Loading [MathJax]/jax/output/SVG/jax.js

微波视觉三维SAR关键技术及实验系统初步进展

仇晓兰 焦泽坤 杨振礼 程遥 蔺蓓 罗一通 王卫 董勇伟 周良将 丁赤飚

张凌志, 刘飞峰, 胡程. 基于导航卫星的干涉SAR数据采集策略优选方法分析[J]. 雷达学报, 2019, 8(5): 624–630. doi: 10.12000/JR19065
引用本文: 仇晓兰, 焦泽坤, 杨振礼, 等. 微波视觉三维SAR关键技术及实验系统初步进展[J]. 雷达学报, 2022, 11(1): 1–19. doi: 10.12000/JR22027
ZHANG Lingzhi, LIU Feifeng, and HU Cheng. Optimization method and analysis of data acquisition strategy based on interference SAR with GNSS transmitters[J]. Journal of Radars, 2019, 8(5): 624–630. doi: 10.12000/JR19065
Citation: QIU Xiaolan, JIAO Zekun, YANG Zhenli, et al. Key technology and preliminary progress of microwave vision 3D SAR experimental system[J]. Journal of Radars, 2022, 11(1): 1–19. doi: 10.12000/JR22027

微波视觉三维SAR关键技术及实验系统初步进展

DOI: 10.12000/JR22027 CSTR: 32380.14.JR22027
基金项目: 国家自然科学基金(61991420, 61991421, 61991424)
详细信息
    作者简介:

    仇晓兰(1982–),女,中国科学院空天信息创新研究院研究员,博士生导师。主要研究方向为SAR成像处理、SAR图像理解。担任IEEE高级会员、IEEE地球科学与遥感快报副主编、雷达学报青年编委

    焦泽坤(1991–),男,博士,中国科学院空天信息创新研究院助理研究员。研究方向为SAR三维成像技术

    丁赤飚(1969–),男,研究员,博士生导师,中国科学院院士。主要研究方向为合成孔径雷达、遥感信息处理和应用系统等,先后主持多项国家863重点项目和国家级遥感卫星地面系统工程建设等项目,曾获国家科技进步一等奖、二等奖,国家技术发明二等奖等

    通讯作者:

    仇晓兰 xlqiu@mail.ie.ac.cn

    丁赤飚 cbding@mail.ie.ac.cn

  • 责任主编:张群 Corresponding Editor: ZHANG Qun
  • 中图分类号: TN957.52

Key Technology and Preliminary Progress of Microwave Vision 3D SAR Experimental System

Funds: The National Natural Science Foundation of China (61991420, 61991421, 61991424)
More Information
  • 摘要: 合成孔径雷达(SAR)三维成像在复杂地形测绘、复杂环境下目标发现与识别等方面具有重要应用潜力,是当前SAR领域的重要发展方向之一。为推动SAR三维成像技术的发展和应用,中国科学院空天信息创新研究院牵头设计并研制了一套无人机载微波视觉三维SAR实验系统(MV3DSAR),为相关技术研究和验证提供实验平台。目前该系统的单极化版本已研制完成,并在天津开展了首次校飞实验。该文介绍了该系统的基本构成、主要性能以及系统和数据处理的关键技术,给出了首次校飞实验的实施情况以及初步的数据处理结果,验证了系统的基本性能指标和三维成像能力。该系统为后续SAR三维成像数据集构建和处理方法研究提供了良好的实验验证平台。

     

  • 基于导航卫星的双基地SAR(Bistatic Synthetic Aperture Radar based on Global Navigation Satellite System, GNSS-BSAR)是空-地双基地SAR中一种典型的应用[1],使用在轨的导航卫星作为发射源,地面部署接收机(地基、车载、机载)构成双基地SAR系统[2]。由于导航星座的日趋完善,其全球覆盖性以及重轨特性所带来的优势是其他照射源暂时所不能替代的,其中以地基接收机为主的导航卫星干涉合成孔径雷达(Interference Synthetic Aperture Radar based on the Global Navigation Satellite System, GNSS-InSAR)在场景形变监测领域有着广阔的应用前景[3],成为了近年来研究热点。

