短基线收发分置频域协同波形设计方法

余显祥 路晴辉 杨婧 沙明辉 崔国龙 孔令讲

余显祥, 路晴辉, 杨婧, 等. 短基线收发分置频域协同波形设计方法[J]. 雷达学报, 2022, 11(2): 227–239. doi: 10.12000/JR22014
引用本文: 余显祥, 路晴辉, 杨婧, 等. 短基线收发分置频域协同波形设计方法[J]. 雷达学报, 2022, 11(2): 227–239. doi: 10.12000/JR22014
YU Xianxiang, LU Qinghui, YANG Jing, et al. Frequency domain cooperative waveform design method for short baseline transceiver[J]. Journal of Radars, 2022, 11(2): 227–239. doi: 10.12000/JR22014
Citation: YU Xianxiang, LU Qinghui, YANG Jing, et al. Frequency domain cooperative waveform design method for short baseline transceiver[J]. Journal of Radars, 2022, 11(2): 227–239. doi: 10.12000/JR22014

短基线收发分置频域协同波形设计方法

DOI: 10.12000/JR22014
基金项目: 国家自然科学基金(U19B2017, 62101097),长江学者奖励计划,中国博士后科学基金(2020M680147, 2021T140096)
详细信息
    作者简介:

    余显祥(1991-),男,四川人,电子科技大学博士后。研究方向为雷达波形设计与处理、最优化理论算法以及阵列信号处理等

    路晴辉(1998-),女,河北人,电子科技大学硕士研究生。研究方向为雷达波形设计与处理、阵列天线优化设计、最优化理论算法以及阵列信号处理等

    杨 婧(1995-),女,河北人,电子科技大学博士研究生。研究方向为雷达波形设计与处理、最优化理论算法以及阵列信号处理等

    沙明辉(1986-),男,山东人,北京无线电测量研究所研究员。研究方向为雷达抗干扰和信号处理等

    崔国龙(1982-),男,安徽人,电子科技大学教授,博士生导师,《雷达学报》编委。研究方向为最优化理论和算法、雷达目标检测理论、波形多样性以及阵列信号处理等

    孔令讲(1974-),男,河南人,电子科技大学教授,博士生导师,《雷达学报》编委。研究方向为新体制雷达、统计信号处理、优化理论和算法、雷达信号处理、非合作信号处理技术和自适应阵列信号处理等

    通讯作者:

    崔国龙 cuiguolong@uestc.edu.cn

  • 责任主编:胡卫东 Corresponding Editor: HU Weidong
  • 中图分类号: TN958

Frequency Domain Cooperative Waveform Design Method for Short Baseline Transceiver

Funds: The National Natural Science Foundation of China (U19B2017, 62101097), The Chang Jiang Scholars Program, China Postdoctoral Science Foundation (2020M680147, 2021T140096)
More Information
  • 摘要: 多节点收发分置系统通过波形在空时频能等多域进行协同工作,能够提供相比单雷达更多的抗干扰自由度。该文针对抗多主瓣干扰问题,提出一种基于两部短基线收发分置系统的频域协同波形设计方法。首先,利用基于MM原理的近端乘子法(MM-PMM)算法,优化设计具有局部良好自相关电平的窄带探测信号;接着,依据窄带探测信号脉间频率跳变特点,优化对应的宽带频谱置零信号,作为窄带信号的掩护信号;然后,利用两个发射节点分别将窄带与宽带信号进行协同发射;最后,利用基于频率捷变的相参和非相参联合积累的信号处理方法实现对频域协同波形回波的处理。数值仿真实验验证了频域协同波形设计方法算法收敛性、频域掩护原理以及抗多主瓣干扰的有效性。

     

  • 图  1  频域协同波形示意图

    Figure  1.  Schematic diagram of frequency domain cooperative waveform

    图  2  频域协同波形功率配置原理示意图

    Figure  2.  Schematic diagram of frequency domain cooperative waveform power configuration

    图  3  宽带掩护信号频域特性

    Figure  3.  Frequency domain characteristics of wideband cover signal

    图  4  频域协同波形信号处理方法

    Figure  4.  Frequency domain cooperative waveform signal processing method

    图  5  ${\varOmega _1}$1区域归一化自相关旁瓣电平在不同M下随迭代次数变化的曲线

    Figure  5.  The normalized autocorrelation sidelobe levelof ${\varOmega _1}$ versus iteration for different M values

