexin, QIU Xiaolan, ZHANG Zhe, et al. Error analysis of polarimetric interferometric SAR under different processing modes in urban areas[J]. Journal of Radars, 2022, 11(4): 600–617. doi: 10.12000/JR22059

极化干涉SAR面向城区不同处理模式的误差影响分析

DOI: 10.12000/JR22059
基金项目: 国家自然科学基金(61991421, 62022082)
详细信息
    作者简介:

    吕泽鑫(1994-),男,中国科学院空天信息创新研究院在读博士生。研究方向为无人机极化干涉SAR误差分析、干涉SAR高程反演、极化干涉SAR在城区中的应用

    仇晓兰(1982–),女,中国科学院空天信息创新研究院研究员,博士生导师,IEEE高级会员、IEEE地球科学与遥感快报副主编、雷达学报青年编委。主要研究方向为SAR成像处理、SAR图像理解

    张 柘(1988–),男,博士,中国科学院空天信息创新研究院、苏州空天信息研究院研究员,博士生导师。研究方向为稀疏信号处理与合成孔径雷达成像

    丁赤飚(1969–),男,研究员,博士生导师,中国科学院院士,先后主持多项国家863重点项目和国家级遥感卫星地面系统工程建设等项目,曾获国家科技进步一等奖、二等奖,国家发明二等奖等奖励。研究方向为合成孔径雷达、遥感信息处理和应用系统等

    通讯作者:

    仇晓兰 xlqiu@mail.ie.ac.cn

  • 责任主编:陈尔学 Corresponding Editor: CHEN Erxue
  • 中图分类号: TN959.3

Error Analysis of Polarimetric Interferometric SAR under Different Processing Modes in Urban Areas

Funds: The National Natural Science Foundation of China (61991421, 62022082)
More Information
  • 摘要: 极化干涉合成孔径雷达(PolInSAR)在城区等复杂场景下的应用受到了越来越多的关注。面向城区的极化干涉SAR处理主要包括基于极化最优相干的干涉测高、基于极化分解的干涉测高、联立极化干涉观测方程直接求解不同散射机制高度这3种模式。现有研究对各类误差在极化干涉SAR不同处理模式下的综合影响分析尚很欠缺。该文在构建极化干涉SAR误差模型的基础上,提出了联立极化观测方程下散射机制的求解方法,推导了极化失真和干涉误差在极化干涉SAR不同处理模式下的综合影响模型,并通过仿真验证了模型的正确性,同时给出了3种处理模式补偿误差后的高度反演结果,补偿误差后通过极化最优相干得到建筑区域高度的均方根误差(RMSE)为2.77 m。在此基础上,通过仿真给出了极化干涉SAR不同处理模型下的误差影响曲线,比较了不同处理模型受误差影响的程度,并给出了合理解释,研究结果为极化干涉SAR系统设计、处理方法选择及数据应用提供了参考。

     

  • 非合作无源双基地雷达(Non-cooperative Passive Bistatic Radar, NPBR)因具有造价低、抗截获、反隐身等诸多优势[16]而成为国内外研究热点。目前,NPBR研究的外辐射源信号主要包括通信电台信号、电视广播信号、手机信号以及雷达信号等。无论针对哪种外辐射源信号,在NPBR中,3大同步(包括空间同步、时间同步以及相位同步)问题始终是制约目标有效探测的关键问题。其中,空间同步是指接收和发射天线同时照射相同空域,空间同步关系到接收到的回波是否持续含有目标信息,即接收回波的有效性;时间同步是指接收天线必须准确获知发射天线发射波形时刻,时间同步关系到获取目标运动参数的准确性;相位同步是指发射和接收天线接收到的信号能够在长时间内严格相参,相位同步关系到目标相参积累性能,进而影响目标的探测性能。

    本文基于雷达外辐射源信号模型,重点讨论与时间同步及相位同步相关的几个问题,具体包括,发射波形参数估计、直达波到达时间估计以及基于波形参数估计的长时间相参积累等问题。其中,发射波形参数估计主要包括脉冲宽度、脉冲重复间隔、载频、带宽等脉间捷变的参数估计。基于估计的波形参数值,进一步给出了捷变波形的GRFT (Generalized Radon Fourier Transform)长时间相参积累弱目标探测算法,最后通过数值实验验证了本文算法的有效性。