    在GNSS-BSAR系统成像方面,已有研究者分别使用不同的导航卫星星座进行了成像验证,包括了北斗[4,5]、GPS[6]、格洛纳斯[7]、伽利略[8]。除此以外文献[9]还提出了多角度融合方法以增强图像信噪比。在形变监测方面,来自伯明翰大学的学者们[10]使用直达波天线,配合长约50 m的线缆构建了理想点目标,并使用格洛纳斯作为发射源,首次实现了精度约为1 cm的1维形变反演结果。该实验初步验证了GNSS-InSAR应用于形变监测的可行性。为了进一步验证场景形变监测的可能,2017年文献[11]通过对接收机进行高精度移位来模拟场景建筑形变,成功反演出了形变,精度约为1 cm。在3维形变方面,2018年北京理工大学的技术团队[12]通过人为构建转发器,进行了精度可控的强点目标形变模拟,使用我国的北斗IGSO卫星,成功实现了精度优于5 mm的3维形变反演,这些验证性实验充分表明了GNSS-InSAR应用于场景形变检测的可能。

    若要实现GNSS-InSAR场景的3维形变反演,需要同时至少3颗卫星从不同角度照射场景。由于GNSS-InSAR系统的拓扑高度非对称性以及导航信号的窄带特性[13],加上导航卫星的重轨并非是严格意义上的重轨,除了不可避免的空间基线外,重轨时间也并非严格一致,因此在实际数据采集中,需要对系统构型以及数据采集时间进行严格的优化设计。文献[14]提出了一种联合优化方法,解决了面向大场景下的多星多角度构型优化问题,配合多个接收机实现综合分辨性能优异的大场景成像。文献[15]提出了空间去相干的理论描述框架,表明了空间去相干在GNSS-InSAR中的必要性,但未对数据采集时间进行说明。从当前实际情况出发,不精确的数据采集时间可能会造成存储资源浪费,空间去相干导致的数据截取进一步降低了数据有效性。具体如图1所示:

    图  1  数据截取与有效数据示意图
    Figure  1.  Effective data interception diagram

    针对上述问题,本文提出了一种GNSS-InSAR场景连续数据采集优化方法,通过结合当前数据的卫星轨迹和两行星历数据文件(STK Two-Line Element sets, TLE)预测轨迹,基于相干系数轨迹对齐,获取卫星重轨时间间隔,得到最优的数据采集策略,从源头上降低数据的空间去相干性,提升所采集数据有效性,节约存储资源。在第2部分对GNSS-InSAR场景数据采集优化方法进行了详细介绍。第3部分针对提出的方法进行了实验设计,开展了实测数据采集,并针对采集的数据进行了初步分析。第4部分对全文进行总结。

    对于GNSS-InSAR图像而言,经过保相成像处理后,场景中任意一点(x0,y0)的像素信息分别对应分辨单元内所有散射体回波的相参叠加,可建模为

    s(x0,y0)=f(x,y;t)exp[j2πλr(x,y;P)]W(xx0,yy0;P)dxdy+n(x0,y0;t) (1)

    其中,f(x,y;t)为时间t下的地表散射系数,P为对应的合成孔径中心位置矢量,W(x,y;P)表示系统的点扩散函数(PSF), n(x,y;t)为图像的加性噪声。对于SAR图像的同名点像素,其相干系数可表示为[16]

    ρ=sm(x0,y0)ss(x0,y0)dxdysm(x0,y0)sm(x0,y0)dxdyss(x0,y0)ss(x0,y0)dxdy (2)

    其中,下标m表示主图像,s表示辅图像。根据柯西不等式可以判断:0ρ1,当ρ=0时表示同名点完全不相干,当ρ=1时,同名点完全相干。

    将点目标像素模型式(1)带入到式(2)并化简得到

    ρ=sav(x,y)exp[j2πλ(r(x,y;Pm)r(x,y;Ps))]|W(xx0,yy0;Pm)|2dxdy(sm(x,y)exp[j2πλr(x,y;Pm)]|W(xx0,yy0;Pm)|2dxdy+nm)×(ss(x,y)exp[+j2πλr(x,y;Ps)]|W(xx0,yy0;Pm)|2dxdy+ns) (3)

