极化干涉SAR面向城区不同处理模式的误差影响分析

吕泽鑫 仇晓兰 张柘 丁赤飚

吕泽鑫, 仇晓兰, 张柘, 等. 极化干涉SAR面向城区不同处理模式的误差影响分析[J]. 雷达学报, 2022, 11(4): 600–617. doi: 10.12000/JR22059
引用本文: 吕泽鑫, 仇晓兰, 张柘, 等. 极化干涉SAR面向城区不同处理模式的误差影响分析[J]. 雷达学报, 2022, 11(4): 600–617. doi: 10.12000/JR22059
LYU Zexin, QIU Xiaolan, ZHANG Zhe, et al. Error analysis of polarimetric interferometric SAR under different processing modes in urban areas[J]. Journal of Radars, 2022, 11(4): 600–617. doi: 10.12000/JR22059
Citation: LYU Zexin, QIU Xiaolan, ZHANG Zhe, et al. Error analysis of polarimetric interferometric SAR under different processing modes in urban areas[J]. Journal of Radars, 2022, 11(4): 600–617. doi: 10.12000/JR22059

极化干涉SAR面向城区不同处理模式的误差影响分析

DOI: 10.12000/JR22059
基金项目: 国家自然科学基金(61991421, 62022082)
详细信息
    作者简介:

    吕泽鑫(1994-),男,中国科学院空天信息创新研究院在读博士生。研究方向为无人机极化干涉SAR误差分析、干涉SAR高程反演、极化干涉SAR在城区中的应用

    仇晓兰(1982–),女,中国科学院空天信息创新研究院研究员,博士生导师,IEEE高级会员、IEEE地球科学与遥感快报副主编、雷达学报青年编委。主要研究方向为SAR成像处理、SAR图像理解

    张 柘(1988–),男,博士,中国科学院空天信息创新研究院、苏州空天信息研究院研究员,博士生导师。研究方向为稀疏信号处理与合成孔径雷达成像

    丁赤飚(1969–),男,研究员,博士生导师,中国科学院院士,先后主持多项国家863重点项目和国家级遥感卫星地面系统工程建设等项目,曾获国家科技进步一等奖、二等奖,国家发明二等奖等奖励。研究方向为合成孔径雷达、遥感信息处理和应用系统等

    通讯作者:

    仇晓兰 xlqiu@mail.ie.ac.cn

  • 责任主编:陈尔学 Corresponding Editor: CHEN Erxue
  • 中图分类号: TN959.3

Error Analysis of Polarimetric Interferometric SAR under Different Processing Modes in Urban Areas

Funds: The National Natural Science Foundation of China (61991421, 62022082)
More Information
  • 摘要: 极化干涉合成孔径雷达(PolInSAR)在城区等复杂场景下的应用受到了越来越多的关注。面向城区的极化干涉SAR处理主要包括基于极化最优相干的干涉测高、基于极化分解的干涉测高、联立极化干涉观测方程直接求解不同散射机制高度这3种模式。现有研究对各类误差在极化干涉SAR不同处理模式下的综合影响分析尚很欠缺。该文在构建极化干涉SAR误差模型的基础上,提出了联立极化观测方程下散射机制的求解方法,推导了极化失真和干涉误差在极化干涉SAR不同处理模式下的综合影响模型,并通过仿真验证了模型的正确性,同时给出了3种处理模式补偿误差后的高度反演结果,补偿误差后通过极化最优相干得到建筑区域高度的均方根误差(RMSE)为2.77 m。在此基础上,通过仿真给出了极化干涉SAR不同处理模型下的误差影响曲线,比较了不同处理模型受误差影响的程度,并给出了合理解释,研究结果为极化干涉SAR系统设计、处理方法选择及数据应用提供了参考。

     

  • 图  1  干涉SAR观测几何示意图

    Figure  1.  The schematic diagram of InSAR

    图  2  仿真图像

    Figure  2.  Simulation image

    图  3  极化干涉误差模型的验证

    Figure  3.  Verification of PolInSAR error model

    图  4  Pauli分解下的极化干涉误差模型验证(单一高度)

    Figure  4.  Verification of error model under Pauli decomposition (Single height)

    图  5  Pauli分解下的极化干涉误差模型验证(高度差)

    Figure  5.  Verification of error model under Pauli decomposition (Height difference)

    图  6  结合ESPRIT的极化相干误差模型验证(单一高度)

    Figure  6.  Verification of error model of PolInSAR combined with ESPRIT (Single Height)

    图  7  结合ESPRIT的极化相干误差模型验证

    Figure  7.  Verification of error model of PolInSAR combined with ESPRIT

    图  8  极化串扰对ESPRIT分解得到的高度的影响

    Figure  8.  Effects of crosstalk on height obtained by ESPRIT decomposition

    图  9  两天线极化失真一致时,极化失真对ESPRIT误差模型的影响

    Figure  9.  Effects of polarization distortion on ESPRIT error model when distortion is equal on two antennas