    图  6  不同惩罚参数下收敛性分析

    Figure  6.  Convergence analysis under different penalty parameters

    图  7  ${\varOmega _1}$区域归一化自相关旁瓣电平在不同惩罚因子下随迭代次数变化的曲线

    Figure  7.  The normalized autocorrelation sidelobe levelof ${\varOmega _1}$ versus iteration for different penalty factor values

    图  8  窄带探测信号性质

    Figure  8.  The narrowband detection signal properties

    图  9  宽带掩护信号功率谱密度

    Figure  9.  The power spectral density of wideband cover signal

    图  10  频域协同发射信号功率谱密度

    Figure  10.  The power spectral density of frequency domain cooperative waveform pair

    图  11  抗噪声调频干扰R-D图对比

    Figure  11.  The R-D diagram comparison of anti-noise frequency modulation interference effect

    图  12  切片转发信号产生原理

    Figure  12.  Generation principle of chopping-interleaving

    图  13  抗噪声调频和灵巧组合干扰R-D图对比

    Figure  13.  The R-D diagram comparison of anti-noise frequency modulation and smart combination interference effect

    表  1  惩罚参数设置

    Table  1.   Simulation parameters of penalty parameters

    情况惩罚参数${\rho _{\text{r}}}$惩罚参数${\rho _{\text{y}}}$
    情况1$5 \times {10^{ - 5} }$$1$
    情况2$5 \times {10^{ - 4} }$$10$
    情况3$1 \times {10^{ - 3} }$$50$
    情况4$5 \times {10^{ - 3} }$$100$
    下载: 导出CSV

    表  2  频域协同波形仿真参数

    Table  2.   Simulation parameters of frequency domain cooperative waveform

    参数数值
    载频${f_{\text{c}}}$1 GHz
    时宽T10 μs
    脉冲重复间隔${T_{\text{r}}}$100 μs
    采样率${F_{\text{s}}}$200 MHz
    脉冲个数$N$200
    宽带信号带宽${B_{\text{x}}}$200 MHz
    宽带信号的幅度${A_{\text{x}}}$1
    窄带信号带宽${B_{\text{p}}}$10 MHz
    窄带信号幅度${A_{\text{p}}}$0.5
    跳频频点${f_z}$[–80 –40 0 40 80] MHz
    下载: 导出CSV

    表  3  抗干扰场景参数

    Table  3.   Simulation parameters of anti-interference scenes

    参数数值
    目标距离$R$[99 101] km
    目标速度$v$[90 80] m/s
    窄带探测信号信噪比SNR[15 10] dB
    干噪比JNR30 dB
    下载: 导出CSV

    表  4  抗干扰场景参数

    Table  4.   Simulation parameters of anti-interference scenes

    参数数值
    目标距离$R$100 km
    目标速度$v$80 m/s
    窄带雷达信号信噪比SNR15 dB
    灵巧干扰假目标距离[98 99] km
    灵巧干扰假目标速度[1 1] m/s
    灵巧干扰干噪比JNR[35 30] dB
    灵巧干扰切片时长$m$[1 5] μs
    灵巧干扰转发次数$n$[5 3]
    灵巧干扰中噪声信号等效带宽$\Delta B$10 MHz
    噪声调频干扰干噪比JNR30 dB
    下载: 导出CSV
  • [1] 谢绍斌. 载波调制混沌雷达信号理论研究[D]. [博士论文], 电子科技大学, 2012.

    XIE Shaobin. Research on signal theory for carrier modulation chaotic radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2012.
    [2] 张锡熊, 陈方林. 雷达抗干扰原理[M]. 北京: 科学出版社, 1981.

    ZHANG Xixiong and CHEN Fanglin. Principle of Radar Anti-Interference[M]. Beijing: Science Press, 1981.
    [3] 杨娟. 雷达射频掩护的认知抗干扰技术研究[D]. [硕士论文], 西安电子科技大学, 2018.

