交叉眼技术对主被动复合单脉冲雷达测角的干扰效果分析

李栋 孟进 刘永才 周亮 苏彬彬

李栋, 孟进, 刘永才, 等. 交叉眼技术对主被动复合单脉冲雷达测角的干扰效果分析[J]. 雷达学报, 2022, 11(4): 705–712. doi: 10.12000/JR22048
引用本文: 李栋, 孟进, 刘永才, 等. 交叉眼技术对主被动复合单脉冲雷达测角的干扰效果分析[J]. 雷达学报, 2022, 11(4): 705–712. doi: 10.12000/JR22048
LI Dong, MENG Jin, LIU Yongcai, et al. Effect of cross-eye jamming on the active-passive composite monopulse radar[J]. Journal of Radars, 2022, 11(4): 705–712. doi: 10.12000/JR22048
Citation: LI Dong, MENG Jin, LIU Yongcai, et al. Effect of cross-eye jamming on the active-passive composite monopulse radar[J]. Journal of Radars, 2022, 11(4): 705–712. doi: 10.12000/JR22048

交叉眼技术对主被动复合单脉冲雷达测角的干扰效果分析

doi: 10.12000/JR22048
基金项目: 国家自然科学基金(62001498)
详细信息
    作者简介:

    李 栋(1997-),男,山东潍坊人,博士生。2020年在西安理工大学电子信息学院获得学士学位。主要研究方向为电子对抗

    孟 进(1977-),男,河南南阳人,博士生导师。2006年在海军工程大学电气工程学院获得博士学位,现为海军工程大学舰船综合电力技术国防科技重点实验室教授。主要研究方向为电磁攻防。目前已发表论文160余篇,出版著作2部,专利40余项。以主要完成人获国家科技进步奖等10项。国家杰出青年基金获得者,入选国家“万人计划”科技创新领军人才、国家百千万人才工程。获求是杰出青年实用工程奖/成果转化奖、国务院政府特殊津贴专家等学术荣誉

    刘永才(1988-),男,黑龙江哈尔滨人,博士。2017年在国防科技大学电子科学与工程学院获得博士学位,现任海军工程大学舰船综合电力技术国防科技重点实验室助理研究员。主要研究方向为电子对抗

    周 亮(1989-),男,湖北黄冈人,博士。现为海军工程大学舰船综合电力技术国防科技重点实验室助理研究员。主要研究方向为电子对抗

    苏彬彬(1990-),男,山东滨州人。2020年获英国兰卡斯特大学计算机与通信学院博士学位,现为海军工程大学舰船综合电力技术国防科技重点实验室助理研究员。主要研究方向为电子对抗

    通讯作者:

    孟进 mengjinemc@163.com

    刘永才 leo_nudt@163.com

  • 责任主编:陈伯孝 Corresponding Editor: CHEN Baixiao
  • 中图分类号: TN958

Effect of Cross-eye Jamming on the Active-passive Composite Monopulse Radar

Funds: The National Natural Science Foundation of China (62001498)
More Information
  • 摘要: 交叉眼技术是一种通过相干多点辐射源诱使单脉冲雷达测角偏差的电子对抗技术。面对攻防双方激烈对抗的复杂电磁环境,采用主被动复合单脉冲雷达测角是现代末制导雷达提高抗干扰能力的发展趋势之一。该文以主被动复合单脉冲雷达为干扰对象,建立了交叉眼干扰数学模型,通过对比交叉眼技术对抗主动单脉冲测角和被动单脉冲测角的干扰效果,揭示了交叉眼技术对主被动复合单脉冲雷达的影响机理。该研究成果可为干扰与抗干扰的合理应用提供理论规律和仿真数据。

     

  • 图  1  主被动复合雷达干扰场景模型

    Figure  1.  The jamming model of active-passive composite radar

    图  2  干涉仪测向示意图

    Figure  2.  Diagram of interferometer

    图  3  被动雷达指示角${\theta _{\text{i}}}$的近似解验证

    Figure  3.  Verification of approximate solution of ${\theta _{\text{i}}}$ for passive radar

    图  4  不同雷达视角$ {\theta _{\text{r}}} $下的交叉眼增益等高线

    Figure  4.  Contours of cross-eye gain at different $ {\theta _{\text{r}}} $

    图  5  交叉眼增益随雷达视角$ {\theta _{\text{r}}} $变化

    Figure  5.  Variation of cross-eye gain with $ {\theta _{\text{r}}} $

    图  6  不同干扰距离r下的干扰效果对比

    Figure  6.  Comparison of jamming effects at different r

    图  7  主被动雷达指示角$ {\theta _{\text{i}}} $对比

    Figure  7.  Comparison of active and passive radar indicating angles $ {\theta _{\text{i}}} $

  • [1] LEE S H, LEE S J, CHOI I O, et al. ICA-based phase-comparison monopulse technique for accurate Angle estimation of multiple targets[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 323–331. doi: 10.1049/iet-rsn.2017.0156
    [2] SHERMAN S M and BARTON D K. Monopulse Principles and Techniques[M]. Boston, London: Artech House Publishers, 2011: 1–13.
    [3] 刘天鹏, 魏玺章, 刘振, 等. 交叉眼干扰研究综述[J]. 雷达学报, 2019, 8(1): 140–153. doi: 10.12000/JR19013

    LIU Tianpeng, WEI Xizhang, LIU Zhen, et al. Overview of cross-eye jamming research[J]. Journal of Radars, 2019, 8(1): 140–153. doi: 10.12000/JR19013
    [4] FALK L. Cross-eye jamming of monopulse radar[C]. International Waveform Diversity and Design Conference, Pisa, Italy, 2007: 209–213.
    [5] NERI F. Anti-monopulse jamming techniques[C]. 2001 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference, Belem, Brazil, 2001: 45–50.
    [6] NERI F. Introduction to Electronic Defense Systems[M]. Boston, London: Artech House, 2006: 373–487.
    [7] 刘天鹏. 多源反向交叉眼干扰技术研究[D]. [博士论文], 国防科技大学, 2016: 34–38.

