RSDD-SAR:SAR舰船斜框检测数据集

徐从安 苏航 李健伟 刘瑜 姚力波 高龙 闫文君 汪韬阳

王宇航, 杨敏, 种劲松. 一种海洋涡旋SAR图像仿真方法[J]. 雷达学报, 2019, 8(3): 382–390. doi: 10.12000/JR18052
引用本文: 徐从安, 苏航, 李健伟, 等. RSDD-SAR:SAR舰船斜框检测数据集[J]. 雷达学报, 2022, 11(4): 581–599. doi: 10.12000/JR22007
WANG Yuhang, YANG Min, and CHONG Jinsong. SAR image simulation method for oceanic eddies[J]. Journal of Radars, 2019, 8(3): 382–390. doi: 10.12000/JR18052
Citation: XU Congan, SU Hang, LI Jianwei, et al. RSDD-SAR: Rotated ship detection dataset in SAR images[J]. Journal of Radars, 2022, 11(4): 581–599. doi: 10.12000/JR22007

RSDD-SAR:SAR舰船斜框检测数据集

DOI: 10.12000/JR22007
基金项目: 国家自然科学基金(61790550, 61790554, 61971432, 62022092),中国科协青年人才托举工程基金(2020-JCJQ-QT-011),山东省泰山学者人才工程(tsqn201909156)
详细信息
    作者简介:

    徐从安(1987-),男,博士,副教授,主要研究方向为多平台多源预警探测、智能信息处理

    苏 航(1998-),男,海军航空大学在读硕士研究生,主要研究方向为SAR图像舰船目标检测

    李健伟(1989-),男,博士,工程师,主要研究方向为雷达与电子对抗、SAR图像智能处理、计算机视觉

    刘 瑜(1987-),男,博士,教授,主要研究方向为遥感图像处理、多模态数据融合

    姚力波(1980-),男,博士,副教授,主要研究方向为卫星遥感图像处理、目标检测与跟踪

    高 龙(1993-),男,博士,讲师,主要研究方向机器学习、异常检测、SAR图像智能处理

    闫文君(1986-),男,博士,副教授,主要研究方向为智能信息处理、频谱感知

    汪韬阳(1984-),男,博士,副研究员,主要研究方向为航天摄影测量、遥感图像几何处理、卫星视频目标检测与识别

    通讯作者:

    苏航 shpersonal_email@163.com

    李健伟 lgm_jw@163.com

  • 责任主编:孙显 Corresponding Editor: SUN Xian
  • 中图分类号: TN957.51; TN958

RSDD-SAR: Rotated Ship Detection Dataset in SAR Images

Funds: The National Natural Science Foundation of China (61790550, 61790554, 61971432, 62022092), The Young Elite Scientists Sponsorship Program by CAST (2020-JCJQ-QT-011), The Taishan Scholar Project of Shandong Province (tsqn201909156)
More Information
  • 摘要: 针对合成孔径雷达(SAR)舰船斜框检测数据集较少,难以满足算法发展和实际应用需求的问题,该文公开了SAR舰船斜框检测数据集(RSDD-SAR),该数据集由84景高分3号数据和41景TerraSAR-X数据切片及2景未剪裁大图,共127景数据构成,包含多种成像模式、多种极化方式、多种分辨率切片7000张,舰船实例10263个,通过自动标注和人工修正相结合的方式高效标注。同时,该文对几种常用的光学遥感图像斜框检测算法和SAR舰船斜框检测算法进行了实验,其中单阶段算法S2ANet检测效果最佳,平均精度达到90.06%。通过实验对比分析形成基准指标,可供相关学者参考。最后,该文通过泛化能力测试,分析讨论了RSDD-SAR数据集训练模型在其他数据集和未剪裁大图上的性能,结果表明:该数据集训练模型具有较好的泛化能力,说明该数据集具有较强的应用价值。RSDD-SAR数据集可在以下网址下载:https://radars.ac.cn/web/data/getData?dataType=SDD-SAR

     

  • 海洋涡旋是一种旋转的、以封闭环流为主要特征的水体,是由于各种气象因素作用和海洋动力不稳定性形成的。作为一种重要的海洋现象,涡旋不仅能够影响海洋流场与化学物质的输送,从而对海洋的环流结构和海洋生态等产生重要作用,还能通过海气相互作用,对风场、云及降雨等大气现象产生影响[1,2]

    合成孔径雷达(Synthetic Aperture Radar, SAR)具有全天时、全天候、高分辨率、广覆盖面等优点,对海洋涡旋探测具有特殊意义,受到国际海洋遥感界的重视。然而,涡旋在SAR成像时会受到各种海洋环境因素的影响,通过真实SAR图像难以完全解译涡旋的特征。利用仿真SAR图像可以为涡旋的SAR图像特征解译提供指导,但是目前利用SAR图像对涡旋的研究主要集中在涡旋的统计性研究[35]、涡旋的形成机制和成像分类[68]以及涡旋的检测和特征提取方面的研究[912],极少有关于涡旋SAR图像仿真方法的研究。

    由于海面随机运动且电磁散射特性复杂,难以进行时间和空间上的SAR原始回波仿真。海浪谱能够描述随机海面不同波长海浪的能量分布情况,因此利用海浪谱可以很好地描述不同海况下随机海面的统计特征。海洋涡旋、内波、浅海地形、锋面等都可看作是通过波流交互作用,即利用自身流场改变海浪谱分布,并经过海面电磁散射模型,进而得以在SAR图像上体现。目前SAR海面图像仿真常用的电磁散射模型包括Kirchhoff散射模型、Bragg散射模型以及组合表面散射模型[13]。这些模型只考虑了1阶Bragg散射,仅适用于低频(小于L波段)SAR海面图像仿真。1997年,Romeiser和Alpers[14,15]提出了改进的组合表面模型,该模型考虑了2阶Bragg波散射的影响,从而使仿真的SAR海面图像更接近实际情况。2002年,Romeiser[16]利用该模型研究了浅海地形在SAR图像上的特征,并与声学多普勒流速剖面仪测量的浅海地形进行对比,验证了该模型用于SAR海面图像仿真的合理性;2011年,欧阳越等[17]利用该模型仿真了不同雷达参数下海洋内波图像,并同实际内波SAR图像进行对比,发现二者具有较高的一致性。但是目前,利用海面电磁散射模型对海洋涡旋SAR图像仿真的研究尚未见报道。

    为此,本文提出了一种海洋涡旋SAR图像仿真方法,利用流体力学中典型的Burgers-Rott涡旋模型,建立涡旋的2维流场。利用SAR海洋成像仿真模型,仿真涡旋SAR图像。基于此方法,本文进行了气旋式涡旋与反气旋式涡旋SAR图像仿真实验,并将仿真SAR图像与ERS-2 SAR图像和ENVISAT-1 ASAR图像进行对比,从而验证该方法的有效性。