    本文内容安排如下:第1节简单介绍了NPBR研究现状及存在的关键问题,明确了本文研究范畴;第2节建立了雷达外辐射源信号模型,给出了基于直达波的NPBR参数估计方法,并提出了一种鲁棒性高的脉冲提取方法;第3节给出了基于GRFT的捷变波形长时间积累算法;第4节利用实测数据对本文算法进行了验证;最后对本文内容进行了总结。

    图1给出了NPBR工作示意图。NPBR接收的信号主要包括两个部分:(1)直接接收到的辐射源旁瓣信号,称为直达波信号;(2)目标前向散射的回波信号。NPBR合理布设的情况下,直达波信号信噪比将远大于目标回波信噪比,十分有利于发射波形参数的估计。因此,本文将基于直达波信号对辐射源发射波形及波达时间等参数进行估计。

    图  1  NPBR示意图
    Figure  1.  Sketch map of NPBR

    设外辐射源发射如式(1)所示的LFM脉冲串信号,脉冲串信号脉冲重复间隔、脉宽、载频及带宽均为脉间捷变。

    s(τ,n)=Arect(τTp(n))exp{jπ(2fc(n)τ+γ(n)τ2)},  n=0,1,···,N1
    (1)

    式中, τ为快时间,A为幅度,N为脉冲数, Tp(n)为脉冲宽度, fc(n)为载频, γ(n)=Bs(n)/Tp(n)为调频率, Bs(n)为信号带宽,n为脉冲序号。则直达波信号模型可写为:

    sr(τ,n)=A1rect(ττ0Tp(n))exp{j2πfc(n)τ0}exp{jπ[2fI(n)τ+γ(n)(ττ0)2]}
    (2)

    式中, τ0=2d0/c为直达波波达时间,d0为外辐射源与接收天线之间的距离, fI(n)=fc(n)fdown为中频频率, fdown为下变频参考频率。

    显然,式(2)中 τ0, Tp(n), γ(n)以及 fc(n)为待估计的未知参数。

    根据待估计参数,可将直达波参数估计过程分为如图2所示的两个部分:脉冲提取和脉冲参数估计。

    图  2  直达波参数估计流程图
    Figure  2.  Flow chart of parameter estimation of the direct waveform

    2.2.1 脉冲提取   脉冲提取通常分为3个步骤,包括时域直达波初提取、自适应带通滤波以及时域直达波脉冲精提取。直达波信号中,通常可能包含大量同频段电台、通信等干扰成分,因此原始直达波信号在时域进行脉冲提取误差较大,需要在初提取的基础上进行带通滤波。而由于直达波信号中心频率、带宽未知,因此无法直接设计带通滤波器。考虑到LFM信号频率响应近似为矩形,本文采用通过脉冲提取方法提取信号的频率响应,从而获得信号中心频率与带宽,进而设计带通滤波器滤除直达波干扰信号。因此,脉冲提取方法的性能决定了直达波脉冲提取的效果。

    脉冲串波形信息主要包含脉冲的上升沿、下降沿以及脉内调制信息。直达波脉冲提取可以等效于直达波脉冲的上升沿以及下降沿的提取。为此,本小节给出一种高鲁棒性的脉冲提取方法,该方法基本主要步骤包括:

    步骤1  自适应计算噪声阈值门限,对超过噪声阈值门限的信号样本索引号进行差分处理;

    步骤2  提取差分值大于最小脉冲间距的索引号作为预选上升沿;

    步骤3  将信号序列翻转,用相同的差分处理方法以及信号序列翻转前后的对应关系获得预选下降沿。上升沿与下降沿一一对应,组成预选脉冲;

    步骤4  从预选脉冲中剔除不符合预设脉冲条件的脉冲,将剩余脉冲作为最终提取结果。

    通常,噪声采样幅值无法连续超过噪声门限,因此无法形成与直达波脉冲宽度和脉冲重复间隔等特征相近的脉冲。本质上,该方法正是利用了噪声与直达波脉冲的这种特征区别,因此具有较好的鲁棒性。