    式(3)的推导使用了如下近似:

    (1) 由于导航卫星的高轨道特性,使得W(xx0,yy0;Pm)W(xx0,yy0;Ps)成立;

    (2) 相邻两天的噪声相干系数为0,即

    n(x0,y0;tm)×n(x0,y0;ts)=0 (4)

    (3) 相邻两天的目标散射系数为sav(x,y),即

    sav(x,y)f(x,y;tm)f(x,y;ts) (5)

    对式(3)中的相干系数ρ进一步分解得到

    ρ=ρth×ρti×ρsp (6)

    其中,热噪声相干系数ρth与时间相干系数ρti分别由系统与实际目标决定。

    对于PS点[17]而言,地表散射系数相对稳定,不随时间变化,同时为了便于后续分析,假定散射系数为1得到空间相干系数ρsp的简化式为

    ρsp=exp[j2πλ(r(x,y;Pm)r(x,y;Ps))]|W(xx0,yy0;Pm)|2dxdy(|W(xx0,yy0;Pm)|2dxdy)(|W(xx0,yy0;Pm)|2dxdy) (7)

    从式(7)推导结果可以知道,空间基线主要是影响r(x,y;P)从而导致空间去相干。

    导航卫星的重轨时间并非稳定不变,因此需要对数据采集时间进行有效预测,从源头上降低空间去相干,提高数据有效性。

    假定主图像数据采集时间为tm,该采集时间可以通过文献[14]中的广义优化模型进行求解,辅图像数据采集时间为ts=tm+Δt, Δt为时间间隔,那么最优化数据采集模型可通过式(7)推导而来

    Δt=argmax{|˜W(x,y;Pm)|2exp[j2πλ(r(x,y;Pm)r(x,y;P(tm+Δt)))]dxdy} (8)

    其中,˜W(x,y;Pm)tm下等效归一化PSF, P(tm+Δt)Δt时间偏置下得合成孔径中心位置矢量。

    第1天数据采集需要进行实验设计以确定最优数据采集时刻,往后的重轨天数据采集可以根据数据采集优化模型,同时结合星历文件进行预测。整体的预测流程如图2所示,n为任意一天采集的数据,k为重轨天数间隔。

    图  2  GNSS-InSAR数据采集时间优化流程
    Figure  2.  Time optimization process of GNSS-InSAR data acquisition

    实际卫星位置对应的实际时间设为tn,经过模型优化得到的时间偏差为Δt,那么第n+k天对应的实际数据采集时间可表示为

    tn+k=tn+Δt (9)

    对于固定场景的形变监测,首次数据采集的时候需要严格设计系统构型,使分辨率达到最优化。本次实验接收机部署在北京理工大学信息科学试验楼楼顶西北角,实施监测场景位于西偏北30°。使用理论分辨率计算公式[18]对该场景进行分辨率设计。仿真参数具体参见表1

    表  1  数据采集试验仿真参数
    Table  1.  Data acquisition test simulation parameters
    参数
    照射源北斗 IGSO1~5
    PRF1000 Hz
    带宽10.23 MHz
    合成孔径时间600 s
    TLE文件更新日期2019年4月29日
    预定数据采集日期2019年4月30日
    下载: 导出CSV 
    | 显示表格

    以分辨单元面积作为判定依据,得到预定采集日期当天全时段下各个卫星在预定场景下所能得到的分辨单元面积如图3所示。

    图  3  全时段下场景分辨单元面积
    Figure  3.  Scene resolution unit area in full time

    为了实现3维形变反演,需要同一时间下有3颗卫星对场景进行照射。图3中10点前后与17点前后满足当前场景上空有3颗IGSO卫星可见的条件。更进一步,为了使分辨单元面积达到最优,可以得到具体的数据采集时间。具体如图4红框标注,分别是9点30分前后与17点30分前后。

    图  4  首次数据采集时间设计结果
    Figure  4.  Design results of first data acquisition time

    为了配合实验,在场景布置转发器,整体的系统构型如图5所示。

    图  5  GNSS-InSAR场景3维形变反演实验拓扑构型设计结果
    Figure  5.  GNSS-InSAR topological configuration design results of 3D deformation retrieval experiment