    本文建立的涡旋SAR图像仿真方法,是在给定2维涡旋流场和风场条件下,利用SAR海洋成像模型生成随机海面的2维海浪谱,再根据2维海浪谱与SAR图像之间的调制传递函数,生成仿真涡旋SAR图像。

    涡旋SAR图像仿真方法分为两步,如图1所示。首先,输入涡旋流场参数,基于涡旋动力学模型建立涡旋2维流场(于2.1节介绍)。然后,将仿真的涡旋流场和海面风场输入到SAR海洋成像仿真模型,通过设置SAR参数获得仿真涡旋SAR图像(于2.2节介绍)。

    图  1  涡旋SAR图像仿真方法流程图
    Figure  1.  Flow chart of the simulation method of SAR eddy image

    涡旋一般遵循流体力学的纳维-斯托克斯(Navier-Stokes,简写N-S)方程,根据方程中黏性力项、惯性力项以及离心力项的平衡关系,可以建立不同的涡旋模型。常见的涡旋模型包括Rankine涡旋、Oseen涡旋、Sullivan涡旋以及Burgers-Rott涡旋[1820],其中,Rankine涡旋模型没有考虑N-S方程中的黏性力项,流体以常角速度ω旋转,没有径向速度,因而不能产生涡旋的辐散、辐聚和上升运动;Oseen涡旋模型仅考虑N-S方程中惯性力项的局地项及黏性力项,其轨道是一个圆形涡旋,不符合实际SAR图像中涡旋的形态;Sullivan涡旋模型和Burgers-Rott涡旋模型考虑了N-S方程中全部的黏性力项、惯性力项及离心力项,但由于Sullivan涡旋模型的轨道是一个双螺旋涡旋,Burgers-Rott涡旋模型的轨道是一个螺旋形涡旋,后者与真实SAR图像所呈现的涡旋形状更为接近,因此本文选用Burgers-Rott涡旋模型来建立海洋涡旋的流场。

    Burgers-Rott涡旋模型是从N-S方程求得的一个涡旋解[19,20],假定涡旋是定常和轴对称的,涡旋速度场在柱坐标系下表示为

    {Vr=drdt=α2rVθ=rdθdt=Γ02πr(1eαr24υ)Vz=dzdt=αz
    (1)

    其中,Vr,Vθ,Vz分别是r,θ,z方向的速度分量,α为吸入强度,υ为黏性系数,Γ0r时的速度环量,Γ=2πrvθ

    将式(1)转化为直角坐标系,涡旋速度场可表示为

    {Vx=α2xΓ0α8πυyVy=Γ0α8πυxα2y
    (2)

    其中,Vx为涡旋速度场在x方向上的速度分量,Vy是涡旋速度场在y方向上的速度分量。

    通过设置参数α Γ0/υ的值,根据式(2)可以得到涡旋2维流场。通过仿真发现,α的值会影响涡旋流场流速的大小,α的值越大,涡旋流场流速越大,反之则越小;α的正负影响涡旋流场的旋向,α为正,流场顺时针旋转,α为负,流场逆时针旋转;Γ0/υ的值则会影响涡旋臂的曲率,Γ0/υ的值越大,涡旋臂的曲率越大。

    获得了涡旋的流场之后,下一步将进行涡旋SAR图像的仿真。本文使用SAR海洋成像仿真模型来仿真涡旋SAR图像。SAR海洋成像仿真模型主要分为波流交互作用模型、雷达后向散射模型和SAR成像模型3个部分,如图2所示。

    图  2  SAR海洋成像仿真模型示意图[22]
    Figure  2.  Schematic diagram of oceanic SAR imagery simulation model[22]

    首先,将仿真的涡旋2维流场和海面风场输入到波流交互作用模型,通过求解作用量谱平衡方程,计算给定海面流场和海面风场下被调制的海浪谱。作用量谱平衡方程如式(3)所示[21]

    N(x,k,t)t+[cg(k)+U(x,t)]N(x,k,t)xkU(x,t)xN(x,k,t)k=S(x,k,t)
    (3)

    其中,N为微尺度波作用量谱密度,x=(x,y)为空间位置矢量,k=(kx,ky)为波数矢量,U为表面流场,cg为被调制波浪的群速度,S为源函数(风场输入、非线性波-波作用和弥散等作用之和),在本文模型中采用的源函数表达式为

    S(x,k,t)=μ(k)N(x,k,t)(1N(x,k,t)N0(k))
    (4)

    其中,N0为不存在海流时平衡状态下的作用量谱密度,μ为松弛率。

    作用量谱密度与海浪谱的关系为[23]

    N(x,k,t)=ρω0(k)kψ(x,k,t)
    (5)

    其中,ω0(k)=gk+(τ/ρ)k3, τ为表面张力,ρ为海水密度,ψ为海浪谱。

    Q(x,k,t)=1/N(x,k,t), Q0(k)=1/N0(k),则被流场调制后的海浪谱为

    ψ(x,k,t)ψ0(k)=Q0(k)Q0(k)+δQ(x,k,t)=11+δQ(x,k,t)Q0(k)
    (6)

    其中,δQ表示调制引起的作用量谱变化量。

    然后,将计算得到的海浪谱输入到雷达后向散射模型,在给定雷达频率、入射角、极化方式及雷达视向等雷达参数下,仿真涡旋SAR图像后向散射强度。本文采用的雷达后向散射模型为改进的组合表面模型,是Romeiser和Alpers等在Bragg共振散射模型基础上的改进[14,15]。该模型同时考虑了长波和中波对短波的倾斜调制和水动力调制,所以从理论和试验研究上更能表现海面微波散射的实际情况,是目前最为完善的海面微波散射模型之一。该模型是基于2维海面坡度,通过傅里叶变换对后向散射截面进行泰勒级数展开,并对后向散射截面进行时间和空间上的平均。由于1阶项平均后为0,因此得到2阶Bragg散射后的海面归一化后向散射系数为[14,22]

    σ=σ(0)+σ(2)=σ|s=0+(2σspsp|s=0+2σspsp|s=0)k2pψ(k)d2k+(2σsnsn|s=0+2σsnsn|s=0)k2nψ(k)d2k+(2σspsn|s=0+2σsnsp|s=0+2σspsn|s=0+2σsnsp|s=0)kpknψ(k)d2k
    (7)

    其中,σ(0)为平静海面的归一化后向散射系数;σ(2)表示表面坡度引起的2阶Bragg散射之和;符号表示统计平均;s=(sp,sn)为海面坡度;kp, kn分别为平行和垂直于雷达视向的Bragg波波数分量;ψ(k)为海浪波数谱;符号分别表示σ对波数k的傅里叶变换及其共轭;表示σ对组合波数k1+k2的傅里叶变换及其共轭;表示σ对组合波数k1k2的傅里叶变换及其共轭。