    YANG Juan. Research on the cognitive anti-jamming technology of radar radio frequency-screen[D]. [Master dissertation], Xidian University, 2018.
    [4] 胡祺勇, 谢军伟, 张浩为, 等. 掩护信号抗转发干扰技术研究[J]. 弹箭与制导学报, 2017, 37(4): 168–172. doi: 10.15892/j.cnki.djzdxb.2017.04.039

    HU Qiyong, XIE Junwei, ZHANG Haowei, et al. Study on anti repeat jamming technology of screen signal[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2017, 37(4): 168–172. doi: 10.15892/j.cnki.djzdxb.2017.04.039
    [5] 金珊珊, 王春阳, 邱程, 等. 对抗应答式干扰的射频掩护脉冲设计[J]. 中国电子科学研究院学报, 2014, 9(4): 377–381. doi: 10.3969/j.issn.1673-5692.2014.04.010

    JIN Shanshan, WANG Chunyang, QIU Cheng, et al. Design of RF protecting signal for transponder jamming suppression[J]. Journal of CAEIT, 2014, 9(4): 377–381. doi: 10.3969/j.issn.1673-5692.2014.04.010
    [6] 张昭建, 谢军伟, 杨春晓, 等. 掩护脉冲信号抗转发式欺骗干扰性能分析[J]. 弹箭与制导学报, 2016, 36(4): 149–152, 156. doi: 10.15892/j.cnki.djzdxb.2016.04.039

    ZHANG Zhaojian, XIE Junwei, YANG Chunxiao, et al. Performance analysis of screening pulse signal confronts to deception jamming[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2016, 36(4): 149–152, 156. doi: 10.15892/j.cnki.djzdxb.2016.04.039
    [7] 周伟江, 王培强, 张进, 等. 雷达射频掩护信号分析及对抗方法研究[J]. 航天电子对抗, 2013, 29(5): 47–50. doi: 10.3969/j.issn.1673-2421.2013.05.014

    ZHOU Weijiang, WANG Peiqiang, ZHANG Jin, et al. Analysis and countermeasures of radar radio frequency-screen signal[J]. Aerospace Electronic Warfare, 2013, 29(5): 47–50. doi: 10.3969/j.issn.1673-2421.2013.05.014
    [8] 蒋铁珍, 廖同庆. 分布式雷达抗主瓣干扰方法研究[J]. 中国电子科学研究院学报, 2015, 10(4): 389–394. doi: 10.3969/j.issn.1673-5692.2015.04.011

    JIANG Tiezhen and LIAO Tongqing. Research on anti-mainlobe jamming method of distributed radar based on LMS algorithm[J]. Journal of CAEIT, 2015, 10(4): 389–394. doi: 10.3969/j.issn.1673-5692.2015.04.011
    [9] 付姣姣. 双站协同抗干扰技术研究[D]. [硕士论文], 南京理工大学, 2019.

    FU Jiaojiao. Research on cooperative interference interference technology of two stations[D]. [Master dissertation], Nanjing University of Science and Technology, 2019.
    [10] 杨超, 蒋卫锋. 雷达有源诱饵设计考虑因素[J]. 舰船电子工程, 2016, 36(5): 81–82, 95. doi: 10.3969/j.issn.1672-9730.2016.05.021

    YANG Chao and JIANG Weifeng. Considerations for radar active decoy design[J]. Ship Electronic Engineering, 2016, 36(5): 81–82, 95. doi: 10.3969/j.issn.1672-9730.2016.05.021
    [11] CUI Guolong, YANG Jing, LU Shuping, et al. Dual-use unimodular sequence design via frequency nulling modulation[J]. IEEE Access, 2018, 6: 62470–62481. doi: 10.1109/ACCESS.2018.2876644
    [12] 崔国龙, 余显祥, 杨婧, 等. 认知雷达波形优化设计方法综述[J]. 雷达学报, 2019, 8(5): 537–557. doi: 10.12000/JR19072