    2.2.2 脉冲参数估计  图2中,脉冲参数估计部分包括以下几个步骤:调频率和中心频率的估计、直达波脉冲对齐、直达波波达时间及载频估计。

    在2.2.1小节脉冲提取的基础上,可以获得直达波信号的脉冲宽度及脉冲重复间隔。本小节针对提取的任意脉冲,给出脉内调制信息的提取方法。

    (a) 调频率和中心频率的估计

    每个提取的脉冲信号均为一个LFM信号,对于LFM信号的调频率及中心频率的估计方法较多。例如LvD[7,8], GRFT[911]等。考虑到GRFT参数估计的最优性[12,13],这里采用GRFT对LFM信号进行参数估计。设定中心频率范围为 ˜fk[fmin,fmax]及调频率范围为 ˜γl=[γmin,γmax],则中心频率及调频率估计值可由式(3)得到。式(3)中,LK分别为中心频率和调频率搜索点数, spulse(τ,n)为提取的第n个脉冲信号。

    [˜fI(n),˜γ(n)]  =argmax˜fk,˜γl{Ll=1Kk=1spulse(τ,n)  exp{jπ[2˜fkτ+˜γlτ2]}}  =argmax˜fk,˜γl{Ll=1Kk=1˜Aexp{jπ[2(fI(n)˜fk)τ  +(γ(n)˜γl)τ2]}}
    (3)

    式(3)中, ˜A为与 τ无关的复幅度。在实际中,由于提取脉冲的上升沿和下降沿可能存在较大误差,导致中心载频的估计值 ˜fI(n)与真实估计值存在一个不可忽略的偏差,记为 Δf(n),即 ˜fI(n)=fI(n) Δf(n)。中心频率偏差将在后续脉压中产生峰值位置的偏移。

    (b) 直达波脉冲对齐

    利用获取的脉冲宽度、中心频率以及调频率,可构建如式(4)所示的参考信号,并对式(2)所示的直达波脉冲信号进行脉冲压缩。脉压结果如式(5)所示。

    sref(τ,n)=rect(τ˜Tp(n))exp{jπ[2˜fI(n)τ+˜γ(n)τ2]}
    (4)
    sPC(τ,n)  =sr(τ,n)sref(τ,n)  =A1exp{j2πτ0fc(n)}  rect(uτ0Tp(n))rect(τu˜Tp(n))  exp{jπ[2fI(n)u+γ(n)(uτ0)2]}  exp{jπ[2˜fI(n)(τu)+˜γ(n)(τu)2]}du  rect(τ+Tp(n)/2τ0˜Tp(n))  exp{jπ[(τ+τ0)Δf(n)2τ0fc(n)]}  sinc{(ττ0+˜Tp(n))π˜γ(n)[ττ0+Δτ0(n)]}
    (5)

    式(5)中,

    Δτ0(n)=Δf(n)/˜γ(n)
    (6)

    显然,由于中心频率估计误差 Δf(n)的存在,脉压后,峰值位置存在一个与脉冲号相关偏移量 Δτ0(n),即不同脉冲的峰值位置处于不同距离单元。利用式(6)中不同脉冲峰值的位置偏移与频率估计误差之间的关系,可实现脉冲间相对频率估计误差的补偿,并实现脉冲对齐。记各脉冲与第1个脉冲的峰值偏差为:

    Δτr(n)=Δτ0(n)Δτ0(0)
    (7)

    由式(7),定义相对频率偏差为:

    Δfr(n)=Δτr(n)˜γ(n)
    (8)

    重新构建脉压匹配函数为:

    ˆsref(τ,n)=rect(τ˜Tp(n))exp{jπ{2[˜fI(n)Δfr(n)]τ+˜γ(n)τ2}}
    (9)

    则脉压结果更新为:

    sPC(τ,n)  =sr(τ,n)ˆsref(τ,n)  A0rect(τ+Tp(n)/2τ0˜Tp(n))  exp{jπ[(τ+τ0)Δf(0)2τ0fc(n)]}  sinc{(ττ0+˜Tp(n))π˜γ(n)[ττ0+Δτ0(0)]}
    (10)