    上述过程中,利用海浪谱与雷达后向散射模型得到仿真的海面归一化后向散射系数,但这是一个实孔径雷达成像过程,SAR图像仿真还需考虑海面运动的影响。当目标存在沿雷达视线方向的径向速度时,将在方位向上产生偏移Δx

    Δx=RV vr=Rλ2V fD
    (8)

    其中,R是雷达至目标的距离,V是平台飞行速度,λ是雷达波长,fD=2vrλ是目标速度导致的Doppler谱中心偏移。对于海面而言,由于其各点速度不同,在方位向上偏移量不同,导致SAR海面图像产生压缩或拉伸的现象,即速度聚束效应[24]。此外,分辨单元内不同散射点速度的分布方差将造成回波Doppler谱展宽,并导致分辨率下降。SAR成像模型通过计算每个分辨单元的平均Doppler谱中心和方差引入海面运动对SAR成像造成的影响。

    这里采用Romeiser和Thompson[25]给出的双高斯形Doppler谱模型计算Doppler谱中心和方差,该模型将海面回波Doppler谱分成朝向雷达和远离雷达两个传播方向的Bragg波Doppler谱的叠加,每个Doppler谱分量为高斯形,其具体表达式为

    W(fD)=σ+2πγ2D+e(fDfD+σ)2/γ2D++σ2πγ2De(fDfDσ)2/γ2D
    (9)

    其中,±表示远离雷达方向和朝向雷达方向的两组Bragg波分量,fD±σ表示经过归一化后向散射系数σ加权的平均Doppler中心;γD±表示Doppler谱的方差。fD±σγD±的具体计算过程可以参考文献[25],这里不再赘述。

    另外,仿真的SAR图像还需考虑噪声的影响,本文涡旋SAR图像仿真过程中,仅考虑热噪声对仿真SAR图像信噪比的影响。信噪比由噪声等效后向散射系数以及海面归一化后向散射系数所决定:

    SNR(dB)=σNEσ0
    (10)

    其中,海面归一化后向散射系数σ由入射角、雷达频率、极化方式、海面风速等参数所决定,NEσ0为噪声等效后向散射系数,由系统硬件参数所决定。因此,SAR成像模型根据给定的仿真输入参数计算信噪比,从而得到具有统计特性的仿真涡旋SAR图像。

    根据涡旋旋转方向的不同,可将涡旋分为气旋式涡旋与反气旋式涡旋[26]。气旋式涡旋在北半球逆时针旋转,在南半球顺时针旋转;反气旋式涡旋在北半球顺时针旋转,在南半球逆时针旋转。不同旋转方向的涡旋将产生不同的涡旋流场,从而在SAR图像中呈现不同的涡旋特征。下面,本文分别针对气旋式涡旋与反气旋式涡旋进行仿真实验。

    图3是一幅ERS-2 SAR图像,图像获取时间为2009.08.19, 02:23:50 UTC,获取地点为中国东海海域。图中方框1处为一个气旋式涡旋,旋转方向为逆时针。为了便于对比仿真SAR图像与真实SAR图像,将方框1处的涡旋截取出来,截取图像尺寸为18 km×24 km,如图4所示。ERS-2 SAR图像的具体雷达参数如表1所示。

    图  3  中国东海海域获取的ERS-2 SAR图像,获取时间为2009.08.19, 02:23:50 UTC
    Figure  3.  ERS-2 SAR image of the East China Sea obtained on August 19, 2009 at 02:23:50 UTC
    图  4  从方框1处截取的涡旋SAR图像
    Figure  4.  Enlargement of the eddy in Frame 1
    表  1  ERS-2 SAR参数
    Table  1.  SAR parameters of ERS-2
    参数数值
    极化方式VV
    波段C
    入射角23.0°
    平台高度780 km
    平台速度7500 m/s
    下载: 导出CSV 
    | 显示表格

    从欧洲中期天气预报中心(Europe Centre for Medium-Range Weather Forecasts, ECMWF)获取2009.08.19, 03:00:00时刻的风场再分析资料,分辨率为0.125°×0.125°。根据数据显示,涡旋区域附近的风速为1.4 m/s,风向为257.9°。从全球海洋数据同化系统(Global Ocean Data Assimilation System, GODAS)获取相同位置的5日平均流场再分析资料,分辨率为(1/3)°×1°。根据数据显示,涡旋区域附近的流速为0.61 m/s。因此,设置参数α为–0.003486,流场大小设置为18 km×24 km,空间分辨率为100 m,雷达参数设置为表1中ERS-2SAR参数。

    图5(a)图5(b)分别是该涡旋的仿真SAR图像与获取的真实SAR图像,仿真时设定的雷达参数、海面风场条件与真实SAR图像获取条件完全一致。对比图5(a)图5(b)两图发现,仿真SAR图像与真实SAR图像中的涡旋臂形状几乎一致,涡旋臂的亮暗特征也基本吻合。从逆时针方向看,涡旋臂由外到内的亮暗特征均为亮-暗-亮,这种亮暗特征的变化是由雷达后向散射引起的布拉格波谱密度变化导致的[7]。这初步验证了仿真方法的正确性。

    图  5  相同参数下仿真SAR图像与ERS-2 SAR图像对比图
    Figure  5.  Comparison of simulated SAR image and ERS-2 SAR image under the same parameters

    为了进一步验证仿真方法的正确性,定量地描述仿真SAR图像与真实SAR图像的中涡旋的相似程度,采用文献[9]中基于对数螺旋线边缘拟合的SAR图像涡旋信息提取方法,提取仿真SAR图像和真实SAR图像中涡旋的中心位置、直径及边缘长度,并加以比较。拟合及提取结果如图6所示,红色加号表示涡旋中心位置,黄色箭头表示涡旋直径,蓝色曲线表示涡旋边缘,具体数值如表2所示。

    图  6  仿真SAR图像与ERS-2 SAR图像涡旋信息提取
    Figure  6.  Eddy information extraction of simulated SAR image and ERS-2 SAR image
    表  2  涡旋信息提取结果
    Table  2.  Results of eddy information extraction
    SAR图像涡旋中心位置涡旋直径涡旋边缘长度
    仿真SAR图像(116,75)18.9 km35.7 km
    真实SAR图像(113,71)18.7 km35.4 km
    绝对/相对误差(3,4)/—0.2 km/0.0110.3 km/0.008
    下载: 导出CSV 
    | 显示表格

    对比仿真SAR图像与真实SAR图像的涡旋信息提取结果,可以发现两幅图像中涡旋的中心位置较为一致,方位向和距离向上仅相差3~4个像素点,涡旋直径及边缘长度的相对误差均不超过0.011,证明本文提出的基于Burgers-Rott涡旋模型的涡旋SAR图像仿真方法能够实现气旋式涡旋的SAR图像仿真,并且仿真SAR图像与真实SAR图像能够较好地吻合。

