一种多普勒容忍的抗间歇采样转发干扰恒模互补波形和接收滤波器联合设计方法

王福来 庞晨 殷加鹏 李楠君 李永祯 王雪松

王福来, 庞晨, 殷加鹏, 等. 一种多普勒容忍的抗间歇采样转发干扰恒模互补波形和接收滤波器联合设计方法[J]. 雷达学报, 2022, 11(2): 278–288. doi: 10.12000/JR22020
引用本文: 王福来, 庞晨, 殷加鹏, 等. 一种多普勒容忍的抗间歇采样转发干扰恒模互补波形和接收滤波器联合设计方法[J]. 雷达学报, 2022, 11(2): 278–288. doi: 10.12000/JR22020
WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020
Citation: WANG Fulai, PANG Chen, YIN Jiapeng, et al. Joint design of Doppler-tolerant complementary sequences and receiving filters against interrupted sampling repeater jamming[J]. Journal of Radars, 2022, 11(2): 278–288. doi: 10.12000/JR22020

一种多普勒容忍的抗间歇采样转发干扰恒模互补波形和接收滤波器联合设计方法

DOI: 10.12000/JR22020
基金项目: 国家自然科学基金(61971429, 61921001)
详细信息
    作者简介:

    王福来(1993–),男,辽宁人,国防科技大学电子科学学院在读博士生,主要研究方向为雷达波形设计、雷达极化信息处理

    庞 晨(1986–),男,湖北人,博士,国防科技大学副研究员,主要研究方向为极化信息处理、雷达目标分辨与识别技术

    殷加鹏(1990–),男,浙江人,国防科技大学副研究员,主要研究方向为极化雷达信号处理

    李楠君(1999–),女,辽宁人,国防科技大学电子科学学院在读硕士生,主要研究方向为雷达波形设计

    李永祯(1977–),男,内蒙古人,国防科技大学研究员、博士生导师,主要研究方向为雷达极化信息处理、空间电子对抗、目标检测与识别

    王雪松(1972–),男,内蒙古人,国防科技大学教授、博士生导师,主要研究方向为新体制雷达技术、极化成像与识别、智能电子防御与电子对抗

    通讯作者:

    王福来 wflmadman@outlook.com

    庞晨 452364125@qq.com

  • 责任主编:崔国龙 Corresponding Editor: CUI Guolong
  • 中图分类号: TN95

Joint Design of Doppler-tolerant Complementary Sequences and Receiving Filters Against Interrupted Sampling Repeater Jamming

Funds: The National Natural Science Foundation of China (61971429, 61921001)
More Information
  • 摘要: 作为一种典型的相干干扰,间歇采样转发干扰利用欠采样原理,能够在雷达接收机产生多个高逼真假目标,使雷达对真实目标的检测失效。针对这一问题,该文提出了一种基于多普勒容忍的多脉冲互补序列和接收滤波器联合设计的抗间歇采样转发干扰方法。首先,考虑设计序列的多普勒容限,以最小化发射序列和接收滤波器模糊函数旁瓣能量以及干扰信号和接收滤波器模糊函数能量为优化指标,同时考虑了发射波形的恒模约束以及非匹配滤波体制的信噪比损失约束等。然后,提出了基于优化最小化方法的交替迭代优化算法解决所提出的非凸优化问题。最后,仿真实验表明,相比于传统方法,该文方法设计的收发序列具有更好的脉压旁瓣性能和抗间歇采样转发干扰性能,能够显著提升雷达在干扰场景下对运动目标的检测能力。

     

  • 图  1  目标函数随时间变化曲线

    Figure  1.  Evolutions of objective functions with respect to time

    图  2  设计序列的模糊函数性能

    Figure  2.  Ambiguity functions of designed sequences by the proposed method

    图  3  干扰场景下脉压输出结果

    Figure  3.  The pulse compression outputs in the jamming scene

    图  4  不同信干比和信噪比条件下下本文方法脉压输出干扰峰值

    Figure  4.  The jamming peak of the pulse compression output of the proposed method with different SJRs and SNRs

    图  5  不同干扰参数下ISRJ信号脉压输出峰值

    Figure  5.  The peak of the pulse compression output of the ISRJ signals under different jamming parameters

    表  1  抗ISRJ的多普勒容忍互补序列和接收滤波器集联合设计流程

    Table  1.   Joint design of Doppler tolerant complementary sequences and receiving filters for anti-ISRJ