    由式(10)可知,脉冲峰值位置均为:

    τ=τpeak=τ0Δτ0(0)
    (11)

    显然,与脉冲号无关,实现了脉冲对齐。

    (c) 直达波波达时间及载频估计

    由式(7)和式(8)可知

    Δfr(n)=(Δτ0(n)Δτ0(0))˜γ(n)=Δf(n)Δτ0(0)˜γ(n)=Δf(n)Δf(0)˜γ(n)/˜γ(0)
    (12)

    将式(12)代入式(10)中相位项,得到

    ˆϕ(n,τpeak)  =exp{jπ[(τpeak+τ0)Δf(0)2τ0fc(n)]}  =exp{jπ{(2τpeak+Δf(0)/˜γ(0))Δf(0)  2(τpeak+Δf(0)/˜γ(0))  [fdown+˜fI(n)Δfr(n)+Δf(0)˜γ(n)/˜γ(0)]}}
    (13)

    因此,利用式(14)可以得到第1个脉冲的中心频率误差的估计值。

    Δ˜f(0)=argmaxΔfkN1n=0sMF(τpeak,n)exp{jπ{(2τpeak+Δfk/˜γ(0))Δfk+2(τpeak+Δfk/˜γ(0))[fdown+˜fI(n)Δfr(n)+Δfk˜γ(n)/˜γ(0)]}}
    (14)

    式中,搜索频率 Δfk[Δfkmin,Δfkmax], ΔfkminΔfkmax为搜索最小值和最大值。

    进而得到直达波到达时间为:

    τ0=τpeak+Δτ0(0)=τpeak+Δ˜f(0)/˜γ(0)
    (15)

    中心频率估计值更新为:

    ˜fI(n)=˜fI(n)Δ˜f(n)=˜fI(n)(Δ˜f(0)/˜γ(0)+Δτr(n))˜γ(n)
    (16)

    进一步可以得到各脉冲的载频估计值为:

    ˜fc(n)=fdown+˜fI(n)
    (17)

    至此,外辐射源发射信号的脉冲重复频率、脉冲宽度、调频率、载频以及直达波达到时间均已获得,为脉间相参积累奠定基础。

    通过直达波的处理,可获得外辐射源信号的参数,并将获得的参数估计值代入式(4)可得到重构的脉压参考函数。利用该参考函数,对特定距离门内的回波进行脉压,得到脉压后距离-脉冲维结果。在此基础上,沿脉冲维进行捷变波形的长时间积累技术。目标回波时延为 τd(n)=2r(n)/c,式中,c为光速, r(n)为目标瞬时斜距,且

    r(n)=r0+v0nn=0Tr(n)+a02(nn=0Tr(n))2
    (18)

    式中,r0为初始斜距,v0为径向速度,a0为径向加速度。

    结合式(1),目标回波可以写为:

    secho(τ,n)=A2rect(ττ0Tp(n))exp{j2πfc(n)τd(n)}exp{jπ[2fI(n)τ+γ(n)(ττd(n))2]}
    (19)

    式中,A2为回波幅度。

    ˜fI(n)替换式(4)所示参考函数的 ˜fI(n),利用更新后的参考函数对式(19)进行脉压,得到

    sPC_echo(τ,n)  =secho(τ,n)sref(τ,n)  A2rect(ττd(n)2˜Tp(n))exp{j2πτd(n)fc(n)}  sinc{π(˜Tp(n)|ττd(n)|)˜γ(n)(ττd(n))}
    (20)

    基于式(20),可得到运动参数空间中,相参积累的结果为:

    G(i,j,k)=N1n=0sPC_echo(τ(ri,vj,ak;n),n)exp{j2πτ(ri,vj,ak;n)˜fc(n)}
    (21)

    式中,ri, vj, ak分别为搜索的距离、速度和加速度值,且

    τ(ri,vj,ak;n) =2c[ri+vinn=0Tr(n)+ai2(nn=0Tr(n))2]
    (22)

    式(21)实际上为文献[912]中GRFT的一种特殊形式。值得注意的是,式(20)中的脉压输出波形在脉冲间可以是捷变的,因此,其盲速旁瓣[10]等积累性能与非捷变信号GRFT结果将会有较大区别,篇幅原因,本文不进行讨论。