    3.1节对气旋式涡旋进行了仿真实验,本节将针对反气旋式涡旋进行仿真实验。图7是一幅ENVISAT-1 ASAR图像,图像获取时间为2010.06.11, 01:51:48 UTC,获取地点在吕宋海峡。图中方框2处为一个反气旋式涡旋,旋转方向为顺时针。将方框2处的涡旋截取出来,截取图像尺寸为24 km×24 km,如图8所示。ENVISAT-1 ASAR图像的具体雷达参数如表3所示。

    图  7  吕宋海峡获取的ENVISAT-1 ASAR图像,获取时间为2010.06.11, 01:51:48 UTC
    Figure  7.  ENVISAT-1 ASAR image of the Luson Strait obtained on June 11, 2010 at 01:51:48 UTC
    图  8  方框2处截取的涡旋SAR图像
    Figure  8.  Enlargement of the eddy in Frame 2
    表  3  ENVISAT-1 ASAR参数
    Table  3.  ASAR parameters of ENVISAT-1
    参数数值
    极化方式HH
    波段C
    入射角26.7°
    平台高度800 km
    平台速度7455 m/s
    下载: 导出CSV 
    | 显示表格

    从ECMWF获取2010.06.11, 03:00:00时刻的风场再分析资料,分辨率为0.125°×0.125°。根据数据显示,涡旋区域附近的风速为2.1 m/s,风向为45°。从GODAS获取相同位置的5日平均流场再分析资料,分辨率为(1/3)°×1°。根据数据显示,涡旋区域附近的流速为0.23 m/s。因此,设置参数α为0.000657,流场大小设置为24 km×24 km,空间分辨率为100 m,雷达参数设置为表3中ENVISAT-1 ASAR参数。

    图9(a)图9(b)分别是该涡旋的仿真SAR图像与真实SAR图像,仿真时设定的雷达参数、海面风场条件与真实SAR图像完全一致。对比图9(a)图9(b)两图发现,仿真SAR图像与真实SAR图像中的涡旋形状基本一致,涡旋臂的亮暗特征也较为吻合。从顺时针方向看,涡旋臂从外到内均呈现为由暗到亮的特征。该结果与Lyzenga等人[6]研究结果一致,初步验证了仿真方法的正确性。

    图  9  相同参数下仿真SAR图像与ENVISAT-1 ASAR图像对比图
    Figure  9.  Comparison of simulated SAR image and ENVISAT-1 ASAR image under the same parameters

    为了定量地描述仿真SAR图像与真实SAR图像的中涡旋的相似性,同样采用3.1节中的分析方法,得到涡旋拟合结果如图10所示,提取的涡旋信息如表4所示。

    图  10  仿真SAR图像与ENVISAT-1 ASAR图像涡旋信息提取
    Figure  10.  Eddy information extraction of simulated SAR image and ENVISAT-1 ASAR image
    表  4  涡旋信息提取结果
    Table  4.  Results of eddy information extraction
    SAR图像涡旋中心位置涡旋直径涡旋边缘尺寸
    仿真SAR图像(144,78)24.0 km49.4 km
    真实SAR图像(147,81)23.9 km49.7 km
    绝对/相对误差(3,3)/—0.1 km/0.0040.3 km/0.006
    下载: 导出CSV 
    | 显示表格

    对比仿真SAR图像与真实SAR图像的涡旋信息提取结果,可以发现两幅图像中涡旋的中心位置较为接近,方位向和距离向上均相差3个像素点,涡旋直径及边缘尺寸相对误差均不超过0.006,这进一步验证了仿真方法的正确性,说明本文提出的基于Burgers-Rott涡旋模型的涡旋SAR图像仿真方法能够实现反气旋式涡旋的SAR图像仿真。

    本文基于Burgers-Rott涡旋模型,提出了一种涡旋SAR图像仿真方法,并分别针对气旋式涡旋与反气旋式涡旋进行了仿真实验。通过将仿真SAR图像与真实SAR图像对比验证发现,本文提出的涡旋SAR图像仿真方法能够实现气旋式涡旋和反气旋式涡旋的SAR图像仿真,且仿真SAR图像与真实SAR图像能够较好地吻合。

    通过涡旋SAR图像仿真实验发现,无论气旋式涡旋还是反气旋式涡旋,其涡旋臂在SAR图像中都会呈现亮暗交替变化的特征。其中,气旋式涡旋臂呈现两个亮暗交替周期,即亮-暗-亮;反气旋式涡旋臂呈现一个亮暗交替周期,即暗-亮。这是由于这两个涡旋臂的曲率不同,气旋式涡旋臂曲率较大,亮暗交替周期较多,反气旋式涡旋臂曲率较小,亮暗交替周期较少。

    由于涡旋在SAR成像时会受到各种海洋环境因素的影响,通过真实SAR图像难以完全解译涡旋的特征。本文提出的SAR图像仿真方法能够弥补这种不足,可以清晰地获取涡旋的尺度、亮暗等特征,这为海洋涡旋特征的解译和提取提供了便利。

  • 图  1  不同标注方式比较

    Figure  1.  Comparison of different annotation methods

    图  2  舰船目标航向和长宽比信息

    Figure  2.  The course and aspect ratio information of ship target

    图  3  斜框定义方式

    Figure  3.  Rotated bounding box definition method

    图  4  标注流程图

    Figure  4.  Annotation procedure

    图  5  数据预处理流程

    Figure  5.  Data preprocessing procedure

    图  6  数据切片方式

    Figure  6.  Data cutting method

    图  7  人工修正示例

    Figure  7.  Manual modification examples

    图  8  Google Earth纠正

    Figure  8.  Google Earth correction

    图  9  标注示例

    Figure  9.  Annotation example

    图  10  RSDD-SAR数据集结构

    Figure  10.  Structure of RSDD-SAR dataset

    图  11  数据集舰船角度和长宽比分布图

    Figure  11.  Angle and aspect ratio distribution maps of ships in RSDD-SAR dataset

    图  12  RSDD-SAR数据集典型场景

    Figure  12.  Typical scenarios in RSDD-SAR

    图  13  不同算法检测结果((a) 标注;(b) R-Faster R-CNN-ResNet-101检测结果;(c) RoI Transformer-ResNet-101检测结果;(d) Gliding Vertex-ResNet-101检测结果;(e) Oriented R-CNN-ResNet-101检测结果;(f) R-RetinaNet-ResNet-101检测结果;(g) S2ANet-ResNet-101检测结果;(h) R3Det-ResNet-101检测结果;(i) Redet-ReResNet-50检测结果;(j) DRBox-V2检测结果;(k) R-FCOS-ResNet-101检测结果;(l) CAF-ResNet-101检测结果;(m) Polar Encoding-ResNet-101检测结果)

