[1] |
JIA Shi, ZHANG Lu, WANG Shiwei, et al. 2 × 300 Gbit/s Line rate PS-64QAM-OFDM THz photonic-wireless transmission[J]. Journal of Lightwave Technology, 2020, 38(17): 4715–4721. doi: 10.1109/jlt.2020.2995702
|
[2] |
DING Shenghui, LI Qi, LI Yunda, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993–1995. doi: 10.1364/OL.36.001993
|
[3] |
BECK M, PLÖTZING T, MAUSSANG K, et al. High-speed THz spectroscopic imaging at ten kilohertz pixel rate with amplitude and phase contrast[J]. Optics Express, 2019, 27(8): 10866–10872. doi: 10.1364/OE.27.010866
|
[4] |
MOON S R, SUNG M, LEE J K, et al. Cost-effective photonics-based THz wireless transmission using PAM-N signals in the 0.3 THz band[J]. Journal of Lightwave Technology, 2021, 39(2): 357–362. doi: 10.1109/JLT.2020.3032613
|
[5] |
AlLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
|
[6] |
YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161
|
[7] |
魏旭立. 太赫兹特殊光束的产生及其在太赫兹通信和成像中的应用[D]. [博士论文], 华中科技大学, 2016.WEI Xuli. Generation of terahertz exotic beams and their application in terahertz communication and imaging systems[D]. [Ph. D. dissertation], Huazhong University of Science & Technology, 2016.
|
[8] |
BAI Qiang, TENNANT A, and ALLEN B. Experimental circular phased array for generating OAM radio beams[J]. Electronics Letters, 2014, 50(20): 1414–1415. doi: 10.1049/el.2014.2860
|
[9] |
TENNANT A and ALLEN B. Generation of OAM radio waves using circular time-switched array antenna[J]. Electronics Letters, 2012, 48(21): 1365–1366. doi: 10.1049/el.2012.2664
|
[10] |
TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188. doi: 10.1016/0030-4018(96)00070-3
|
[11] |
CHEN Yiling, ZHENG Shilie, LI Yue, et al. A Flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1156–1158. doi: 10.1109/LAWP.2015.2497243
|
[12] |
HUI Xiaonan, ZHENG Shilie, HU Yiping, et al. Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 966–969. doi: 10.1109/LAWP.2014.2387431
|
[13] |
李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001LI Xiong, MA Xiaoliang, and LUO Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001
|
[14] |
WU Gengbo, CHAN Kafai, QU Shiwei, et al. Orbital angular momentum (OAM) mode-reconfigurable discrete dielectric lens operating at 300 GHz[J]. IEEE Transactions on Terahertz Science and Technology, 2020, 10(5): 480–489. doi: 10.1109/TTHZ.2020.2984451
|
[15] |
MIYAMOTO K, SUIZU K, AKIBA T, et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate[J]. Applied Physics Letters, 2014, 104(26): 261104. doi: 10.1063/1.4886407
|
[16] |
YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
|
[17] |
MENG Zankui, SHI Yan, WEI Wenyue, et al. Graphene- based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves[J]. Optical Materials Express, 2019, 9(9): 3709–3716. doi: 10.1364/OME.9.003709
|
[18] |
WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712. doi: 10.1109/JPHOT.2020.3000779
|
[19] |
WANG Ling, YANG Yang, DENG Li, et al. Vanadium dioxide embedded frequency reconfigurable metasurface for multi-dimensional multiplexing of terahertz communication[J]. Journal of Physics D:Applied Physics, 2021, 54(25): 255003. doi: 10.1088/1361-6463/abf166
|
[20] |
YANG Qili, WANG Yan, LIANG Lanju, et al. Broadband transparent terahertz vortex beam generator based on thermally tunable geometric metasurface[J]. Optical Materials, 2021, 121: 111574. doi: 10.1016/j.optmat.2021.111574
|
[21] |
FORMLABS[EB/OL]. https://formlabs.com, 2020.
|
[22] |
MAHMOULI F E and WALKER S. Orbital angular momentum generation in a 60 GHz wireless radio channel[C]. 2012 20th Telecommunications Forum (TELFOR). Belgrade, Serbia, 2012: 315–318.
|
[23] |
WANG Yicheng, ZHANG Huajin, YU Haohai, et al. Light propagation in an optically active plate with topological charge[J]. Applied Physics Letters, 2012, 101(17): 171114. doi: 10.1063/1.4764546
|
[24] |
SUN Changzheng, ZHANG Juan, XIONG Bing, et al. Analysis of OAM mode purity of integrated optical vortex beam emitters[J]. IEEE Photonics Journal, 2017, 9(1): 1–7. doi: 10.1109/JPHOT.2017.265272
|