基于透射型超表面的模态可重构太赫兹涡旋波束生成

周晶仪 郑史烈 余显斌 回晓楠 章献民

周晶仪, 郑史烈, 余显斌, 等. 基于透射型超表面的模态可重构太赫兹涡旋波束生成[J]. 雷达学报, 2022, 11(4): 728–735. doi: 10.12000/JR22021
引用本文: 周晶仪, 郑史烈, 余显斌, 等. 基于透射型超表面的模态可重构太赫兹涡旋波束生成[J]. 雷达学报, 2022, 11(4): 728–735. doi: 10.12000/JR22021
ZHOU Jingyi, ZHENG Shilie, YU Xianbin, et al. Reconfigurable mode vortex beam generation based on transmissive metasurfaces in the terahertz band[J]. Journal of Radars, 2022, 11(4): 728–735. doi: 10.12000/JR22021
Citation: ZHOU Jingyi, ZHENG Shilie, YU Xianbin, et al. Reconfigurable mode vortex beam generation based on transmissive metasurfaces in the terahertz band[J]. Journal of Radars, 2022, 11(4): 728–735. doi: 10.12000/JR22021

基于透射型超表面的模态可重构太赫兹涡旋波束生成

doi: 10.12000/JR22021
基金项目: 之江实验室重大项目(2020LC0AD01)
详细信息
    作者简介:

    周晶仪(1996-),女,浙江杭州人,浙江大学信息与电子工程学院硕士研究生。主要研究方向为太赫兹涡旋波束的产生及应用

    郑史烈(1975-),女,浙江宁波人,浙江大学信息与电子工程学院教授。主要研究方向为电磁波轨道角动量新理论与新技术、携带轨道角动量电磁波的产生与应用、新型可重构天线理论与设计等

    余显斌(1976-),男,湖北咸宁人,浙江大学信息与电子工程学院教授。主要研究方向为光电毫米波&太赫兹波器件、技术与应用以及超快光子射频信号处理等

    回晓楠(1988-),男,辽宁大连人,浙江大学信息与电子工程学院研究员。主要研究方向为无线传感理论与技术、射频系统、物联网技术与应用、电磁波轨道角动量新理论与新技术

    章献民(1965-),男,浙江兰溪人,浙江大学信息与电子工程学院教授。主要研究方向为微波光子学、电磁波理论和应用、电磁波轨道角动量新理论与新技术

    通讯作者:

    郑史烈 zhengsl@zju.edu.cn

  • 责任主编:李龙 Corresponding Editor: LI Long
  • 中图分类号: TN82

Reconfigurable Mode Vortex Beam Generation Based on Transmissive Metasurfaces in the Terahertz Band

Funds: This work is partly sponsored by Zhejiang Lab (2020LC0AD01)
More Information
  • 摘要: 太赫兹技术与轨道角动量(OAM)技术相结合在高速无线通信领域具有巨大潜力。理论上不同模态的OAM之间具备严格正交性,若能将OAM技术应用到太赫兹通信系统中,必能极大提升系统的通信容量。因此,如何产生高质量的THz-OAM波束,并给予它灵活的动态控制成为研究者们的一大研究热点。该文设计了一种双层透射型超表面,使用3D打印作为加工方式,成本低、加工难度小。超表面单元结构采用高度可变的介质单元,随着单元高度不断发生改变,透射相位覆盖0°~360°,且透射率保持在88%以上。采用WR-10标准波导喇叭天线进行馈电,在100 GHz工作频率下,通过改变双层超表面之间的相对旋转角度,产生了不同模态的OAM波束。仿真结果表明,该文设计的超表面天线能够实现$ l=1,2,3 $的OAM波束,二维幅相结果符合对应模态的特征,$ l=1,2,3 $时,OAM波束的模态纯度分别为85.4%, 84.9%, 83.4%。 通过太赫兹扫场测试平台测试了天线在90 GHz, 100 GHz, 110 GHz频点下的电场分布。结果表明:在20 GHz带宽内,产生的OAM波束质量较好,证明该文设计的超表面天线在高频工作具有一定的工作带宽,有望应用于高频OAM通信。

     

  • 图  1  超表面单元结构

    Figure  1.  The unit structure

    图  2  超表面单元结构透射率、透射相位仿真结果

    Figure  2.  Simulation results of transmissivity and transmission phase of the unit structure

    图  3  双层超表面及馈源位置关系图

    Figure  3.  The setup of the feed and the double-layer metasurface

    图  4  球面波补偿板-喇叭天线集成示意图

    Figure  4.  Integration of the compensation board and the horn antenna

    图  5  双层超表面相位分布

    Figure  5.  Phase distributions of double-layer metasurface

    图  6  CST仿真模型

    Figure  6.  CST simulation the simulation model in CST

    图  7  双层超表面天线不同OAM模态时仿真的幅度相位分布图

    Figure  7.  The simulated amplitude and phase distribution of the double-layer metasurface antenna at different OAM mode

    图  8  根据仿真场分布得到的不同模态OAM的纯度分析

    Figure  8.  The OAM purity analysis based on the simulated field distribution

    图  9  双层超表面天线实物图

    Figure  9.  Photograph of the double-layer metasurface

    图  10  双层超表面天线实验装置

    Figure  10.  Experimental setup for the field scanning of the double-layer metasurface antenna