    Figure  13.  Detection results of different methods ((a) Annotations; (b) Detection results of R-Faster R-CNN-ResNet-101; (c) Detection results of RoI Transformer-ResNet-101; (d) Detection results of Gliding Vertex-ResNet-101; (e) Detection results of Oriented R-CNN-ResNet-101; (f) Detection results of R-RetinaNet-ResNet-101; (g) Detection results of S2ANet-ResNet-101; (h) Detection results of R3Det-ResNet-101; (i) Detection results of Redet-ReResNet-50; (j) Detection results of DRBox-V2; (k) Detection results of R-FCOS-ResNet-101; (l) Detection results of CAF-ResNet-101; (m) Detection results of Polar Encoding-ResNet-101)

    图  14  SSDD数据集测试结果

    Figure  14.  Testing results on SSDD

    图  15  S2ANet AP50曲线

    Figure  15.  AP50 curves of S2ANet

    图  16  未剪裁大图测试

    Figure  16.  Testing on uncropped images

    1  RSDD-SAR数据集发布地址

    1.  Release address of RSDD-SAR dataset

    表  1  现有公开数据集详细信息

    Table  1.   Detailed information of existing public datasets

    数据集公开时间数据来源分辨率(m)图像尺寸图像数量任务
    OpenSARShip-1.0
    OpenSARShip-2.0
    2017Sentinel-12.7×22~
    3.5×22,
    20×22
    9×9~445×445
    1×1~445×445
    11346
    34528
    识别
    SSDD2017RadarSat-2
    TerraSAR-X
    Sentinel-1
    1~15190~6681160垂直边框检测
    斜框检测
    语义分割
    SAR-Ship-Dataset2019Gaofen-3
    Sentinel-1
    3~25256×25643918垂直边框检测
    AIR-SARShip-1.0
    AIR-SARShip-2.0
    2019Gaofen-31, 33000×3000
    1000×1000
    31
    300
    垂直边框检测
    FUSAR-Ship2020Gaofen-31.700×1.124~
    1.754×1.124
    512×5125243识别
    HRSID2021Sentinel-1
    TerraSAR-X
    0.5, 1.0, 3.0800×8005604垂直边框检测
    语义分割
    LS-SSDD-v1.02021Sentinel-15×2024000×1600015垂直边框检测
    SRSDD-v1.02021Gaofen-311024×1024666斜框检测
    识别
    RSDD-SAR2022Gaofen-3
    TerraSAR-X
    2~20512×5127000斜框检测
    下载: 导出CSV

    表  2  原始数据详细信息

    Table  2.   Detailed information of the raw data

    景号传感器经度纬度成像时间成像模式分辨率(m)极化方式产品级别入射角(°)成像幅宽(km)编号
    1GF-3E121.0N37.920171017FSII10HH,HVL1A19~501000-1
    下载: 导出CSV

    表  3  依据COCO划分标准RSDD-SAR舰船尺寸统计

    Table  3.   Area statistics of ships in RSDD-SAR according to COCO

    目标类型数量比例
    Small (area < 322)833181.17%
    Medium (322 < area < 962)192718.78%
    Large (area > 962)50.05%
    下载: 导出CSV

    表  4  依据文献[13]划分标准RSDD-SAR舰船尺寸统计

    Table  4.   Area statistics of ships in RSDD-SAR according to Ref. [13]

    目标类型数量比例
    Small (area < 625)614659.88%
    Medium (625 ≤ area ≤ 7500)410940.04%
    Large (area > 7500)80.08%
    下载: 导出CSV

    表  5  不同算法实验结果

    Table  5.   Experimental results of different algorithms

    模型骨干网络Params (M)FPSInshore AP50(%)Offshore AP50(%)AP50(%)
    两阶段R-Faster R-CNNResNet-10160.4513.2850.9991.4784.10
    ResNet-5041.4115.8748.7890.9383.29
    ResNet-1828.3022.3643.1888.5780.30
    RoI TransformerResNet-10174.378.1064.4094.8589.48
    ResNet-5055.3211.9360.8394.3588.39
    ResNet-1842.2113.7156.5193.3086.60
    Gliding VertexResNet-10160.4513.3262.2493.5088.16
    ResNet-5041.4116.8255.9391.6585.55
    ResNet-1828.2922.3351.4891.4984.63
    Oriented R-CNNResNet-10160.3421.9066.7790.2888.85
    ResNet-5041.3526.6065.9290.2188.84
    ResNet-1828.2834.3061.8290.0587.50
    ReDetReResNet-5031.5715.9061.9490.3488.40
    单阶段R-RetinaNetResNet-10151.4915.3335.7574.9267.89
    ResNet-5032.4422.3133.2074.0666.66
    ResNet-1819.3834.1530.1072.7465.09
    S2ANetResNet-10155.5015.7466.4394.9490.06
    ResNet-5036.4523.4663.2793.1487.91
    ResNet-1819.8532.0659.6192.5086.88
    R3DetResNet-10160.8024.1057.7390.0980.92
    ResNet-5041.8129.3056.8790.1680.87
    ResNet-1825.2537.6054.9289.6980.44
    DRBox-V2VGG1615.9128.2857.7991.2885.63
    无锚框R-FCOSResNet-10151.2118.8556.1793.7987.31
    ResNet-5032.1731.3950.0293.0985.48
    ResNet-1819.1142.0149.4892.3384.78
    CFAResNet-10155.8225.8067.3590.3389.46
    ResNet-5036.8336.6066.4090.4789.31
    ResNet-1820.2752.2067.3590.2788.97
    Polar EncodingResNet-10171.8316.7162.0289.9987.88
    ResNet-5052.8317.5659.6990.1287.31
    ResNet-1813.3627.4858.0589.3185.28
    下载: 导出CSV

    表  6  泛化能力测试

    Table  6.   Generalization ability testing results

    模型训练集验证集验证集AP50(%)测试集512×512
    AP50(%)
    测试集800×800
    AP50(%)
    S2ANet-ResNet-101RSDD-SAR训练集RSDD-SAR测试集90.0657.47(–32.59)63.04(–27.02)
    SSDD训练集SSDD测试集90.5236.24(–54.28)47.87(–42.65)
    S2ANet-ResNet-50RSDD-SAR训练集RSDD-SAR测试集87.9156.04(–31.87)63.15(–24.76)
    SSDD训练集SSDD测试集92.7341.81(–50.92)51.83(–40.90)
    S2ANet-ResNet-18RSDD-SAR训练集RSDD-SAR测试集86.8855.73(–31.15)62.04(–24.84)
    SSDD训练集SSDD测试集90.3034.52(–55.78)48.89(–41.41)
    下载: 导出CSV