    以2019年4月30日采集的实测数据作为第n天数据,对于北斗的IGSO而言,重轨时间约为1天,即m=1,同时下载当天最新的TLE文件。以IGSO1为例,结合图2进行详细说明:

    (1) 使用实测数据的直达波进行卫星位置解算,同时根据TLE文件推算当天和相邻天的卫星轨迹。经过相干系数轨迹匹配之后,得到的轨迹如图6所示。

    图  6  对齐后的TLE卫星轨迹与实测数据卫星轨迹
    Figure  6.  Aligned TLE satellite trajectory and measured data satellite trajectory

    (2) 以匹配得到的TLE卫星轨迹作为参考,对重轨天的TLE卫星轨迹进行数据采集优化模型求解,系统的PSF与优化模型仿真结果分别如图7图8所示。

    图  7  场景[–147, 20, 0]处理论PSF
    Figure  7.  Theoretical PSF in scene at position of [–147, 20, 0]
    图  8  数据采集优化模型仿真结果
    Figure  8.  Simulation results of data acquisition optimization model

    图8的结果分析可知,第1个峰值点为其本身,由于空间基线为0,相干系数为1。第2个峰值点相干系数为0.999644,满足除了第1个峰值点外相邻天相干系数最大值条件,因此第2个峰值点就是最佳重轨时的空间相干系数。此时经过模型优化得到的时间间隔为:Δt=86163s=23h56min3s,结合第1天的实测数据轨迹对应的时间t1=9h26min0s,第2天准确的数据采集时间为:t2=9h22min3s

    为了说明优化结果的正确性,在实验场景中放置转发器模拟理想点目标(图5),同时按照优化后的时间进行5月1日数据采集。实际采集时间为9h21min53s,总采集时间约650 s。相邻两天的空间相干系数轨迹匹配结果如图9所示。

    图  9  实测数据重轨空间相干系数
    Figure  9.  The spatial coherence coefficient of measured data

    图9中峰值点位置来看,重轨数据采集优化模型得到的结果和实际结果相吻合。为了进一步说明,图10给出了IGSO1卫星实测数据成像结果。

    图  10  场景成像结果
    Figure  10.  Imaging results of scene

    对相邻两天的图像相干系数进行求解,得到图11所示结果。在同一坐标系下,仿真目标位于[–147, 20, 0],空间相干系数为0.999644;转发器位于[–147, 20, 0],相干系数为0.9996;两者的相干系数基本保持一致。

    图  11  相干系数结果
    Figure  11.  Coherence coefficient result

    图9图10的结果表明经过数据采集优化模型后得到的时间间隔与实际卫星轨迹的重轨时间相互吻合,在保证600 s预期合成孔径时间下,可以最大限度减少数据采集时间,节约存储资源。同时避免后期由于数据对齐带来的数据有效性降低问题。

    在GNSS-InSAR场景1维/3维形变反演应用中,针对由于导航卫星重轨时间的非严格一致性与有效数据截取带来的数据冗余,数据有效性低等问题,本文提出了一种面向GNSS-InSAR场景数据采集的优化模型,采用实测数据与TLE文件相结合,根据当天数据采集时间,预测相邻天重轨时间,从而实现精确的数据采集。实测数据验证结果表明了数据采集时间优化模型的正确性。该方法的提出有利于GNSS-InSAR场景1维/3维形变反演实验的开展,在降低原始数据冗余度基础上,保证了有效数据时间长度大于预期合成孔径时间。

  • 图  1  MV3DSAR载荷示意图及实物图

    Figure  1.  Schematic illustration and a photo of MV3DSAR payload

    图  2  MV3DSAR系统照片

    Figure  2.  MV3DSAR system photo

    图  3  通道间相位差异实验室测量结果

    Figure  3.  Laboratory measurements of phase difference between channels

    图  4  天津临港商务大厦光学影像及照片

    Figure  4.  Optical image of Tianjin Lingang Business Building

    图  5  MV3DSAR校飞实验基线设计

    Figure  5.  Baseline design of MV3DSAR flight experiment

    图  6  观测矩阵互相关特性及空间模糊函数曲线

    Figure  6.  Cross-correlation properties of observation matrix and spatial ambiguity function curve

