基于散射信息和元学习的SAR图像飞机目标识别

吕艺璇 王智睿 王佩瑾 李盛阳 谭洪 陈凯强 赵良瑾 孙显

吕艺璇, 王智睿, 王佩瑾, 等. 基于散射信息和元学习的SAR图像飞机目标识别[J]. 雷达学报, 2022, 11(4): 652–665. doi: 10.12000/JR22044
引用本文: 吕艺璇, 王智睿, 王佩瑾, 等. 基于散射信息和元学习的SAR图像飞机目标识别[J]. 雷达学报, 2022, 11(4): 652–665. doi: 10.12000/JR22044
LYU Yixuan, WANG Zhirui, WANG Peijin, et al. Scattering information and meta-learning based SAR images interpretation for aircraft target recognition[J]. Journal of Radars, 2022, 11(4): 652–665. doi: 10.12000/JR22044
Citation: LYU Yixuan, WANG Zhirui, WANG Peijin, et al. Scattering information and meta-learning based SAR images interpretation for aircraft target recognition[J]. Journal of Radars, 2022, 11(4): 652–665. doi: 10.12000/JR22044

基于散射信息和元学习的SAR图像飞机目标识别

doi: 10.12000/JR22044
基金项目: 国家自然科学基金(61725105, 62076241)
详细信息
    作者简介:

    吕艺璇(1997–),女,中国科学院大学信息与通信工程专业硕士研究生,2019年获得西安电子科技大学学士学位,主要研究方向为计算机视觉与SAR图像智能解译,小样本SAR图像识别等

    王智睿(1990–),男,2018年获得清华大学博士学位,现为中国科学院空天信息创新研究院助理研究员,主要研究方向为SAR图像智能解译

    王佩瑾(1996–),女,中国科学院空天信息创新研究院研究实习员,主要研究方向为遥感图像智能解译技术

    孙 显(1981–),男,中国科学院空天信息创新研究院研究员,博士生导师,IEEE高级会员,《雷达学报》青年编委,主要研究方向为计算机视觉与遥感图像理解

    通讯作者:

    孙显 sunxian@mail.ie.ac.cn

  • 责任主编:徐丰 Corresponding Editor: XU Feng
  • 中图分类号: TP753

Scattering Information and Meta-learning Based SAR Images Interpretation for Aircraft Target Recognition

Funds: The National Natural Science Foundation of China (61725105, 62076241)
More Information
  • 摘要: SAR图像由于数据获取难度大,样本标注难,目标覆盖率不足,导致包含地理空间目标的影像数量稀少。为了解决这些问题,该文开展了基于散射信息和元学习的SAR图像飞机目标识别方法研究。针对SAR图像中不同型号飞机空间结构离散分布差异较大的情况,设计散射关联分类器,对飞机目标的离散程度量化建模,通过不同目标离散分布的差异来动态调整样本对的权重,指导网络学习更具有区分性的类间特征表示。考虑到SAR目标成像易受背景噪声的影响,设计了自适应特征细化模块,促使网络更加关注飞机的关键部件区域,减少背景噪声干扰。该文方法有效地将目标散射分布特性与网络的自动学习过程相结合。实验结果表明,在5-way 1-shot的极少样本新类别识别任务上,该方法识别精度为59.90%,相比于基础方法提升了3.85%。减少一半训练数据量后,该方法在新类别的极少样本识别任务上仍然表现优异。

     

  • 图  1  5-way 1-shot设置

    Figure  1.  The 5-way 1-shot setup

    图  2  不同机型的散射点提取结果

    Figure  2.  Scattering point extraction results of different models

    图  3  不同机型不同聚类点数下的散射点提取结果

    Figure  3.  Scattering point extraction results for different models and different clustering points

    图  4  不同朝向的同型号飞机对应的离散因子

    Figure  4.  Discrete factors corresponding to the same type of aircraft with different orientations

    图  5  本文方法的整体结构

    Figure  5.  The overall structure of the method in this paper

    图  6  散射关联分类器的网络结构

    Figure  6.  Network structure of scattering association classifier

    图  7  注意力嵌入模块网络结构

    Figure  7.  The attention embedding module network structure

    图  8  SAR-ACD中的民用飞机及其对应的光学图像

    Figure  8.  Civil aircraft in SAR-ACD and their corresponding optical images

    图  9  各型号民用飞机的原始数量

    Figure  9.  The original quantity of each type of civil aircraft

    图  10  不同方法对应的卷积层输出特征图可视化

    Figure  10.  Visualization of corresponding layer feature map of different methods

    图  11  不同训练数据占比时的测试准确率

    Figure  11.  Test accuracy with different proportions of training data

    图  12  预训练阶段基本原理和流程展示

    Figure  12.  The basic principle and process display of the pre-training stage

    图  13  5-way 1-shot条件下在元测试数据集上不同模块的混淆矩阵

    Figure  13.  Confusion matrix on meta-test dataset on the 5-way 1-shot condition

    图  14  5-way 1-shot条件下不同方法模块的训练损失变化曲线

    Figure  14.  The loss curve with different modules during training on the 5-way 1-shot condition