     1:令$i = 0$,利用随机相位序列初始化${{\boldsymbol{x}}^{\left( 0 \right)} }$和${{\boldsymbol{h}}^{\left( 0 \right)} }$
     2:重复
     3:对于固定的${{\boldsymbol{x}}^{\left( i \right)} }$,根据式(23)和式(24)计算矩阵${\boldsymbol{P}}_{}^{\left( i \right)}$和矢量${{\boldsymbol{p}}^{\left( i \right)} }$
     4:利用SQUAREM加速框架和式(26)更新计算${{\boldsymbol{h}}^{\left( {i + 1} \right)} }$
     5:对于固定的${{\boldsymbol{h}}^{\left( {i + 1} \right)} }$,根据式(31)和式(32)计算矩阵${{\boldsymbol{Q}}^{\left( {i + 1} \right)} }$和
       矢量${{\boldsymbol{q}}^{\left( {i + 1} \right)} }$
     6:利用SQUAREM加速框架和式(34)更新计算${{\boldsymbol{x}}^{\left( {i + 1} \right)} }$
     7:令$i = i + 1$
     8:直到满足收敛准则。输出${{\boldsymbol{x}}^{\left( i \right)} }$和${{\boldsymbol{h}}^{\left( i \right)} }$
    下载: 导出CSV

    表  2  互补序列和接收滤波器模糊函数旁瓣峰值和实际信噪比损失(dB)

    Table  2.   Peak sidelobe levels and actual SNR losses of the ambiguity functions of complementary sequences and receiving filters (dB)

    信噪比损失约束脉冲数
    K = 2K = 4K = 6
    $\mu = 1.0{\text{ dB}}$$ - 38.78\left( {1.017} \right)$$ - 46.26\left( {1.007} \right)$$ - 53.52\left( {1.007} \right)$
    $\mu = 1.5{\text{ dB}}$$ - 39.28\left( {1.512} \right)$$ - 51.95\left( {1.503} \right)$$ - 56.71\left( {1.501} \right)$
    $\mu = 2.0{\text{ dB}}$$ - 39.61\left( {2.016} \right)$$ - 52.71\left( {2.003} \right)$$ - 62.83\left( {2.001} \right)$
    下载: 导出CSV

    表  3  ISRJ信号和接收滤波器模糊函数峰值(dB)

    Table  3.   Peak levels of the ambiguity functions of ISRJ signals and receiving filters (dB)

    信噪比损失约束脉冲数
    K = 2K = 4K = 6
    $\mu = 1.0{\text{ dB}}$$ - 39.41$$ - 48.93$$ - 53.51$
    $\mu = 1.5{\text{ dB}}$$ - 39.55$$ - 51.64$$ - 56.39$
    $\mu = 2.0{\text{ dB}}$$ - 40.01$$ - 52.16$$ - 60.82$
    下载: 导出CSV

    表  4  干扰场景仿真参数

    Table  4.   Simulation parameters of the jamming scene

    参数数值
    雷达载频${f_0} = 2{\text{ GHz}}$
    脉冲重复频率${\text{PRF} } = 5{\text{ kHz} }$
    目标距离${d_1} = 7400{\text{ m}},{d_2} = 8000{\text{ m}}$
    目标速度${v_1} = 30{\text{ } }{ {\text{m} }/ {\rm{s}}},{v_2} = 40{\text{ } }{ {\text{m} } / {\rm{s}}}$
    目标雷达散射截面积${\text{RCS}}_1^2{\text{ = }}0{\text{ dB}},{\text{RCS}}_2^2{\text{ = }} - 10{\text{ dB }}$
    ISRJ干扰机距离${\bar d_1} = 9000{\text{ m}},{\bar d_2} = 9500{\text{ m}}$
    ISRJ干扰机速度${\bar v_1} = 0{\text{ } }{ {\text{m} } /{\rm{s}}},{\bar v_2} = 0{\text{ } }{ {\text{m} }/{\rm{s}}}$
    ISRJ干扰机时延0.5 μs
    信干比$- 15{\text{ dB} }$
    信噪比$15{\text{ dB} }$
    下载: 导出CSV
  • [1] FENG Dejun, XU Letao, PAN Xiaoyi, et al. Jamming wideband radar using interrupted-sampling repeater[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1341–1354. doi: 10.1109/TAES.2017.2670958
    [2] LIU Yongcai, WANG Wei, PAN Xiaoyi, et al. Inverse omega-K algorithm for the electromagnetic deception of synthetic aperture radar[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 3037–3049. doi: 10.1109/JSTARS.2016.2543961
    [3] 刘忠. 基于DRFM的线性调频脉冲压缩雷达干扰新技术[D]. [博士论文], 国防科学技术大学, 2006: 1–5.