    图  7  最大不模糊高度及瑞利分辨率

    Figure  7.  Maximum unblurred height and Rayleigh resolution

    图  8  MV3DSAR飞行航迹设计

    Figure  8.  MV3DSAR flight path design

    图  9  定标器布设示意图及现场照片

    Figure  9.  Schematic illustration and photos of the calibrators

    图  10  激光点云结果

    Figure  10.  Results of Lidar point cloud

    图  11  光学倾斜摄影结果

    Figure  11.  Optical oblique photography results

    图  12  MV3DSAR数据处理总体流程

    Figure  12.  The overall flow of MV3DSAR data processing

    图  13  航迹与参考匀速直线航迹的偏离程度

    Figure  13.  Difference between actual flight path and reference track

    图  14  姿态测量数据随时间的变化曲线

    Figure  14.  Variation curve of attitude measurement data with time

    图  15  天线相位中心相对位置关系测量示意图

    Figure  15.  Schematic diagram of the relative position of the antenna phase center

    图  16  龙伯球和三面角反射器点目标曲线

    Figure  16.  Luneburg-Lens reflector and trihedral corner reflector point target curve

    图  17  8个方向临港商务大厦区域成像结果

    Figure  17.  Imaging results of Lingang Business Building in eight directions

    图  18  斜距误差随距离向的变化曲线

    Figure  18.  Variation curve of slope distance error with distance direction

    图  19  接收通道间相位误差与距离向的关系

    Figure  19.  The relationship between the phase error of the receiving channels and the slant range

    图  20  发射通道间相位误差与距离向的关系

    Figure  20.  The relationship between phase error of the transmit channels and the slant range

    图  21  发射通道间相位误差与拟合直线的偏差

    Figure  21.  Deviation of phase error between transmit channels and the fitted straight line

    图  22  相干系数统计曲线

    Figure  22.  The statistical curve of coherence coefficient

    图  23  相干系数图

    Figure  23.  Coherence coefficient map

    图  24  去平地后的干涉相位图

    Figure  24.  Interferometric phase diagram after removing flat-ground phase

    图  25  SAR图像建筑几何结构分割结果

    Figure  25.  Segmentation results of building geometry in SAR image

    图  26  重建三维点云解模糊前后结果对比图

    Figure  26.  Comparison of results before and after 3D point cloud deblurring

    图  27  临港商务大厦三维重建结果

    Figure  27.  3D reconstruction results of Lingang Business Building

    图  28  临港商务大厦SAR三维成像点云与激光点云

    Figure  28.  SAR 3D reconstruction results and Lidar point cloud of Lingang Business Building

    表  1  MV3DSAR系统总体构成

    Table  1.   The overall composition of the MV3DSAR system

    序号名称说明
    1微小型
    Ku-SAR
    Ku-波段SAR系统由雷达主机、天线及天线支架、开关组合、数据存储模块等组成
    2无人机平台采用KWT-X6L-15六旋翼无人机,最大作业载荷15 kg、最大翼展尺寸2.53 m,最大飞行速度15 m/s
    3导航系统由GPS模块和微型惯性测量单元(MIMU)模块组成;航迹测量精度0.05 m,姿态测量精度0.02°
    下载: 导出CSV

    表  2  Ku-SAR载荷参数

    Table  2.   Parameters of Ku-SAR payload

    序号参数名称参数值
    1中心频率15.2 GHz
    2信号形式调频连续波(FMCW)
    3极化方式HH(后续将扩展全极化)
    4信号带宽1200 MHz
    5天线尺寸(单通道)0.05 m(俯仰)×0.32 m(方位)
    6每个极化的阵列通道数4
    7分辨率优于0.2 m×0.2 m
    8通道相位不平衡稳定度±5° (10 min内)
    9通道幅度不平衡稳定度±0.2 dB (10 min内)
    10中心视角45°
    11NESZ不大于–30 dB
    (最远作用距离3.6 km)
    12天线最小间隔0.107 m
    13天线最大间隔1.284 m
    14Ku-SAR重量主机、存储、电池、天线、结构等一共7.07 kg
    下载: 导出CSV