    τ(ri,vj,ak;n)=τd(n)时,式(18)得到峰值:

    G(i,j,k)max=A2N
    (23)

    即实现了积累增益随脉冲数增加而线性增加的相参积累结果。将式(21)中得到的积累幅值与恒虚警(Constant False Alarm Rate, CFAR)门限进行比较,即可得到最终检测结果。

    对于功率为 σ2的高斯白噪声背景,N个脉冲相参积累后的噪声输出功率为 Nσ2[9],因此,相参积累的输出信噪比为 NA22/σ2,即为积累前信噪比的N倍。另外,本文方法对输入信噪比的要求与积累脉冲数及检测门限相关。在检测门限一定的条件下,目标回波信噪比越小,所需的积累脉冲数越多,进而所需的波束驻留时间也越长。

    本文总体算法处理流程如图3所示。

    图  3  算法流程
    Figure  3.  Flowchart of the algorithm

    本小节将利用仿真和实测数据实验对所提方法进行验证。

    仿真实验中,外辐射源雷达工作在P波段,发射波形脉宽、时宽及带宽脉间捷变,场景中存在一个微弱目标,脉压后信噪比为0,运动参数为(120 km, 350 m/s, 20 m/s2),积累脉冲数为100。部分原始回波实部信号和模值如图4所示。图5为直达波提取结果,该结果验证了本文脉冲提取方法的有效性。图6为目标回波脉压结果。显然,脉压结果中,目标淹没在噪声中。利用动目标检测(Moving Target Detection, MTD)方法,得到结果如图7所示,利用本文长时间积累方法,得到结果如图8所示。显然,通过时间和相位同步,利用本文的波形捷变GRFT方法能够将目标能量有效积累,进而验证了本文算法的有效性。

    图  4  原始直达波信号
    Figure  4.  Original signal of the direct waveform
    图  5  脉冲提取结果
    Figure  5.  Pulse extraction result
    图  6  目标回波脉冲压缩结果
    Figure  6.  Echo pulse compression result
    图  7  MTD结果
    Figure  7.  MTD result
    图  8  时间相位同步后相参积累结果
    Figure  8.  Coherent integration result after time and phase synchronization

    实测数据实验中,外辐射源雷达工作在P波段,发射波形脉宽、时宽及带宽脉间捷变。图9为回波脉压结果,从脉压结果可以看出,场景中存在多个微弱目标,而且在观测时间内,目标存在明显跨距离单元现象。针对图9中弱目标1进行捷变波形GRFT长时间积累,得到目标检测及跟踪结果如图10所示。处理中,每一帧的积累脉冲数为20,平均积累时间约为0.42 s,帧间滑动步长为10个脉冲。图11给出了基于本文算法的相参积累与常规MTD、单脉冲处理的信噪比结果对比。由于目标存在跨距离单元现象,在相同积累脉冲数情况下,本文相参积累性能显著高于常规MTD。

    图  9  目标回波脉冲压缩
    Figure  9.  Echo pulse compression result
    图  10  弱目标轨迹探测结果
    Figure  10.  Weak target trace detection result
    图  11  积累SNR比较
    Figure  11.  SNR comparisons

    实验结果表明,利用本文的基于直达波的外辐射源波形估计方法以及捷变波形GRFT相参积累方法,能够将长时间观测的目标回波能量有效积累。

    本文针对非合作外辐射源双基地雷达中时间和相位同步问题以及捷变波形的长时间相参积累问题进行了研究。给出了一种直达波脉冲提取方法,并利用直达波参数估计实现了时间和相位同步,在此基础上,进一步给出了波形捷变GRFT长时间相参积累方法,通过仿真和实测数据实验,验证了该方法对微弱目标探测的有效性。

    直达波信噪比大小会影响波形参数估计误差,该信噪比越小,波形参数估计误差越大,进而长时间积累性能也越差。估计误差对目标参数测量及相参积累性能的分析将在后续工作中进行定量分析。另外,后续将对双基地目标运动参数的解算、捷变波形GRFT的相参积累性能及其盲速旁瓣特性等方面内容开展研究。