    表  7  未剪裁大图测试结果

    Table  7.   Results on uncropped images

    模型训练集验证集验证集AP50(%)未剪裁大图AP50(%)
    S2ANet-ResNet-101RSDD-SAR训练集RSDD-SAR测试集90.0665.97(–24.09)
    SSDD训练集SSDD测试集90.5251.04(–39.48)
    下载: 导出CSV

    1  RSDD-SAR数据集详细信息

    1.   RSDD-SAR dataset information in detail

    景号传感器经度纬度时间成像模式分辨率(m)极化方式产品级别入射角(°)成像幅宽(km)编号
    1GF-3E121.0N37.920171017FSII10HH,HVL1A19~501000-1
    2GF-3E119.3N37.220210809UFS3DHL1A20~50302
    3GF-3E121.3N37.520180901FSI5HH,HVL1A19~50503-4
    4GF-3E120.5N37.920210228FSI5VH,VVL1A19~50505-6
    5GF-3E121.0N35.820210228FSI5VH,VVL1A19~50507-8
    6GF-3E119.1N38.220210619FSI5DVL1A19~50509
    7GF-3E120.5N37.820210526SS25HH,HVL1A17~5013010-11
    8GF-3E120.5N35.620210716SS25HH,HVL1A17~5013012-13
    9GF-3E122.9N37.520191231UFS3DHL1A20~503014
    10GF-3E119.8N35.020210228UFS3DHL1A20~503015
    11GF-3E119.8N35.320210228UFS3DHL1A20~503016
    12GF-3E120.4N37.920210228UFS3DHL1A20~503017
    13GF-3E120.9N37.920210718FSII10HH,HVL1A19~5010018-19
    14GF-3E120.3N36.020210305FSI5VH,VVL1A19~505020-21
    15GF-3E121.6N37.620210802FSI5HH,HVL1A19~505022-23
    16GF-3E122.5N37.520210130SS25VH,VVL1A17~5013024-25
    17GF-3E120.3N35.620210504SS25VH,VVL1A17~5013026-27
    18GF-3E120.6N36.220210519SS25HH,HVL1A17~5013028-29
    19GF-3E121.0N36.020210612SS25VH,VVL1A17~5013030-31
    20GF-3E121.5N38.220210612SS25VH,VVL1A17~5013032-33
    21GF-3E120.1N36.020210723SS25HH,HVL1A17~5013034-35
    22GF-3E120.6N38.120210723SS25HH,HVL1A17~5013036-37
    23GF-3E119.8N35.020210130UFS3DHL1A20~503038
    24GF-3E119.8N35.320210130UFS3DHL1A20~503039
    25GF-3E119.9N35.620210130UFS3DHL1A20~503040
    26GF-3E120.4N37.920210130UFS3DHL1A20~503041
    27GF-3E121.6N37.620210427UFS3DHL1A20~503042
    28GF-3E118.8N38.120210521UFS3DHL1A20~503043
    29GF-3E122.1N37.520210101FSI5VH,VVL1A19~505044-45
    30GF-3E121.1N35.820210113FSI5VH,VVL1A19~505046-47
    31GF-3E120.9N36.120210125FSI5VH,VVL1A19~505048-49
    32GF-3E120.3N38.220210204FSI5VH,VVL1A19~505050-51
    33GF-3E120.7N36.120210329SS25VH,VVL1A17~5013052-53
    34GF-3E119.6N37.920210417SS25VH,VVL1A17~5013054-55
    35TerraSAR-XE056N2720080311SL2HHSSC20~551056
    36TerraSAR-XE100N1320111209SM3HHMGD20~4530×5057
    37TerraSAR-XE013S0820190730SM3HHEEC20~4530×5058
    38TerraSAR-XW090N2920100516SM3HHEEC20~4530×5059
    39TerraSAR-XW090N2920120829SM3HHEEC20~4530×5060
    40TerraSAR-XW090N2920170807SM3HHSSC20~4530×5061
    41TerraSAR-XE023N3720180416SM3HHSSC20~4530×5062
    42TerraSAR-XE023N3720160830SM3HHSSC20~4530×5063
    43TerraSAR-XE023N3720170305SM3HHSSC20~4530×5064
    44TerraSAR-XE023N3720170623SM3HHSSC20~4530×5065
    45TerraSAR-XE023N3720170828SM3HHSSC20~4530×5066
    46TerraSAR-XE023N3720171022SM3HHSSC20~4530×5067
    47TerraSAR-XE023N3720171205SM3HHSSC20~4530×5068
    48TerraSAR-XE023N3720180209SM3HHSSC20~4530×5069
    49TerraSAR-XE023N3720180621SM3HHSSC20~4530×5070
    50TerraSAR-XE023N3720180815SM3HHSSC20~4530×5071
    51TerraSAR-XE023N3720181020SM3HHSSC20~4530×5072
    52TerraSAR-XE023N3720190127SM3HHSSC20~4530×5073
    53TerraSAR-XE023N3720190323SM3HHSSC20~4530×5074
    54TerraSAR-XE023N3720190619SM3HHSSC20~4530×5075
    55TerraSAR-XE023N3720190904SM3HHSSC20~4530×5076
    56TerraSAR-XE023N3720160614SM3HHSSC20~4530×5077
    57TerraSAR-XE121N3120151016SM3VVSSC20~4530×5078
    58TerraSAR-XE121N3120160614SM3VVSSC20~4530×5079
    59TerraSAR-XE121N3120160717SM3VVSSC20~4530×5080
    60TerraSAR-XE121N3120160819SM3VVSSC20~4530×5081
    61TerraSAR-XE121N3120151118SM3VVSSC20~4530×5082
    62TerraSAR-XE121N3120151210SM3VVSSC20~4530×5083
    63TerraSAR-XE121N3120160101SM3VVSSC20~4530×5084
    64TerraSAR-XE121N3120160203SM3VVSSC20~4530×5085
    65TerraSAR-XE121N3120160409SM3VVSSC20~4530×5086
    66TerraSAR-XE121N3120160512SM3VVSSC20~4530×5087
    67TerraSAR-XE119N3720151220SM3HHSSC20~4530×5088
    68TerraSAR-XE023N3720120305SM3HHSSC20~4530×5089
    69TerraSAR-XE023N3720120601SM3HHSSC20~4530×5090
    70TerraSAR-XE023N3720120908SM3HHSSC20~4530×5091
    71TerraSAR-XE023N3720121205SM3HHSSC20~4530×5092
    72TerraSAR-XE023N3720130314SM3HHSSC20~4530×5093
    73TerraSAR-XE023N3720151129SM3HHSSC20~4530×5094
    74TerraSAR-XE023N3720160225SM3HHSSC20~4530×5095
    75TerraSAR-XE023N3720160420SM3HHSSC20~4530×5096
    76GF-3E119.3N35.020200619FSII10HH,HVL1A19~5010097-98
    77GF-3E120.1N38.020200619FSII10HH,HVL1A19~5010099-100
    78GF-3E118.4N38.020200711FSII10HH,HVL1A19~50100101-102
    79GF-3E118.0N38.120200718FSII10HH,HVL1A19~50100103-104
    80GF-3E118.8N38.520200730FSII10HH,HVL1A19~50100105-106
    81GF-3E119.5N34.920200730FSII10HH,HVL1A19~50100107-108
    82GF-3E118.9N37.920200804FSII10HH,HVL1A19~50100109-110
    83GF-3E117.9N38.620200809FSII10HH,HVL1A19~50100111-112
    84GF-3E118.5N38.220200809FSII10HH,HVL1A19~50100113-114
    85GF-3E120.2N35.020201001FSII10VH,VVL1A19~50100115-116
    86GF-3E120.5N36.020201001FSII10VH,VVL1A19~50100117-118
    87GF-3E121.0N38.020201001FSII10VH,VVL1A19~50100119-120
    88GF-3E119.7N35.420200804FSI5HH,HVL1A19~5050121-122
    89GF-3E119.8N35.020200804FSI5HH,HVL1A19~5050123-124
    90GF-3E120.8N38.420201128FSI5VH,VVL1A19~5050125-126
    91GF-3E120.9N37.920201128FSI5VH,VVL1A19~5050127-128
    92GF-3E121.3N36.020201128FSI5VH,VVL1A19~5050129-130
    93GF-3E118.1N38.220200525FSI5HH,HVL1A19~5050131-132
    94GF-3E120.2N35.720200602SS25VH,VVL1A17~50130133-134
    95GF-3E119.5N35.720200711FSII10VH,VVL1A19~50100135-136
    96GF-3E118.8N38.320200728FSII10HH,HVL1A19~50100137-138
    97GF-3E119.6N35.320200728FSII10HH,HVL1A19~50100139-140
    98GF-3E120.2N35.420200519SS25VH,VVL1A17~50130141-142
    99GF-3E119.9N37.720200521SS25VH,VVL1A17~50130143-144
    100GF-3E120.2N35.820200521SS25VH,VVL1A17~50130145-146
    101GF-3E120.4N34.920200521SS25VH,VVL1A17~50130147-148
    102GF-3E121.0N35.820200502FSII10VH,VVL1A19~50100149-150
    103GF-3E120.5N35.920200509FSII10VH,VVL1A19~50100151-152
    104GF-3E120.0N38.520200514FSII10VH,VVL1A19~50100153-154
    105GF-3E120.0N38.320200729FSII10HH,HVL1A19~50100155-156
    106GF-3E120.6N36.020201006FSII10VH,VVL1A19~50100157-158
    107GF-3E122.8N37.220200924QPSI8HH,HV,VH,VVL1A20~4130159-162
    108GF-3E120.0N35.420201030QPSI8HH,HV,VH,VVL1A20~4130163-166
    109GF-3E119.1N37.420200814UFS3DHL1A20~5030167
    110GF-3E119.2N38.020200814UFS3DHL1A20~5030168
    111GF-3E120.1N37.820200926UFS3DHL1A20~5030169
    112GF-3E120.5N36.020200926UFS3DHL1A20~5030170
    113GF-3E121.3N37.720201121UFS3DHL1A20~5030171
    114GF-3E121.6N36.620201121UFS3DHL1A20~5030172
    115GF-3E120.0N38.520201104FSII10VH,VVL1A19~50100173-174
    116GF-3E121.1N35.820201126FSI5VH,VVL1A19~5050175-176
    117GF-3E121.5N37.720201126FSI5VH,VVL1A19~5050177-178
    118GF-3E121.4N38.120200519SS25VH,VVL1A17~50130179-180
    119GF-3E120.9N35.420200531SS25VH,VVL1A17~50130181-182
    120GF-3E119.8N37.920200619SS25VH,VVL1A17~50130183-184
    121GF-3E120.4N35.120200619SS25VH,VVL1A17~50130185-186
    122GF-3E120.3N34.820200704SS25VH,VVL1A17~50130187-188
    123GF-3E120.5N35.820200704SS25VH,VVL1A17~50130189-190
    124GF-3E121.9N37.720201011UFS3DHL1A20~5030191
    125GF-3E118.0N38.320201111UFS3DHL1A20~5030192
    126GF-3E119.8N35.220210619FSI5DVL1A19~5050GF3
    127TerraSAR-XE119N3720151128SM3HHSSC20~4530×50Terra
    下载: 导出CSV
  • [1] LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–6.
    [2] ZHANG Xiaohan, WANG Haipeng, XU Congan, et al. A lightweight feature optimizing network for ship detection in SAR image[J]. IEEE Access, 2019, 7: 141662–141678. doi: 10.1109/ACCESS.2019.2943241
    [3] ZHANG Tianwen, ZHANG Xiaoling, SHI Jun, et al. Depthwise separable convolution neural network for high-speed SAR ship detection[J]. Remote Sensing, 2019, 11(21): 2483. doi: 10.3390/rs11212483
    [4] ZHANG Peng, TANG Jinsong, ZHONG Heping, et al. Self-trained target detection of radar and sonar images using automatic deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4701914. doi: 10.1109/TGRS.2021.3096011
    [5] 孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097

    SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
    [6] WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765
    [7] WEI Shunjun, ZENG Xiangfeng, QU Qizhe, et al. HRSID: A high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234–120254. doi: 10.1109/ACCESS.2020.3005861
    [8] ZHANG Tianwen, ZHANG Xiaoling, KE Xiao, et al. LS-SSDD-v1.0: A deep learning dataset dedicated to small ship detection from large-scale Sentinel-1 SAR images[J]. Remote Sensing, 2020, 12(18): 2997. doi: 10.3390/RS12182997
    [9] LEI Songlin, LU Dongdong, QIU Xiaolan, et al. SRSDD-v1.0: A high-resolution SAR rotation ship detection dataset[J]. Remote Sensing, 2021, 13(24): 5104. doi: 10.3390/rs13245104
    [10] HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672
    [11] LI Boying, LIU Bin, HUANG Lanqing, et al. OpenSARShip 2.0: A large-volume dataset for deeper interpretation of ship targets in Sentinel-1 imagery[C]. 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–5.
    [12] HOU Xiyue, AO Wei, SONG Qian, et al. FUSAR-Ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition[J]. Science China Information Sciences, 2020, 63(4): 140303. doi: 10.1007/s11432-019-2772-5
    [13] ZHANG Tianwen, ZHANG Xiaoling, LI Jianwei, et al. SAR ship detection dataset (SSDD): Official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690
    [14] European Space Agency[EB/OL]. https://www.esa.int/, 2022.
    [15] ITTVIS. ENVI-Image processing and analysis software solution[EB/OL]. https://www.ittvis.com/envi/, 2022.
    [16] PIE-SAR[EB/OL]. https://www.piesat.cn/product/PIE-SAR/index.html, 2022.
    [17] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The Pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303–338. doi: 10.1007/s11263-009-0275-4
    [18] HE Yishan, GAO Feo, WANG Jun, et al. Learning polar encodings for arbitrary-oriented ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 3846–3859. doi: 10.1109/JSTARS.2021.3068530
    [19] RoLabelImg: Label rotated rect on images for training[EB/OL].https://github.com/cgvict/roLabelImg, 2022.
    [20] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: Common objects in context[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 740–755.
    [21] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]. The 28th International Conference on Neural Information Processing Systems, Montreal, Canada, 2015: 91–99.
    [22] REDMON J and FARHADI A. YOLO9000: Better, faster, stronger[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6517–6525.
    [23] REDMON J and FARHADI A. YOLOv3: An incremental improvement[EB/OL]. https://arxiv.org/abs/1804.02767, 2018.
    [24] BOCHKOVSKIY A, WANG C Y, and LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934, 2020.
    [25] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 21–37.
    [26] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]. 2017 IEEE International Conference on Computer Vision, Venice, Italy, 2017: 2999–3007.
    [27] ZHOU Xingyi, WANG Dequan, and KRÄHENBÜHL P. Objects as points[EB/OL]. http://arxiv.org/abs/1904.07850, 2019.
    [28] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: Fully convolutional one-stage object detection[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, South Korea, 2019: 9626–9635.
    [29] DING Jian, XUE Nan, LONG Yang, et al. Learning RoI transformer for oriented object detection in aerial images[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 2844–2853.
    [30] XU Yongchao, FU Mingtao, WANG Qimeng, et al. Gliding vertex on the horizontal bounding box for multi-oriented object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(4): 1452–1459. doi: 10.1109/TPAMI.2020.2974745
    [31] XIE Xingxing, CHENG Gong, WANG Jiabao, et al. Oriented R-CNN for object detection[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 3500–3509.
    [32] HAN Jiaming, DING Jian, XUE Nan, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Montreal, Canada, 2021: 2785–2794.
    [33] HAN Jiaming, DING Jian, LI Jie, et al. Align deep features for oriented object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5602511. doi: 10.1109/TGRS.2021.3062048
    [34] YANG Xue, YAN Junchi, FENG Ziming, et al. R3Det: Refined single-stage detector with feature refinement for rotating object[C]. Thirty-Fifth AAAI Conference on Artificial Intelligence, Vancouver, Canada, 2021.
    [35] GUO Zonghao, LIU Chang, ZHANG Xiaosong, et al. Beyond bounding-box: Convex-hull feature adaptation for oriented and densely packed object detection[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 8788–8797.
    [36] AN Quanzhi, PAN Zongxu, LIU Lei, et al. DRBox-v2: An improved detector with rotatable boxes for target detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8333–8349. doi: 10.1109/TGRS.2019.2920534
    [37] HU Shimin, LIANG Dun, YANG Guoye, et al. Jittor: A novel deep learning framework with meta-operators and unified graph execution[J]. Science China Information Sciences, 2020, 63(12): 222103. doi: 10.1007/s11432-020-3097-4
    [38] ZHOU Yue, YANG Xue, ZHANG Gefan, et al. MMRotate: A rotated object detection benchmark using PyTorch[EB/OL]. https://github.com/open-mmlab/mmrotate, 2022.
    [39] GOYAL P, DOLLÁR P, GIRSHICK R, et al. Accurate, large minibatch SGD: Training ImageNet in 1 hour[EB/OL]. https://arxiv.org/abs/1706.02677, 2018.
    [40] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
  • 期刊类型引用(14)