    表  3  MV3DSAR校飞实验基线长度

    Table  3.   Baseline length of MV3DSAR flight experiment

    模式等效天线相位中心说明
    模式1[0, 0.107, 0.428, 0.535] m不均匀,最短基线小,
    总基线较短
    模式2[0, 0.214, 0.535, 0.749] m较均匀,最短基线较大,
    总基线较长
    下载: 导出CSV

    表  4  天线相位中心相对位置

    Table  4.   Relative position of antenna phase center

    模式1TR2R1T2T1
    X (mm)0–818.14–603.95–389.86465.86
    Y (mm)027.9524.2720.043.92
    Z (mm)0–109.18–109.53–110.0–110.40
    下载: 导出CSV

    表  5  定标器分辨率

    Table  5.   Resolution of the calibrators

    指标 龙伯球角反射器理论值
    方位向分辨率(m)0.14710.14780.1362
    峰值旁瓣比(dB)–14.19–14.04–13.26
    积分旁瓣比(dB)–12.45–12.16–10.02
    距离向斜距分辨率(m)0.12410.12310.1227
    地距分辨率(m)0.17560.17400.1735
    峰值旁瓣比(dB)–13.45–13.31–13.26
    积分旁瓣比(dB)–11.12–11.21–10.02
    下载: 导出CSV

    表  6  斜距误差标定结果

    Table  6.   Calibration result of slope distance error

    方法 ΔR0(m)ΔR1(m/距离门)
    有控1.7654270.000492772
    无控1.8682050.000475285
    下载: 导出CSV

    表  7  两种方法的三维位置偏差(厘米)

    Table  7.   3D position deviation of the two methods (cm)

    方法J1J2J3J4中误差
    有控1.78.03.23.54.7
    无控11.812.28.98.910.6
    下载: 导出CSV

    表  8  基线与基线角(T2R2为参考通道)

    Table  8.   Baseline and baseline angle (T2R2 channel for reference)

    参数T2R2T2R1T1R2T1R1
    基线长度(mm)107.10427.88534.97
    基线角(°)–3.9976–3.9238–3.9386
    下载: 导出CSV

    表  9  通道幅度误差标定结果(T2R2为参考通道)

    Table  9.   Calibration result of channel amplitude error (T2R2 channel for reference)

    参数T2R2T2R1T1R2T1R1
    幅度误差均值(dB)0.03980.12380.1712
    幅度误差峰峰值(dB)±0.049±0.081±0.132
    下载: 导出CSV

    表  10  通道相位误差标定结果

    Table  10.   Channel phase error calibration results

    常数项(°)线性项(°/距离门)
    接收通道间相位误差(R1-R2)44.68050
    发射通道间相位误差(T1-T2)–6.74960.0071068539
    下载: 导出CSV

    表  11  三维点云的精度及完整性

    Table  11.   Accuracy and completeness of 3D clouds

    重建精度(m)重建完整性(m)
    ID3重建结果2.30904.9050
    ID7重建结果1.99823.9695
    两角度融合结果1.93492.7328
    下载: 导出CSV
  • [1] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [2] 张福博. 阵列干涉SAR三维重建信号处理技术研究[D]. [博士论文], 中国科学院大学, 2015.

    ZHANG Fubo. Research on signal processing of 3-D reconstruction in linear array synthetic aperture radar interferometry[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2015.
    [3] KLARE J, WEISS M, PETERS O, et al. ARTINO: A new high resolution 3D imaging radar system on an autonomous airborne platform[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006.
    [4] WEISS M, PETERS O, and ENDER J. First flight trials with ARTINO[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008.
    [5] WEISS M and GILLES M. Initial ARTINO radar experiments[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
    [6] LI Hang, LIANG Xingdong, ZHANG Fubo, et al. A novel 3-D reconstruction approach based on group sparsity of array InSAR[J]. SCIENTIA SINICA Informationis, 2018, 48(8): 1051–1064. doi: 10.1360/N112017-00023
    [7] 仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112
    [8] ZHU Xiaoxiang and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. doi: 10.1109/TGRS.2011.2160183
    [9] 丁赤飚, 仇晓兰, 吴一戎. 全息合成孔径雷达的概念、体制和方法[J]. 雷达学报, 2020, 9(3): 399–408. doi: 10.12000/JR20063

