Anti-interrupted Sampling Repeater Jamming Method for Interpulse and Intrapulse Frequency-agile Radar
-
摘要: 为提升雷达抗间歇采样干扰的能力,该文根据间歇采样转发干扰收发分时的特点,利用脉间-脉内捷变频波形的“主动”抗干扰优势,提出了一种基于分数阶傅里叶变换的并行干扰抑制方法。首先在时域对被干扰的子脉冲进行提取,并将提取到的信号进行切片处理,然后在分数阶傅里叶域利用窄带滤波器组对干扰进行抑制,最后构造匹配滤波器组进行分段脉冲压缩实现子脉冲积累。理论分析和仿真结果表明,所提方法可以有效对抗不同间歇采样干扰样式组成的多主瓣干扰,在高干信比条件下依然具有良好的抗干扰性能,极大提升了雷达的抗干扰能力。Abstract: To improve radar’s anti-Interrupted Sampling Repeater Jamming (ISRJ) capability, this study proposes a parallel interference suppression method based on the fractional Fourier transform, which uses the “active” anti-jamming capability of the interpulse and intrapulse frequency-agile waveform according to the characteristics of ISRJ transceiver splitting. First, the interfered sub-pulses are extracted in the time domain, and the extracted signals are sliced. Then, the narrowband filter banks are used to suppress the interference in the fractional Fourier domain. Finally, matching filter banks are constructed to achieve subpulse integration by applying segmented pulse compression. The theoretical analysis and simulation results show that the proposed method effectively suppresses multi-mainlobe interferences comprising different types of ISRJ and exhibits good anti-interference performance under a high jamming-to-signal ratio, which considerably improves the anti-jamming capability of the radar.
-
表 1 雷达波形参数设置
Table 1. Radar waveform parameter setting
参数 数值 参数 数值 脉冲数 $N$ 64 子脉冲数 $M$ 4 跳频数 $N$ 64 脉内跳频间隔 $\Delta {f_{\text{s}}}$ 5 MHz 脉间跳频间隔 $\Delta f$ 9 MHz 子脉冲带宽 ${B_{\text{s}}}$ 5 MHz 脉冲重复周期 ${T_{\text{r}}}$ 40 μs 子脉冲脉宽 ${T_{\text{s}}}$ 1 μs 中心载频 ${f_0}$ 14 GHz 采样率 ${f_{\text{s}}}$ 80 MHz -
[1] WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series F:Information Sciences, 2007, 50(1): 113–123. doi: 10.1007/s11432-007-2017-y [2] 全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11QUAN Yinghui, FANG Wen, SHA Minghui, et al. Present situation and prospects of frequency agility radar wave form countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11 [3] 刘智星, 全英汇, 沙明辉, 等. 载频-重频联合捷变雷达目标参数估计方法[J/OL]. 系统工程与电子技术. http://kns.cnki.net/kcms/detail/11.2422.TN.20211215.0856.002.html, 2021.LIU Zhixing, QUAN Yinghui, SHA Minghui, et al. Target parameter estimation for frequency agile and PRF agile radar[J/OL]. Systems Engineering and Electronics. http://kns.cnki.net/kcms/detail/11.2422.TN.20211215.0856.002.html, 2021. [4] AKHTAR J. Orthogonal block coded ECCM schemes against repeat radar jammers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1218–1226. doi: 10.1109/TAES.2009.5259195 [5] YU Muyao, DONG Shengbo, DUAN Xiangyu, et al. A novel interference suppression method for interrupted sampling repeater jamming based on singular spectrum entropy function[J]. Sensors, 2019, 19(1): 136. doi: 10.3390/s19010136 [6] HANBALI S B S. Technique to counter improved active echo cancellation based on ISRJ with frequency shifting[J]. IEEE Sensors Journal, 2019, 19(20): 9194–9199. doi: 10.1109/JSEN.2019.2925004 [7] WEI Zhenhua, LIU Zhen, PENG Bo, et al. ECCM scheme against interrupted sampling repeater jammer based on parameter-adjusted waveform design[J]. Sensors, 2018, 18(4): 1141. doi: 10.3390/s18041141 [8] CHEN Jian, WU Wenzhen, XU Shiyou, et al. Band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658 [9] XIONG Wei, ZHANG Gong, and LIU Wenbo. Efficient filter design against interrupted sampling repeater jamming for wideband