    LIU Zhong. Jamming technique for countering LFM pulse compression radar based on digital radio frequency memory[D]. [Ph. D. dissertation], National University of Defense Technology, 2006: 1–5.
    [4] 李永祯, 黄大通, 邢世其, 等. 合成孔径雷达干扰技术研究综述[J]. 雷达学报, 2020, 9(5): 753–764. doi: 10.12000/JR20087

    LI Yongzhen, HUANG Datong, XING Shiqi, et al. A review of synthetic aperture radar jamming technique[J]. Journal of Radars, 2020, 9(5): 753–764. doi: 10.12000/JR20087
    [5] 王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学 E辑:信息科学, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007

    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series E:Information Sciences, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007
    [6] 周阳, 毕大平, 沈爱国, 等. 基于运动调制的SAR-GMTI间歇采样遮蔽干扰方法[J]. 雷达学报, 2017, 6(4): 359–367. doi: 10.12000/JR16075

    ZHOU Yang, BI Daping, SHEN Aiguo, et al. Intermittent sampling repeater shading jamming method based on motion modulation for SAR-GMTI[J]. Journal of Radars, 2017, 6(4): 359–367. doi: 10.12000/JR16075
    [7] BERGER S D. Digital radio frequency memory linear range gate stealer spectrum[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 725–735. doi: 10.1109/TAES.2003.1207279
    [8] OLIVIER K, CILLIERS J M, and DU PLESSIS M. Design and performance of wideband DRFM for radar test and evaluation[J]. Electronics Letters, 2011, 47(14): 824–825. doi: 10.1049/el.2011.0362
    [9] XIONG Wei, ZHANG Gong, and LIU Wenbo. Efficient filter design against interrupted sampling repeater jamming for wideband radar[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017: 9. doi: 10.1186/s13634-017-0446-3
    [10] 周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080
    [11] 张建中, 穆贺强, 文树梁, 等. 基于脉内步进LFM波形的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2019, 41(5): 1013–1020. doi: 10.3969/j.issn.1001-506X.2019.05.12

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti interrupted-sampling repeater jamming method based on stepped LFM waveform[J]. Systems Engineering and Electronics, 2019, 41(5): 1013–1020. doi: 10.3969/j.issn.1001-506X.2019.05.12
    [12] 周畅, 汤子跃, 余方利, 等. 基于脉内正交的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06

    ZHOU Chang, TANG Ziyue, YU Fangli, et al. Anti intermittent sampling repeater jamming method based on intrapulse orthogonality[J]. Systems Engineering and Electronics, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06
    [13] GONG Shixian, WEI Xizhang, and LI Xiang. ECCM scheme against interrupted sampling repeater jammer based on time-frequency analysis[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 996–1003. doi: 10.1109/JSEE.2014.00114
    [14] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM-based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114
    [15] ZHOU Kai, LI Dexin, SU Yi, et al. Joint design of transmit waveform and mismatch filter in the presence of interrupted sampling repeater jamming[J]. IEEE Signal Processing Letters, 2020, 27: 1610–1614. doi: 10.1109/LSP.2020.3021667
    [16] ZHOU Kai, LI Dexin, QUAN Sinong, et al. SAR waveform and mismatched filter design for countering interrupted-sampling repeater jamming[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5214514. doi: 10.1109/TGRS.2021.3107328
    [17] 王福来, 庞晨, 黄大通, 等. 一种同时全极化雷达发射波形和接收滤波器联合设计的抗间歇采样转发干扰方法[J]. 中国科学: 信息科学, in press.

    WANG Fulai, PANG Chen, HUANG Datong, et al. An anti-jamming method against interrupted sampling repeater jamming based on designing transmitted waveforms and receiving filters for simultaneous polarimetric radar[J]. Scientia Sinica Informationis, in press.
    [18] WANG Fulai, PANG Chen, WU Hao, et al. Designing constant modulus complete complementary sequence with high Doppler tolerance for simultaneous polarimetric radar[J]. IEEE Signal Processing Letters, 2019, 26(12): 1837–1841. doi: 10.1109/LSP.2019.2949686
    [19] WANG Fulai, PANG Chen, ZHOU Jian, et al. Design of complete complementary sequences for ambiguity functions optimization with a PAR constraint[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3505705. doi: 10.1109/LGRS.2021.3071249
    [20] SONG Junxiao, BABU P, and PALOMAR D P. Sequence design to minimize the weighted integrated and peak sidelobe levels[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2051–2064. doi: 10.1109/TSP.2015.2510982
    [21] ZHENG Hao, JIU Bo, and LIU Hongwei. Waveform design based ECCM scheme against interrupted sampling repeater jamming for wideband MIMO radar in multiple targets scenario[J]. IEEE Sensors Journal, 2022, 22(2): 1652–1669. doi: 10.1109/JSEN.2021.3131491
    [22] ZHAO Licheng, SONG Junxiao, BABU P, et al. A unified framework for low autocorrelation sequence design via majorization–minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(2): 438–453. doi: 10.1109/TSP.2016.2620113
    [23] VARADHAN R and ROLAND C. Simple and globally convergent methods for accelerating the convergence of any EM algorithm[J]. Scandinavian Journal of Statistics, 2008, 35(2): 335–353. doi: 10.1111/j.1467-9469.2007.00585.x
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  1852
  • HTML全文浏览量:  540
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 修回日期:  2022-03-10
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回