    DING Chibiao, QIU Xiaolan, and WU Yirong. Concept, system, and method of holographic synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 399–408. doi: 10.12000/JR20063
    [10] NANNINI M, SCHEIBER R, and MOREIRA A. Estimation of the minimum number of tracks for SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(2): 531–543. doi: 10.1109/TGRS.2008.2007846
    [11] 任烨仙, 徐丰. 若干层析SAR成像方法在解叠掩性能上的对比分析[J]. 雷达学报, 2022, 11(1): 71–82. doi: 10.12000/JR21139

    REN Yexian and XU Feng. Comparative experiments on separation performance of overlapping scatterers with several tomography imaging methods[J]. Journal of Radars, 2022, 11(1): 71–82. doi: 10.12000/JR21139
    [12] 董勇伟, 梁兴东, 丁赤飚. 调频连续波SAR非线性处理方法研究[J]. 电子与信息学报, 2010, 32(5): 1034–1039. doi: 10.3724/SP.J.1146.2009.00582

    DONG Yongwei, LIANG Xingdong, and DING Chibiao. Non-linear signal processing for FMCW SAR[J]. Journal of Electronics &Information Technology, 2010, 32(5): 1034–1039. doi: 10.3724/SP.J.1146.2009.00582
    [13] FU Xikai, XIANG Maosheng, WANG Bingnan, et al. A robust yaw and pitch estimation method for mini-InSAR system[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(11): 2157–2161. doi: 10.1109/LGRS.2017.2756101
    [14] 董勇伟, 李焱磊, 梁兴东, 等. 基于局部线性误差模型的调频连续波SAR运动补偿方法[P]. 中国, 201711370093.7, 2017.

    DONG Yongwei, LI Yanlei, LIANG Xingdong, et al. Local linear error model-based frequency modulation continuous wave SAR motion compensation method[P]. CN, 201711370093.7, 2017.
    [15] 董勇伟. 基于调频连续波体制的SAR系统及其处理方法[P]. 中国, 201810978000.7, 2018.

    DONG Yongwei. SAR system based on frequency modulated continuous wave system as well as processing method thereof[P]. CN, 201810978000.7, 2018.
    [16] DENG Huazeng, FARQUHARSON G, BALABAN M, et al. System error analysis of an airborne along-track interferometric fmcw SAR for surface velocity estimate[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1677–1680.
    [17] 董勇伟, 李焱磊, 丁满来, 等. 一种高分辨率W波段SAR系统[J]. 电子与信息学报, 2018, 40(5): 1266–1270. doi: 10.11999/JEIT170461

    DONG Yongwei, LI Yanlei, DING Manlai, et al. High resolution W-band SAR[J]. Journal of Electronics &Information Technology, 2018, 40(5): 1266–1270. doi: 10.11999/JEIT170461
    [18] 刘季超. LTCC微波元件的结构模型研究与设计[J]. 电子测试, 2020(5): 19–21. doi: 10.3969/j.issn.1000-8519.2020.05.005

    LIU Jichao. Research and design of LTCC microwave element structure model[J]. Electronic Test, 2020(5): 19–21. doi: 10.3969/j.issn.1000-8519.2020.05.005
    [19] JIAO Zekun, DING Chibiao, QIU Xiaolan, et al. Urban 3D imaging using airborne TomoSAR: Contextual information-based approach in the statistical way[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 170: 127–141. doi: 10.1016/j.isprsjprs.2020.10.013
    [20] 李芳芳, 仇晓兰, 孟大地, 等. 机载双天线InSAR运动补偿误差的影响分析[J]. 电子与信息学报, 2013, 35(3): 559–567. doi: 10.3724/SP.J.1146.2012.00850

    LI Fangfang, QIU Xiaolan, MENG Dadi, et al. Effects of motion compensation errors on performance of airborne dual-antenna InSAR[J]. Journal of Electronics &Information Technology, 2013, 35(3): 559–567. doi: 10.3724/SP.J.1146.2012.00850
    [21] FU Xikai, XIANG Maosheng, JIANG Shuai, et al. Motion compensation scheme for LFM-CW miniature InSAR system mounted on small aircrafts[C]. The 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2018: 1–3.
    [22] 孟大地. 机载合成孔径雷达运动补偿算法研究[D]. [博士论文], 中国科学院电子学研究所, 2006.