    图  10  极化失真对极化干涉高度反演的影响

    Figure  10.  Effects of polarization distortion on height obtained by PolInSAR

    图  11  干涉误差对极化干涉高度反演的影响

    Figure  11.  Effects of interferometric error on height obtained by PolInSAR

    图  12  极化失真对Pauli分解下高度反演结果的影响

    Figure  12.  Effects of polarization distortion on height obtained by Pauli decomposition

    图  13  干涉误差对Pauli分解下高度反演结果的影响

    Figure  13.  Effects of interferometric error on height obtained by PolInSAR

    图  14  极化失真对Pauli分解的影响

    Figure  14.  Effects of polarization distortion on Pauli decomposition

    图  15  干涉误差与信噪比对Pauli分解的影响

    Figure  15.  Effects of interferometric error on Pauli decomposition

    图  16  极化失真对ESPRIT分解的影响

    Figure  16.  Effects of polarization distortion on ESPRIT

    图  17  干涉误差对ESPRIT分解的影响

    Figure  17.  Effects of interferometric error on ESPRIT

    图  18  极化失真对散射机制高度差的影响

    Figure  18.  Effects of polarization distortion on height difference of scattering mechanisms

    图  19  干涉误差对散射机制高度差的影响

    Figure  19.  Effects of interferometric error on height difference of scattering mechanisms

    图  20  3类机制混合的极化误差对ESPRIT分解的影响

    Figure  20.  Effects of polarization distortion on ESPRIT mixed by 3 mechanisms

    图  21  3类机制混合的干涉误差对ESPRIT分解的影响

    Figure  21.  Effects of interferometric error on ESPRIT mixed by 3 mechanisms

    图  22  无人机载极化干涉SAR系统

    Figure  22.  UAV-borne PolInSAR system

    图  23  无人机载极化干涉SAR系统成像区域

    Figure  23.  Imaging area of UAV-borne system

    图  24  真实高度

    Figure  24.  Real height

    图  25  极化最优相干反演的高度图

    Figure  25.  Height retrieved by polarimetric optimal coherence

    图  26  单次散射反演的高度图

    Figure  26.  Height retrieved by single scattering

    图  27  ESPRIT反演的高度图

    Figure  27.  Height retrieved by ESPRIT

    表  1  系统仿真参数

    Table  1.   Simulation parameters of system

    参数数值
    中心频率15.2 GHz
    飞行高度205 m
    斜距889 m
    基线0.6 m
    基线角–1°
    下载: 导出CSV

    表  2  ESPRIT方法得到散射机制的结果

    Table  2.   Scattering mechanisms obtained by ESPRIT

    极化方式主图像辅图像含串扰的
    主图像
    含串扰的
    辅图像
    单次散射–0.89
    +0.11i
    –0.85
    –0.25
    –0.54
    +0.03i
    –0.45
    –0.33i
    0°二次散射0.02
    –0.01i
    0.02
    –0.01i
    0.02
    +0.01i
    0.02
    +0.01i
    45°二次散射1111
    下载: 导出CSV

    表  3  ESPRIT方法得到的干涉相位

    Table  3.   Interferometric phase obtained by ESPRIT

    极化方式理想(°)含串扰(°)
    单次散射58.9058.41
    45°二次散射84.8784.24
    下载: 导出CSV

    表  4  Pauli分解得到散射机制的结果

    Table  4.   Scattering mechanisms obtained by Pauli decomposition

    极化方式主图像辅图像含串扰的主图像含串扰的辅图像
    单次散射0.100.290.09+0.04i0.28+0.04i
    0°二次散射0.0020.001i–0.001i0.003
    45°二次散射1111
    下载: 导出CSV

    表  5  –20 dB串扰误差下两种分解的干涉相位误差

    Table  5.   Interferometric phase error of two decompositions under –20 dB crosstalk

    极化方式ESPRIT (°)Pauli (°)
    单次散射0.4915.69
    45°二次散射0.63–0.45
    下载: 导出CSV
  • [1] CLOUDE S R and PAPATHANASSIOU K P. Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1551–1565. doi: 10.1109/36.718859
    [2] TREUHAFT R N and CLOUDE S R. The structure of oriented vegetation from polarimetric interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2620–2624. doi: 10.1109/36.789657
    [3] CLOUDE S R and PAPATHANASSIOU K P. Three-stage inversion process for Polarimetric SAR interferometry[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(3): 125–134. doi: 10.1049/ip-rsn:20030449
    [4] PAPATHANASSIOU K P and CLOUDE S R. Single-baseline Polarimetric SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(11): 2352–2363. doi: 10.1109/36.964971
    [5] GARESTIER F, DUBOIS-FERNANDEZ P, DUPUIS X, et al. PolInSAR analysis of X-band data over vegetated and urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(2): 356–364. doi: 10.1109/TGRS.2005.862525
    [6] 王萍, 汪长城, 彭星, 等. 基于PolInSAR三分量分解的建筑物高度向信息提取方法[J]. 测绘工程, 2014, 23(6): 16–20, 26. doi: 10.3969/j.issn.1006-7949.2014.06.004