radar[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017(1): 9. doi: 10.1186/s13634-017-0446-3 [10] GONG Shixian, WEI Xizhang, and LI Xiang. ECCM scheme against interrupted sampling repeater jammer based on time-frequency analysis[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 996–1003. doi: 10.1109/JSEE.2014.00114 [11] ZHOU Chao, LIU Feifeng, and LIU Quanhua. An adaptive transmitting scheme for interrupted sampling repeater jamming suppression[J]. Sensors, 2017, 17(11): 2480. doi: 10.3390/s17112480 [12] 周畅, 汤子跃, 余方利, 等. 基于脉内正交的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06ZHOU Chang, TANG Ziyue, YU Fangli, et al. Anti intermittent sampling repeater jamming method based on intrapulse orthogonality[J]. Systems Engineering and Electronics, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06 [13] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114 [14] HUAN Sha, DAI Gane, LUO Gaoyong, et al. Bayesian compress sensing based countermeasure scheme against the interrupted sampling repeater jamming[J]. Sensors, 2019, 19(15): 3279. doi: 10.3390/s19153279 [15] LI Feng, HAN Xue, LI Yang, et al. Interrupted-sampling repeater jamming (ISRJ) suppression based on cyclostationarity[C]. IET International Radar Conference (IET IRC 2020). 2020: 793–797. [16] 张建中, 穆贺强, 文树梁, 等. 基于LFM分段脉冲压缩的抗间歇采样转发干扰方法[J]. 电子与信息学报, 2019, 41(7): 1712–1720. doi: 10.11999/JEIT180851ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling repeater jamming method based on LFM segmented pulse compression[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1712–1720. doi: 10.11999/JEIT180851 [17] 张建中, 穆贺强, 文树梁, 等. 基于脉内LFM-Costas频率步进的抗间歇采样干扰方法[J]. 系统工程与电子技术, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling jamming method based on intra-pulse LFM-Costas frequency stepping[J]. Systems Engineering and Electronics, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03 [18] 张建中, 穆贺强, 文树梁, 等. 基于脉内步进LFM时频分析的抗间歇采样干扰方法[J]. 北京理工大学学报, 2020, 40(5): 543–551. doi: 10.15918/j.tbit1001-0645.2018.202ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling repeater jamming method based on stepped LFM joint time-frequency analysis[J]. Transactions of Beijing institute of Technology, 2020, 40(5): 543–551. doi: 10.15918/j.tbit1001-0645.2018.202 [19] 万鹏程, 白渭雄, 付孝龙. 基于FrFT的LFM间歇采样转发干扰对抗方法[J]. 火力与指挥控制, 2018, 43(10): 35–39. doi: 10.3969/j.issn.1002-0640.2018.10.007WAN Pengcheng, BAI Weixiong, and FU Xiaolong. Fractional Fourier transform-based LFM radars for countering interrupted-sampling repeater jamming[J]. Fire Control &Command Control, 2018, 43(10): 35–39. doi: 10.3969/j.issn.1002-0640.2018.10.007 [20] 董淑仙, 全英汇, 沙明辉, 等. 捷变频雷达联合脉内频率编码抗间歇采样干扰[J/OL]. 系统工程与电子技术. http://kns.cnki.net/kcms/detail/11.2422.TN.20210910.1808.015.html, 2021.DONG Shuxian, QUAN Yinghui, SHA Minghui, et al. Frequency agile radar combined with intra-pulse frequency coding to resist intermittent sampling jamming[J/OL]. Systems Engineering and Electronics. http://kns.cnki.net/kcms/detail/11.2422.TN.20210910.1808.015.html, 2021. [21] QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421 [22] 陶然, 邓兵, 王越. 分数阶FOURIER变换在信号处理领域的研究进展[J]. 中国科学E辑: 信息科学, 2006, 36(2): 113–136. doi: 10.3969/j.issn.1674-7259.2006.02.001TAO Ran, DENG Bing, and WANG Yue. Research progress of the fractional Fourier transform in signal processing[J]. Science in China:Series F Information Sciences, 2006, 36(2): 113–136. doi: 10.3969/j.issn.1674-7259.2006.02.001