    MENG Dadi. Research on motion compensation algorithm for airborne SAR[D]. [Ph. D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2006.
    [23] LUO Yitong, QIU Xiaolan, DONG Qian, et al. A robust stereo positioning solution for multiview spaceborne SAR images based on the range-Doppler model[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 4008705. doi: 10.1109/LGRS.2020.3048731
    [24] LV Zexin, LI Fangfang, QIU Xiaolan, et al. Effects of motion compensation residual error and polarization distortion on UAV-borne PolInSAR[J]. Remote Sensing, 2021, 13(4): 618. doi: 10.3390/rs13040618
    [25] 卜运成. 阵列干涉SAR定标技术研究[D]. [博士论文], 中国科学院大学, 2018: 71–95.

    BU Yuncheng. Research on calibration technology of array synthetic aperture radar interferometry[D]. [Ph. D. dissertation], University of Chinese Academy of Sciences, 2018: 71–95.
    [26] 卜运成, 王宇, 张福博, 等. 基于子空间正交的阵列干涉SAR系统相位中心位置定标方法[J]. 雷达学报, 2018, 7(3): 335–345. doi: 10.12000/JR18007

    BU Yuncheng, WANG Yu, ZHANG Fubo, et al. Antenna phase center calibration for array InSAR system based on orthogonal subspace[J]. Journal of Radars, 2018, 7(3): 335–345. doi: 10.12000/JR18007
    [27] 冯珂. InSAR复图像配准方法研究[D]. [硕士论文], 长沙理工大学, 2013.

    FENG Ke. InSAR image registration method[D]. [Master dissertation], Changsha University of Science & Technology, 2013.
    [28] FANG Dongsheng, LV Xiaolei, YUN Ye, et al. An InSAR fine registration algorithm using uniform tie points based on voronoi diagram[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1403–1407. doi: 10.1109/LGRS.2017.2715189
    [29] CHEN Jiankun, QIU Xiaolan, DING Chibiao, et al. CVCMFF Net: Complex-valued convolutional and multifeature fusion network for building semantic segmentation of InSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5205714. doi: 10.1109/TGRS.2021.3068124
    [30] 王伟, 许华荣, 魏含玉, 等. 面向阵列InSAR点云规则化的渐近式建筑立面检测[J]. 雷达学报, 2022, 11(1): 144–156. doi: 10.12000/JR21177

    WANG Wei, XU Huarong, WEI Hanyu, et al. Progressive building facade detection for regularizing array InSAR point clouds[J]. Journal of Radars, 2022, 11(1): 144–156. doi: 10.12000/JR21177
    [31] 胡占义. 合成孔径雷达三维成像中的视觉语义浅析[J]. 雷达学报, 2021, 11(1): 20–26. doi: 10.12000/JR21149

    HU Zhanyi. A note on visual semantics in SAR 3D imaging[J]. Journal of Radars, 2021, 11(1): 20–26. doi: 10.12000/JR21149
    [32] LI Xiaowan, ZHANG Fubo, LI Yanlei, et al. An elevation ambiguity resolution method based on segmentation and reorganization of TomoSAR point cloud in 3D mountain reconstruction[J]. Remote Sensing, 2021, 13(24): 5118. doi: 10.3390/rs13245118
    [33] ZHANG Fubo, LIANG Xingdong, CHENG Ruichang, et al. Building corner reflection in MIMO SAR tomography and compressive sensing-based corner reflection suppression[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(3): 446–450. doi: 10.1109/LGRS.2019.2926301
  • 加载中
图(28) / 表(11)
计量
  • 文章访问数: 3495
  • HTML全文浏览量: 2728
  • PDF下载量: 654
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-29
  • 修回日期:  2022-02-17
  • 网络出版日期:  2022-02-24
  • 刊出日期:  2022-02-28

目录

/

返回文章
返回