    WANG Ping, WANG Changcheng, PENG Xing, et al. Building height information extraction method based on three-component decomposition for PolInSAR data[J]. Engineering of Surveying and Mapping, 2014, 23(6): 16–20, 26. doi: 10.3969/j.issn.1006-7949.2014.06.004
    [7] GUILLASO S, FERRO-FAMIL L, REIGBER A, et al. Analysis of built-up areas from Polarimetric interferometric SAR images[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1727–1729.
    [8] COLIN E, TITIN-SCHNAIDER C, and TABBARA W. An interferometric coherence optimization method in radar polarimetry for high-resolution imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(1): 167–175. doi: 10.1109/TGRS.2005.859357
    [9] COLIN-KOENIGUER E and TROUVÉ N. Performance of building height estimation using high-resolution PolInSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9): 5870–5879. doi: 10.1109/TGRS.2013.2293605
    [10] CLOUDE S R. Calibration requirements for forest parameter estimation using POLinSAR[C]. CEOS Working Group on Calibration/Validation SAR Workshop, London, UK, 2002: 151–158.
    [11] 张林涛, 洪峻, 明峰. PolInSAR极化误差对最优相干相位的影响研究[J]. 电子与信息学报, 2011, 33(2): 412–417. doi: 10.3724/SP.J.1146.2010.00331

    ZHANG Lintao, HONG Jun, and MING Feng. Study on the impact of Polarimetric error on optimal coherence phase of PolInSAR[J]. Journal of Electronics &Information Technology, 2011, 33(2): 412–417. doi: 10.3724/SP.J.1146.2010.00331
    [12] 许丽颖. 极化干涉合成孔径雷达系统与信息处理技术研究[D]. [博士论文], 中国科学院电子学研究所, 2014: 127–136.

    XU Liying. Study on system and information processing of Polarimetric SAR interferometry[D]. [Ph. D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2014: 127–136.
    [13] 孙翔. 极化干涉合成孔径雷达地物参数估计与系统设计方法研究[D]. [博士论文], 中国科学院电子学研究所, 2018: 110–113.

    SUN Xiang. On approach of estimating ground feature parameters and system design of Polarimetric SAR interferometry[D]. [Ph. D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2018: 110–113.
    [14] SUN Zhongchang, GUO Huadong, LI Xinwu, et al. Error analysis of DEM derived from airborne single-pass interferometric SAR data[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 3405–3408.
    [15] ZHAO Shuyuan, GU Defeng, YI Bin, et al. Error analysis for the baseline estimation and calibration of distributed InSAR satellites[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 4179–4182.
    [16] 生强强. InSAR DEM精度分析与定量评估方法[D]. [硕士论文], 西安电子科技大学, 2018.

    SHENG Qiangqiang. InSAR DEM accuracy analysis and quantitative evaluation[D]. [Master dissertation], Xidian University, 2018.
    [17] 方东生, 吕孝雷, 李缘廷, 等. 运动补偿对机载SAR重轨干涉成像的影响分析[J]. 雷达科学与技术, 2016, 14(4): 355–363. doi: 10.3969/j.issn.1672-2337.2016.04.003

    FANG Dongsheng, LV Xiaolei, LI Yuanting, et al. Effect of motion compensation on airborne repeat pass InSAR imaging[J]. Radar Science and Technology, 2016, 14(4): 355–363. doi: 10.3969/j.issn.1672-2337.2016.04.003
    [18] WANG Huiqiang, ZHU Jianjun, FU Haiqiang, et al. Modeling and robust estimation for the residual motion error in airborne SAR interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 65–69. doi: 10.1109/LGRS.2018.2867868
    [19] 孙晗伟, 曾涛, 杨健, 等. SAR残余相位误差对森林高度反演影响的全链路模拟与分析[J]. 武汉大学学报: 信息科学版, 2015, 40(2): 153–158. doi: 10.13203/j.whugis20130052

    SUN Hanwei, ZENG Tao, YANG Jian, et al. Simulation and analysis of SAR residual phase error on forest height inversion[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 153–158. doi: 10.13203/j.whugis20130052
    [20] LV Zexin, LI Fangfang, QIU xiaolan, et al. Effects of motion compensation residual error and polarization distortion on UAV-borne PolInSAR[J]. Remote Sensing, 2021, 13(4): 618. doi: 10.3390/rs13040618
    [21] ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276
    [22] LV Zexin, QIU Xiaolan, CHENG Yao, et al. Multi-rotor UAV-borne PolInSAR data processing and preliminary analysis of height inversion in urban area[J]. Remote Sensing, 2022, 14(9): 2161. doi: 10.3390/rs14092161
  • 加载中
图(27) / 表(5)
计量
  • 文章访问数:  1090
  • HTML全文浏览量:  398
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-02
  • 修回日期:  2022-05-28
  • 网络出版日期:  2022-06-27
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回