    CUI Guolong, YU Xianxiang, YANG Jing, et al. An overview of waveform optimization methods for cognitive radar[J]. Journal of Radars, 2019, 8(5): 537–557. doi: 10.12000/JR19072
    [13] BOHRA P and UNSER M. Continuous-domain signal reconstruction using L p-norm regularization[J]. IEEE Transactions on Signal Processing, 2020, 68: 4543–4554. doi: 10.1109/TSP.2020.3013781
    [14] SONG Junxiao, BABU P, and PALOMAR D P. Sequence design to minimize the weighted integrated and peak sidelobe levels[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2051–2064. doi: 10.1109/TSP.2015.2510982
    [15] FAN Wen, LIANG Junli, YU Guoyang, et al. MIMO radar waveform design for quasi-equiripple transmit beampattern synthesis via weighted L p-minimization[J]. IEEE Transactions on Signal Processing, 2019, 67(13): 3397–3411. doi: 10.1109/TSP.2019.2917871
    [16] FAN Wen, LIANG Junli, YU Guoyang, et al. Minimum local peak sidelobe level waveform design with correlation and/or spectral constraints[J]. Signal Processing, 2020, 171: 107450. doi: 10.1016/j.sigpro.2019.107450
    [17] DHINGRA N K, KHONG S Z, and JOVANOVIĆ M R. The proximal augmented lagrangian method for nonsmooth composite optimization[J]. IEEE Transactions on Automatic Control, 2019, 64(7): 2861–2868. doi: 10.1109/TAC.2018.2867589
    [18] BU Yi, YU Xianxiang, YANG Jing, et al. A new approach for design of constant modulus discrete phase radar waveform with low WISL[J]. Signal Processing, 2021, 187: 108145. doi: 10.1016/j.sigpro.2021.108145
    [19] TANG Bo and LIANG Junli. Efficient algorithms for synthesizing probing waveforms with desired spectral shapes[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(3): 1174–1189. doi: 10.1109/TAES.2018.2876585
    [20] PATTON L K and RIGLING B D. Phase retrieval for radar waveform optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3287–3302. doi: 10.1109/TAES.2012.6324705
    [21] ROWE W, STOICA P, and LI Jian. Spectrally constrained waveform design [sp Tips&Tricks][J]. IEEE Signal Processing Magazine, 2014, 31(3): 157–162. doi: 10.1109/MSP.2014.2301792
    [22] 张洋. 弹载环境下雷达抗干扰波形设计研究[D]. [硕士论文], 哈尔滨工业大学, 2019.

    ZHANG Yang. Research on anti-jamming waveform design of missile-borne radar[D]. [Master dissertation], Harbin Institute of Technology, 2019.
    [23] 孟祥东, 夏德平. 脉冲间跳频波形的相参积累目标检测方法[J]. 现代雷达, 2022, 44(3): 70–75. doi: 10.16592/j.cnki.1004-7859.2022.03.012

    MENG Xiangdong and XIA Deping. Coherent integration methods for detecting targets in inter-pulse frequency hopping waveform[J]. Modern Radar, 2022, 44(3): 70–75. doi: 10.16592/j.cnki.1004-7859.2022.03.012
    [24] LU Qinghui, CUI Guolong, LIU Ruitao, et al. Wideband beampattern synthesis using single digital beamformer with integer time delay flters[J]. IEEE Transactions on Antennas and Propagation, in press.
    [25] 彭德强. 线性调频信号和噪声调频信号性能对比分析[J]. 舰船电子对抗, 2021, 44(1): 22–26. doi: 10.16426/j.cnki.jcdzdk.2021.01.005

    PENG Deqiang. Analysis of the performance comparison between LFM signal and noise FM signal[J]. Shipboard Electronic Countermeasure, 2021, 44(1): 22–26. doi: 10.16426/j.cnki.jcdzdk.2021.01.005
    [26] 金珊珊, 王春阳, 李欣. 灵巧干扰及其对抗技术综述[J]. 现代防御技术, 2014, 42(4): 131–135, 142. doi: 10.3969/j.issn.1009-086x.2014.04.022

    JIN Shanshan, WANG Chunyang, and LI Xin. Overview on smart noise jamming and countermeasures[J]. Modern Defense Technology, 2014, 42(4): 131–135, 142. doi: 10.3969/j.issn.1009-086x.2014.04.022
  • 加载中
图(13) / 表(4)
计量
  • 文章访问数:  1718
  • HTML全文浏览量:  802
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-15
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-04-19
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回