    图  15  大场景复杂机场下的识别性能测试

    Figure  15.  Recognition performance test under large scene and complex airport

    表  1  实验中训练和测试期间数据设置

    Table  1.   Data setup during training and testing

    设置5-way 5-shot5-way 1-shot
    支持集查询集支持集查询集
    元训练515115
    元测试515115
    下载: 导出CSV

    表  2  自适应特征细化模块和散射关联分类器的消融实验

    Table  2.   Ablation study on adaptive feature refinement module and scattering association module

    散射关联分类器自适应特征细化模块5-way 1-shot (%)5-way 5-shot (%)
    ××56.05 ± 0.866.71 ± 0.7
    ×57.57 ± 0.967.80 ± 0.7
    ×58.31 ± 0.968.20 ± 0.7
    58.43 ± 0.868.52 ± 0.7
    下载: 导出CSV

    表  3  结合预训练过程的消融实验

    Table  3.   Ablation study combined with the pre-training process

    散射关联分类器自适应特征细化模块5-way 1-shot (%)5-way 5-shot (%)
    ××57.33 ± 0.967.60 ± 0.7
    ×58.86 ± 0.868.72 ± 0.7
    ×59.60 ± 0.968.85 ± 0.7
    59.90 ± 0.970.13 ± 0.7
    下载: 导出CSV

    表  4  本文方法和其他方法的识别精度对比

    Table  4.   Comparison of recognition accuracy between our method and other methods

    模型5-way 1-shot
    准确率(%)
    5-way 5-shot
    准确率(%)
    KNN22.5036.30
    MAML[32]52.2067.50
    MatchingNet[33]54.5458.90
    PrototypicalNet[34]53.1868.66
    MSAR[26]56.5765.15
    ResNet50[31]+微调29.6542.30
    本文散射辅助方法59.9070.13
    下载: 导出CSV
  • [1] DONG Ganggang and KUANG Gangyao. Classification on the monogenic scale space: Application to target recognition in SAR image[J]. IEEE Transactions on Image Processing, 2015, 24(8): 2527–2539. doi: 10.1109/TIP.2015.2421440
    [2] NOVAK L M, OWIRKA G L, and BROWER W S. Performance of 10-and 20-target MSE classifiers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1279–1289. doi: 10.1109/7.892675
    [3] WAGNER S A. SAR ATR by a combination of convolutional neural network and support vector machines[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2861–2872. doi: 10.1109/TAES.2016.160061
    [4] 康健, 王智睿, 祝若鑫, 等. 基于监督对比学习正则化的高分辨率SAR图像建筑物提取方法[J]. 雷达学报, 2022, 11(1): 157–167. doi: 10.12000/JR21124

    KANG Jian, WANG Zhirui, ZHU Ruoxin, et al. Supervised contrastive learning regularized high-resolution synthetic aperture radar building footprint generation[J]. Journal of Radars, 2022, 11(1): 157–167. doi: 10.12000/JR21124
    [5] HE Chu, TU Mingxia, XIONG Dehui, et al. Adaptive component selection-based discriminative model for object detection in high-resolution SAR imagery[J]. ISPRS International Journal of Geo-Information, 2018, 7(2): 72. doi: 10.3390/ijgi7020072
    [6] KANG Yuzhuo, WANG Zhirui, FU Jiamei, et al. SFR-Net: Scattering feature relation network for aircraft detection in complex SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5218317. doi: 10.1109/TGRS.2021.3130899
    [7] 赵鹏菲, 黄丽佳. 一种基于EfficientNet与BiGRU的多角度SAR图像目标识别方法[J]. 雷达学报, 2021, 10(6): 895–904. doi: 10.12000/JR20133