  • 图  1  干涉SAR观测几何示意图

    Figure  1.  The schematic diagram of InSAR

    图  2  仿真图像

    Figure  2.  Simulation image

    图  3  极化干涉误差模型的验证

    Figure  3.  Verification of PolInSAR error model

    图  4  Pauli分解下的极化干涉误差模型验证(单一高度)

    Figure  4.  Verification of error model under Pauli decomposition (Single height)

    图  5  Pauli分解下的极化干涉误差模型验证(高度差)

    Figure  5.  Verification of error model under Pauli decomposition (Height difference)

    图  6  结合ESPRIT的极化相干误差模型验证(单一高度)

    Figure  6.  Verification of error model of PolInSAR combined with ESPRIT (Single Height)

    图  7  结合ESPRIT的极化相干误差模型验证

    Figure  7.  Verification of error model of PolInSAR combined with ESPRIT

    图  8  极化串扰对ESPRIT分解得到的高度的影响

    Figure  8.  Effects of crosstalk on height obtained by ESPRIT decomposition

    图  9  两天线极化失真一致时,极化失真对ESPRIT误差模型的影响

    Figure  9.  Effects of polarization distortion on ESPRIT error model when distortion is equal on two antennas

    图  10  极化失真对极化干涉高度反演的影响

    Figure  10.  Effects of polarization distortion on height obtained by PolInSAR

    图  11  干涉误差对极化干涉高度反演的影响

    Figure  11.  Effects of interferometric error on height obtained by PolInSAR

    图  12  极化失真对Pauli分解下高度反演结果的影响

    Figure  12.  Effects of polarization distortion on height obtained by Pauli decomposition

    图  13  干涉误差对Pauli分解下高度反演结果的影响

    Figure  13.  Effects of interferometric error on height obtained by PolInSAR

    图  14  极化失真对Pauli分解的影响

    Figure  14.  Effects of polarization distortion on Pauli decomposition

    图  15  干涉误差与信噪比对Pauli分解的影响

    Figure  15.  Effects of interferometric error on Pauli decomposition

    图  16  极化失真对ESPRIT分解的影响

    Figure  16.  Effects of polarization distortion on ESPRIT

    图  17  干涉误差对ESPRIT分解的影响

    Figure  17.  Effects of interferometric error on ESPRIT

    图  18  极化失真对散射机制高度差的影响

    Figure  18.  Effects of polarization distortion on height difference of scattering mechanisms

    图  19  干涉误差对散射机制高度差的影响

    Figure  19.  Effects of interferometric error on height difference of scattering mechanisms

    图  20  3类机制混合的极化误差对ESPRIT分解的影响

    Figure  20.  Effects of polarization distortion on ESPRIT mixed by 3 mechanisms

    图  21  3类机制混合的干涉误差对ESPRIT分解的影响

    Figure  21.  Effects of interferometric error on ESPRIT mixed by 3 mechanisms

    图  22  无人机载极化干涉SAR系统

    Figure  22.  UAV-borne PolInSAR system

    图  23  无人机载极化干涉SAR系统成像区域

    Figure  23.  Imaging area of UAV-borne system

    图  24  真实高度

    Figure  24.  Real height

    图  25  极化最优相干反演的高度图

    Figure  25.  Height retrieved by polarimetric optimal coherence

    图  26  单次散射反演的高度图

    Figure  26.  Height retrieved by single scattering

    图  27  ESPRIT反演的高度图

    Figure  27.  Height retrieved by ESPRIT

    表  1  系统仿真参数

    Table  1.   Simulation parameters of system

    参数数值
    中心频率15.2 GHz
    飞行高度205 m
    斜距889 m
    基线0.6 m
    基线角–1°
    下载: 导出CSV

    表  2  ESPRIT方法得到散射机制的结果

    Table  2.   Scattering mechanisms obtained by ESPRIT

    极化方式主图像辅图像含串扰的
    主图像
    含串扰的
    辅图像
    单次散射–0.89
    +0.11i
    –0.85
    –0.25
    –0.54
    +0.03i
    –0.45
    –0.33i
    0°二次散射0.02
    –0.01i
    0.02
    –0.01i
    0.02
    +0.01i
    0.02
    +0.01i
    45°二次散射1111
    下载: 导出CSV