    LIU Tianpeng. Research on multiple-element retrodirective cross-eye jamming[D]. [Ph. D. dissertation], National University of Defense Technology, 2016: 34–38.
    [8] LIU Tianpeng, LIAO Dongping, WEI Xizhang, et al. Performance analysis of multiple-element retrodirective cross-eye jamming based on linear array[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 1867–1876. doi: 10.1109/TAES.2015.140035
    [9] LIU Songyang, DONG Chunxi, XU Jin, et al. Analysis of rotating cross-eye jamming[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 939–942. doi: 10.1109/LAWP.2014.2387423
    [10] STRATAKOS Y, GEROULIS G, and UZUNOGLU N. Analysis of glint phenomenon in a monopulse radar in the presence of skin echo and non-ideal interferometer echo signals[J]. Journal of Electromagnetic Waves and Applications, 2005, 19(5): 697–711. doi: 10.1163/1569393053305008
    [11] DUNN J H, HOWARD D D, and KING A M. Phenomena of scintillation noise in radar-tracking systems[J]. Proceedings of the IRE, 1959, 47(5): 855–863. doi: 10.1109/JRPROC.1959.287280
    [12] SHERMAN S M. Complex indicated angles applied to unresolved radar targets and multipath[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, AES-7(1): 160–170. doi: 10.1109/TAES.1971.310264
    [13] DU PLESSIS W P. A comprehensive investigation of retrodirective cross-eye jamming[D]. [Ph. D. dissertation], University of Pretoria, 2010: 20–95.
    [14] DU PLESSIS W P, ODENDAAL J W, and JOUBERT J. Experimental simulation of retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 734–740. doi: 10.1109/TAES.2011.5705704
    [15] DU PLESSIS W P, ODENDAAL J W, and JOUBERT J. Tolerance analysis of cross-eye jamming systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 740–745. doi: 10.1109/TAES.2011.5705705
    [16] 刘松杨, 董春曦, 董阳阳, 等. 旋转的正交多点源反向交叉眼干扰分析[J]. 电子与信息学报, 2016, 38(6): 1424–1430. doi: 10.11999/JEIT150919

    LIU Songyang, DONG Chunxi, DONG Yangyang, et al. Analysis of rotating orthogonal multiple elements retrodirective cross-eye jamming[J]. Journal of Electronics & Information Technology, 2016, 38(6): 1424–1430. doi: 10.11999/JEIT150919
    [17] PLESSIS W P D, ODENDAAL J W, and JOUBERT J. Extended analysis of retrodirective cross-eye jamming[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(9): 2803–2806. doi: 10.1109/TAP.2009.2027353
    [18] DU PLESSIS W P. Platform skin return and retrodirective cross-eye jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 490–501. doi: 10.1109/TAES.2012.6129650
    [19] 曲志昱, 司锡才, 谢纪岭. 相干源诱偏下比相被动雷达导引头测角性能分析[J]. 系统工程与电子技术, 2008, 30(5): 824–827. doi: 10.3321/j.issn:1001-506X.2008.05.012

    QU Zhiyu, SI Xicai, and XIE Jiling. Analysis of phase-comparison passive-radar-seeker angle measurement with decoy of coherent source[J]. Systems Engineering and Electronics, 2008, 30(5): 824–827. doi: 10.3321/j.issn:1001-506X.2008.05.012
    [20] 高烽. 雷达导引头概论[M]. 北京: 电子工业出版社, 2010: 303–323.

    GAO Feng. Introduction to Radar Seeker[M]. Beijing: Publishing House of Electronics Industry, 2010: 303–323.
    [21] 王卫, 陆伟宁, 唐莽, 等. 主被动复合体制反舰导弹导引头干扰技术研究[J]. 航天电子对抗, 2020, 36(6): 18–22. doi: 10.16328/j.htdz8511.2020.06.004

    WANG Wei, LU Weining, TANG Mang, et al. Jamming technology for the active-passive anti-ship missile seeker[J]. Aerospace Electronic Warfare, 2020, 36(6): 18–22. doi: 10.16328/j.htdz8511.2020.06.004
    [22] 李相平, 李世忠, 张刚, 等. 反舰导弹毫米波主被动复合制导导引头设计探讨[J]. 现代电子技术, 2008, 31(3): 43–45. doi: 10.3969/j.issn.1004-373X.2008.03.014

    LI Xiangping, LI Shizhong, ZHANG Gang, et al. Passive compound guidance detection unit design study of certain mould air to ship missile seeker[J]. Modern Electronics Technique, 2008, 31(3): 43–45. doi: 10.3969/j.issn.1004-373X.2008.03.014
    [23] 陈涛, 郭立民, 潘大鹏, 等. 被动雷达宽带数字接收机技术[M]. 北京: 电子工业出版社, 2021: 117–128.

    CHEN Tao, GUO Limin, PAN Dapeng, et al. Passive Radar Broadband Digital Receiver Technology[M]. Beijing: Publishing House of Electronics Industry, 2021: 117–128.
  • 加载中
图(7)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  239
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-20
  • 修回日期:  2022-06-16
  • 网络出版日期:  2022-07-08
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回