    图  11  双层超表面不同重构模态时测量的幅度相位分布图

    Figure  11.  The measured amplitude and phase distribution of the double-layer metasurface antenna at different OAM mode

    12  90, 100, 110 GHz下根据测量场分布得到的不同模态OAM的纯度分析

    12.  The OAM purity analysis based on the measured field distribution at 90, 100 and 110 GHz

  • [1] JIA Shi, ZHANG Lu, WANG Shiwei, et al. 2 × 300 Gbit/s Line rate PS-64QAM-OFDM THz photonic-wireless transmission[J]. Journal of Lightwave Technology, 2020, 38(17): 4715–4721. doi: 10.1109/jlt.2020.2995702
    [2] DING Shenghui, LI Qi, LI Yunda, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993–1995. doi: 10.1364/OL.36.001993
    [3] BECK M, PLÖTZING T, MAUSSANG K, et al. High-speed THz spectroscopic imaging at ten kilohertz pixel rate with amplitude and phase contrast[J]. Optics Express, 2019, 27(8): 10866–10872. doi: 10.1364/OE.27.010866
    [4] MOON S R, SUNG M, LEE J K, et al. Cost-effective photonics-based THz wireless transmission using PAM-N signals in the 0.3 THz band[J]. Journal of Lightwave Technology, 2021, 39(2): 357–362. doi: 10.1109/JLT.2020.3032613
    [5] AlLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [6] YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161
    [7] 魏旭立. 太赫兹特殊光束的产生及其在太赫兹通信和成像中的应用[D]. [博士论文], 华中科技大学, 2016.

    WEI Xuli. Generation of terahertz exotic beams and their application in terahertz communication and imaging systems[D]. [Ph. D. dissertation], Huazhong University of Science & Technology, 2016.
    [8] BAI Qiang, TENNANT A, and ALLEN B. Experimental circular phased array for generating OAM radio beams[J]. Electronics Letters, 2014, 50(20): 1414–1415. doi: 10.1049/el.2014.2860
    [9] TENNANT A and ALLEN B. Generation of OAM radio waves using circular time-switched array antenna[J]. Electronics Letters, 2012, 48(21): 1365–1366. doi: 10.1049/el.2012.2664
    [10] TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188. doi: 10.1016/0030-4018(96)00070-3
    [11] CHEN Yiling, ZHENG Shilie, LI Yue, et al. A Flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1156–1158. doi: 10.1109/LAWP.2015.2497243
    [12] HUI Xiaonan, ZHENG Shilie, HU Yiping, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 966–969. doi: 10.1109/LAWP.2014.2387431
    [13] 李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    LI Xiong, MA Xiaoliang, and LUO Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001
    [14] WU Gengbo, CHAN Kafai, QU Shiwei, et al. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 2020, 10(5): 480–489. doi: 10.1109/TTHZ.2020.2984451
    [15] MIYAMOTO K, SUIZU K, AKIBA T, et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate[J]. Applied Physics Letters, 2014, 104(26): 261104. doi: 10.1063/1.4886407
    [16] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [17] MENG Zankui, SHI Yan, WEI Wenyue, et al. Graphene- based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves[J]. Optical Materials Express, 2019, 9(9): 3709–3716. doi: 10.1364/OME.9.003709
    [18] WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712. doi: 10.1109/JPHOT.2020.3000779
    [19] WANG Ling, YANG Yang, DENG Li, et al. Vanadium dioxide embedded frequency reconfigurable metasurface for multi-dimensional multiplexing of terahertz communication[J]. Journal of Physics D:Applied Physics, 2021, 54(25): 255003. doi: 10.1088/1361-6463/abf166
    [20] YANG Qili, WANG Yan, LIANG Lanju, et al. Broadband transparent terahertz vortex beam generator based on thermally tunable geometric metasurface[J]. Optical Materials, 2021, 121: 111574. doi: 10.1016/j.optmat.2021.111574
    [21] FORMLABS[EB/OL]. https://formlabs.com, 2020.
    [22] MAHMOULI F E and WALKER S. Orbital angular momentum generation in a 60 GHz wireless radio channel[C]. 2012 20th Telecommunications Forum (TELFOR). Belgrade, Serbia, 2012: 315–318.
    [23] WANG Yicheng, ZHANG Huajin, YU Haohai, et al. Light propagation in an optically active plate with topological charge[J]. Applied Physics Letters, 2012, 101(17): 171114. doi: 10.1063/1.4764546
    [24] SUN Changzheng, ZHANG Juan, XIONG Bing, et al. Analysis of OAM mode purity of integrated optical vortex beam emitters[J]. IEEE Photonics Journal, 2017, 9(1): 1–7. doi: 10.1109/JPHOT.2017.265272
  • 加载中
图(13)
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  648
  • PDF下载量:  162
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-26
  • 修回日期:  2022-04-14
  • 网络出版日期:  2022-05-09
  • 刊出日期:  2022-08-28

目录

    /

    返回文章
    返回