    表  3  ESPRIT方法得到的干涉相位

    Table  3.   Interferometric phase obtained by ESPRIT

    极化方式理想(°)含串扰(°)
    单次散射58.9058.41
    45°二次散射84.8784.24
    下载: 导出CSV

    表  4  Pauli分解得到散射机制的结果

    Table  4.   Scattering mechanisms obtained by Pauli decomposition

    极化方式主图像辅图像含串扰的主图像含串扰的辅图像
    单次散射0.100.290.09+0.04i0.28+0.04i
    0°二次散射0.0020.001i–0.001i0.003
    45°二次散射1111
    下载: 导出CSV

    表  5  –20 dB串扰误差下两种分解的干涉相位误差

    Table  5.   Interferometric phase error of two decompositions under –20 dB crosstalk

    极化方式ESPRIT (°)Pauli (°)
    单次散射0.4915.69
    45°二次散射0.63–0.45
    下载: 导出CSV
  • [1] CLOUDE S R and PAPATHANASSIOU K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551–1565. doi: 10.1109/36.718859
    [2] TREUHAFT R N and CLOUDE S R. The structure of oriented vegetation from polarimetric interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2620–2624. doi: 10.1109/36.789657
    [3] CLOUDE S R and PAPATHANASSIOU K P. Three-stage inversion process for Polarimetric SAR interferometry[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 125–134. doi: 10.1049/ip-rsn:20030449
    [4] PAPATHANASSIOU K P and CLOUDE S R. Single-baseline Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352–2363. doi: 10.1109/36.964971
    [5] GARESTIER F, DUBOIS-FERNANDEZ P, DUPUIS X, et al. PolInSAR analysis of X-band data over vegetated and urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2): 356–364. doi: 10.1109/TGRS.2005.862525
    [6] 王萍, 汪长城, 彭星, 等. 基于PolInSAR三分量分解的建筑物高度向信息提取方法[J]. 测绘工程, 2014, 23(6): 16–20, 26. doi: 10.3969/j.issn.1006-7949.2014.06.004

    WANG Ping, WANG Changcheng, PENG Xing, et al. Building height information extraction method based on three-component decomposition for PolInSAR data[J]. Engineering of Surveying and Mapping, 2014, 23(6): 16–20, 26. doi: 10.3969/j.issn.1006-7949.2014.06.004
    [7] GUILLASO S, FERRO-FAMIL L, REIGBER A, et al. Analysis of built-up areas from Polarimetric interferometric SAR images[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1727–1729.
    [8] COLIN E, TITIN-SCHNAIDER C, and TABBARA W. An interferometric coherence optimization method in radar polarimetry for high-resolution imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 167–175. doi: 10.1109/TGRS.2005.859357
    [9] COLIN-KOENIGUER E and TROUVÉ N. Performance of building height estimation using high-resolution PolInSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5870–5879. doi: 10.1109/TGRS.2013.2293605
    [10] CLOUDE S R. Calibration requirements for forest parameter estimation using POLinSAR[C]. CEOS Working Group on Calibration/Validation SAR Workshop, London, UK, 2002: 151–158.
    [11] 张林涛, 洪峻, 明峰. PolInSAR极化误差对最优相干相位的影响研究[J]. 电子与信息学报, 2011, 33(2): 412–417. doi: 10.3724/SP.J.1146.2010.00331

    ZHANG Lintao, HONG Jun, and MING Feng. Study on the impact of Polarimetric error on optimal coherence phase of PolInSAR[J]. Journal of Electronics &Information Technology, 2011, 33(2): 412–417. doi: 10.3724/SP.J.1146.2010.00331
    [12] 许丽颖. 极化干涉合成孔径雷达系统与信息处理技术研究[D]. [博士论文], 中国科学院电子学研究所, 2014: 127–136.

    XU Liying. Study on system and information processing of Polarimetric SAR interferometry[D]. [Ph. D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2014: 127–136.
    [13] 孙翔. 极化干涉合成孔径雷达地物参数估计与系统设计方法研究[D]. [博士论文], 中国科学院电子学研究所, 2018: 110–113.