    1. 薛雅丽,贺怡铭,崔闪,欧阳权. 基于改进YOLOv5的SAR图像有向舰船目标检测算法. 浙江大学学报(工学版). 2025(02): 261-268 . 百度学术
    2. 陈天鹏,胡建文. 基于深度学习的遥感图像旋转目标检测研究综述. 计算机应用研究. 2024(02): 329-340 . 百度学术
    3. 赵志成,蒋攀,王福田,肖云,李成龙,汤进. 基于深度学习的SAR弱小目标检测研究进展. 计算机系统应用. 2024(06): 1-15 . 百度学术
    4. 孙珊珊,张丽娟,赵辉. 基于边缘增强与注意力机制的SAR舰船检测模型. 电光与控制. 2024(08): 92-97+110 . 百度学术
    5. 张玉宁,贾渊,陈越. 改进RTMDet的SAR舰船检测算法. 计算机工程与应用. 2024(22): 314-322 . 百度学术
    6. 陈秋,邵长高,吕建军. 基于深度学习的海上船舶遥感识别方法对比分析. 地理空间信息. 2024(12): 74-78 . 百度学术
    7. 龚峻扬,付卫红,刘乃安. SAR图像目标轮廓增强预处理模块设计. 系统工程与电子技术. 2024(12): 4010-4017 . 百度学术
    8. 薛峰涛,孙天宇,杨益民,杨健. 基于全局特征融合的SAR图像旋转舰船目标检测算法. 系统工程与电子技术. 2024(12): 4044-4053 . 百度学术
    9. 谢兆哲,程永强,吴昊,王宏强. 基于Toeplitz矩阵特征值分解的SAR图像舰船目标检测方法. 信号处理. 2023(03): 496-504 . 百度学术
    10. 袁翔,程塨,李戈,戴威,尹文昕,冯瑛超,姚西文,黄钟泠,孙显,韩军伟. 遥感影像小目标检测研究进展. 中国图象图形学报. 2023(06): 1662-1684 . 百度学术
    11. 王旭,吴艳霞,张雪,洪瑞泽,李广生. 计算机视觉下的旋转目标检测研究综述. 计算机科学. 2023(08): 79-92 . 百度学术
    12. 胥小我,张晓玲,张天文,邵子康,徐彦钦,曾天娇. 基于自适应锚框分配与IOU监督的复杂场景SAR舰船检测. 雷达学报. 2023(05): 1097-1111 . 本站查看
    13. 于飞,隋正伟,邱凤婷,龚婷婷,赵旭东,刘子浩. SAR图像智能解译样本数据集构建进展综述. 网络安全与数据治理. 2023(S1): 97-105 . 百度学术
    14. 顾丹丹,廖意,王晓冰. 雷达目标特性知识引导的智能识别技术进展与思考. 制导与引信. 2022(04): 57-64 . 百度学术

    其他类型引用(15)

  • 加载中
图(17) / 表(8)
计量
  • 文章访问数: 5922
  • HTML全文浏览量: 3806
  • PDF下载量: 633
  • 被引次数: 29
出版历程
  • 收稿日期:  2022-01-09
  • 修回日期:  2022-05-17
  • 网络出版日期:  2022-06-08
  • 刊出日期:  2022-08-28

目录

/

返回文章
返回