    ZHAO Pengfei and HUANG Lijia. Target recognition method for multi-aspect synthetic aperture radar images based on EfficientNet and BiGRU[J]. Journal of Radars, 2021, 10(6): 895–904. doi: 10.12000/JR20133
    [8] ZHANG Jinsong, XING Mengdao, and XIE Yiyuan. FEC: A feature fusion framework for SAR target recognition based on electromagnetic scattering features and deep CNN features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2174–2187. doi: 10.1109/TGRS.2020.3003264
    [9] HUANG Zhongling, DATCU M, PAN Zongxu, et al. Deep SAR-Net: Learning objects from signals[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161: 179–193. doi: 10.1016/j.isprsjprs.2020.01.016
    [10] YANG Yue, ZHANG Zhuo, MAO Wei, et al. Radar target recognition based on few-shot learning[J]. Multimedia Systems, 2021: 3. doi: 10.1007/s00530-021-00832-3
    [11] CAO Changjie, CUI Zongyong, CAO Zongjie, et al. An integrated counterfactual sample generation and filtering approach for SAR automatic target recognition with a small sample set[J]. Remote Sensing, 2021, 13(19): 3864. doi: 10.3390/rs13193864
    [12] GUO Jiayi, LEI Bin, DING Chibiao, et al. Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1111–1115. doi: 10.1109/LGRS.2017.2699196
    [13] RADFORD A, METZ L, and CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. arXiv preprint arXiv: 1511. 06434v1, 2015.
    [14] CUI Zongyong, ZHANG Mingrui, CAO Zongjie, et al. Image data augmentation for SAR sensor via generative adversarial nets[J]. IEEE Access, 2019, 7: 42255–42268. doi: 10.1109/ACCESS.2019.2907728
    [15] KUSK A, ABULAITIJIANG A, and DALL J. Synthetic SAR image generation using sensor, Terrain and target models[C]. EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 2016: 1–5.
    [16] LIN Zhao, JI Kefeng, KANG Miao, et al. Deep convolutional highway unit network for SAR target classification with limited labeled training data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1091–1095. doi: 10.1109/LGRS.2017.2698213
    [17] 喻玲娟, 王亚东, 谢晓春, 等. 基于FCNN和ICAE的SAR图像目标识别方法[J]. 雷达学报, 2018, 7(5): 622–631. doi: 10.12000/JR18066

    YU Lingjuan, WANG Yadong, XIE Xiaochun, et al. SAR ATR based on FCNN and ICAE[J]. Journal of Radars, 2018, 7(5): 622–631. doi: 10.12000/JR18066
    [18] PAN Zongxu, BAO Xianjie, ZHANG Yueting, et al. Siamese network based metric learning for SAR target classification[C]. IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1342–1345.
    [19] MA Yu, LIANG Yan, ZHANG Wanying, et al. SAR target recognition based on transfer learning and data augmentation with LSGANs[C]. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019: 2334–2337.
    [20] WANG Ke, ZHANG Gong, and LEUNG H. SAR target recognition based on cross-domain and cross-task transfer learning[J]. IEEE Access, 2019, 7: 153391–153399. doi: 10.1109/ACCESS.2019.2948618
    [21] ZHANG Wei, ZHU Yongfeng, and FU Qiang. Semi-supervised deep transfer learning-based on adversarial feature learning for label limited SAR target recognition[J]. IEEE Access, 2019, 7: 152412–152420. doi: 10.1109/ACCESS.2019.2948404
    [22] KANG Chenyao and HE Chu. SAR image classification based on the multi-layer network and transfer learning of mid-level representations[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 1146–1149.
    [23] HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/TGRS.2019.2947634
    [24] DU Lan, CAO Lanying, and LIU Hongwei. Few-shot learning neural network for SAR target recognition[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–4.
    [25] WANG Ke, ZHANG Gong, XU Yanbing, et al. SAR target recognition based on probabilistic meta-learning[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(4): 682–686. doi: 10.1109/LGRS.2020.2983988
    [26] FU Kun, ZHANG Tengfei, ZHANG Yue, et al. Few-shot SAR target classification via metalearning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2000314. doi: 10.1109/TGRS.2021.3058249
    [27] DIEMUNSCH J R and WISSINGER J. Moving and stationary target acquisition and recognition (MSTAR) model-based automatic target recognition: Search technology for a robust ATR[C]. The SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V, Orlando, FL, USA, 1998: 481–492.
    [28] FU Kun, FU Jiamei, WANG Zhirui, et al. Scattering-Keypoint-Guided network for oriented ship detection in high-resolution and large-scale SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 11162–11178. doi: 10.1109/JSTARS.2021.3109469
    [29] GUO Qian, WANG Haipeng, and XU Feng. Scattering enhanced attention pyramid network for aircraft detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7570–7587. doi: 10.1109/TGRS.2020.3027762
    [30] HOU Xiyue, AO Wei, SONG Qian, et al. FUSAR-Ship: building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition[J]. Science China Information Sciences, 2020, 63(4): 140303. doi: 10.1007/s11432-019-2772-5
    [31] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [32] FINN C, ABBEEL P, and LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]. 34th International Conference on Machine Learning, Sydney, Australia, 2017: 1126–1135.
    [33] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[C]. The 30th International Conference on Neural Information Processiing Systems, Red Hook, USA, 2016: 3637–3645.
    [34] SNELL J, SWERSKY K, and ZEMEL R S. Prototypical networks for few-shot learning[C]. 31st International Conference on Neural Information Processing Systems, Red Hook, USA, 2017: 4080–4090.
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  1966
  • HTML全文浏览量:  1694
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 修回日期:  2022-04-12
  • 网络出版日期:  2022-04-29
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回