    SUN Xiang. On approach of estimating ground feature parameters and system design of Polarimetric SAR interferometry[D]. [Ph. D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2018: 110–113.
    [14] SUN Zhongchang, GUO Huadong, LI Xinwu, et al. Error analysis of DEM derived from airborne single-pass interferometric SAR data[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 3405–3408.
    [15] ZHAO Shuyuan, GU Defeng, YI Bin, et al. Error analysis for the baseline estimation and calibration of distributed InSAR satellites[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 4179–4182.
    [16] 生强强. InSAR DEM精度分析与定量评估方法[D]. [硕士论文], 西安电子科技大学, 2018.

    SHENG Qiangqiang. InSAR DEM accuracy analysis and quantitative evaluation[D]. [Master dissertation], Xidian University, 2018.
    [17] 方东生, 吕孝雷, 李缘廷, 等. 运动补偿对机载SAR重轨干涉成像的影响分析[J]. 雷达科学与技术, 2016, 14(4): 355–363. doi: 10.3969/j.issn.1672-2337.2016.04.003

    FANG Dongsheng, LV Xiaolei, LI Yuanting, et al. Effect of motion compensation on airborne repeat pass InSAR imaging[J]. Radar Science and Technology, 2016, 14(4): 355–363. doi: 10.3969/j.issn.1672-2337.2016.04.003
    [18] WANG Huiqiang, ZHU Jianjun, FU Haiqiang, et al. Modeling and robust estimation for the residual motion error in airborne SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 65–69. doi: 10.1109/LGRS.2018.2867868
    [19] 孙晗伟, 曾涛, 杨健, 等. SAR残余相位误差对森林高度反演影响的全链路模拟与分析[J]. 武汉大学学报: 信息科学版, 2015, 40(2): 153–158. doi: 10.13203/j.whugis20130052

    SUN Hanwei, ZENG Tao, YANG Jian, et al. Simulation and analysis of SAR residual phase error on forest height inversion[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 153–158. doi: 10.13203/j.whugis20130052
    [20] LV Zexin, LI Fangfang, QIU xiaolan, et al. Effects of motion compensation residual error and polarization distortion on UAV-borne PolInSAR[J]. Remote Sensing, 2021, 13(4): 618. doi: 10.3390/rs13040618
    [21] ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    [22] LV Zexin, QIU Xiaolan, CHENG Yao, et al. Multi-rotor UAV-borne PolInSAR data processing and preliminary analysis of height inversion in urban area[J]. Remote Sensing, 2022, 14(9): 2161. doi: 10.3390/rs14092161
  • 期刊类型引用(6)

    1. 郁成阳,周婉婷,徐海洲,刘磊,杨君. 非合作式双基地雷达系统设计与验证. 雷达科学与技术. 2024(02): 119-125 . 百度学术
    2. 吕敏,孙清洋,刘乐. 基于非合作雷达的外源雷达直达波参数提取方法. 电子技术与软件工程. 2023(04): 64-69 . 百度学术
    3. 庄敬敏,宋杰,熊伟,王中训. 非合作辐射源双基地雷达技术综述. 探测与控制学报. 2023(04): 35-45+69 . 百度学术
    4. 蒋威,马超,郑园园,曹健. 基于高频外辐射信号的探测效能评估研究. 电子技术与软件工程. 2022(14): 88-93 . 百度学术
    5. 裴家正,黄勇,陈宝欣,关键,蔡咪,陈小龙. 联合脉压与Radon傅里叶变换的长时间相参积累方法. 雷达学报. 2021(06): 956-969 . 本站查看
    6. 朱拥建,刘远,石林艳,王宏. 非合作侦察定位系统的关键技术. 太赫兹科学与电子信息学报. 2018(03): 452-457 . 百度学术

    其他类型引用(4)

  • 加载中
图(27) / 表(5)
计量
  • 文章访问数: 975
  • HTML全文浏览量: 325
  • PDF下载量: 117
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-05-28
  • 网络出版日期:  2022-06-27
  • 刊出日期:  2022-08-28

目录

/

返回文章
返回