脉间-脉内捷变频雷达抗间歇采样干扰方法

刘智星 杜思予 吴耀君 沙明辉 邢孟道 全英汇

金添, 宋勇平. 超宽带雷达建筑物结构稀疏成像[J]. 雷达学报, 2018, 7(3): 275-284. doi: 10.12000/JR18031
引用本文: 刘智星, 杜思予, 吴耀君, 等. 脉间-脉内捷变频雷达抗间歇采样干扰方法[J]. 雷达学报, 2022, 11(2): 301–312. doi: 10.12000/JR22001
Jin Tian, Song Yongping. Sparse Imaging of Building Layouts in Ultra-wideband Radar[J]. Journal of Radars, 2018, 7(3): 275-284. doi: 10.12000/JR18031
Citation: LIU Zhixing, DU Siyu, WU Yaojun, et al. Anti-interrupted sampling repeater jamming method for interpulse and intrapulse frequency-agile radar[J]. Journal of Radars, 2022, 11(2): 301–312. doi: 10.12000/JR22001

脉间-脉内捷变频雷达抗间歇采样干扰方法

DOI: 10.12000/JR22001
基金项目: 国家自然科学基金(61772397),陕西省杰出青年科学基金(2021JC-23),陕西省科技创新团队(2019TD-002)
详细信息
    作者简介:

    刘智星(1993–),男,博士研究生,主要研究方向为捷变相参雷达信号处理及其抗干扰

    杜思予(1998–),女,硕士研究生,主要研究方向为雷达波形优化及抗干扰

    吴耀君(1993–),男,博士研究生,副研究员,主要研究方向为捷变雷达抗干扰、雷达目标特性识别、新体制雷达

    沙明辉(1986–),男,研究员,硕士,主要研究方向为雷达系统设计和雷达电子对抗

    邢孟道(1974–),男,教授,博士,2002年在西安电子科技大学获得博士学位,现担任中国电子学会会士,《雷达学报》《电子与信息学报》等期刊编委,IEEE TGRS副主编,IEEE GRSM客座编辑。主要研究方向为SAR/ISAR成像和动目标检测等

    全英汇(1981–),男,博士,教授,2012年在西安电子科技大学获得博士学位,国家级领军人才、陕西省杰青、西安市青年科技人才。主要研究方向为电磁博弈对抗、敏捷雷达、雷达遥感等

    通讯作者:

    全英汇 yhquan@mail.xidian.edu.cn

  • 责任主编:胡卫东 Corresponding Editor: HU Weidong
  • 中图分类号: TN972

Anti-interrupted Sampling Repeater Jamming Method for Interpulse and Intrapulse Frequency-agile Radar

Funds: The National Natural Science Foundation of China (61772397), The Shaanxi Provincial Science Fund for Distinguished Young Scholars (2021JC-23), The Science and Technology Innovation Team of Shaanxi Province (2019TD-002)
More Information
  • 摘要: 为提升雷达抗间歇采样干扰的能力,该文根据间歇采样转发干扰收发分时的特点,利用脉间-脉内捷变频波形的“主动”抗干扰优势,提出了一种基于分数阶傅里叶变换的并行干扰抑制方法。首先在时域对被干扰的子脉冲进行提取,并将提取到的信号进行切片处理,然后在分数阶傅里叶域利用窄带滤波器组对干扰进行抑制,最后构造匹配滤波器组进行分段脉冲压缩实现子脉冲积累。理论分析和仿真结果表明,所提方法可以有效对抗不同间歇采样干扰样式组成的多主瓣干扰,在高干信比条件下依然具有良好的抗干扰性能,极大提升了雷达的抗干扰能力。

     

  • 图  1  间歇采样转发干扰示意图

    Figure  1.  Schematic diagram of ISRJ

    图  2  脉间-脉内捷变频波形时频图

    Figure  2.  Time-frequency diagram of inter-and-intra-pulse frequency agile waveform

    图  3  LFM回波信号时频图

    Figure  3.  Time-frequency diagram of LFM echo signal

    图  4  脉内捷变频回波信号时频图

    Figure  4.  Time-frequency diagram of intra-pulse frequency agile echo signal

    图  5  LFM信号分数阶傅里叶域频谱特征

    Figure  5.  Spectral characteristics in fractional Fourier domain of LFM signal

    图  6  分数阶傅里叶域并行干扰抑制流程图

    Figure  6.  Flow chart of parallel interference suppression in fractional Fourier domain

    图  7  间歇采样直接转发干扰抑制结果

    Figure  7.  ISRJ-DF suppression results

    图  8  间歇采样重复转发式干扰抑制结果

    Figure  8.  ISRJ-RF suppression results

    图  9  仿真实验2结果

    Figure  9.  Simulation 2 results

    图  10  干扰机非同步采样仿真结果

    Figure  10.  Simulation results of asynchronous sampling by jammer

    图  11  不同子脉冲数分段脉压结果

    Figure  11.  Pulse compression results of different sub-pulse numbers

    图  12  主副瓣比随信干比变化关系曲线

    Figure  12.  The curve of main-lobe to sidelobe ratio with SIR

    表  1  雷达波形参数设置

    Table  1.   Radar waveform parameter setting

    参数数值参数数值
    脉冲数 N64子脉冲数 M4
    跳频数 N64脉内跳频间隔 Δfs5 MHz
    脉间跳频间隔 Δf9 MHz子脉冲带宽 Bs5 MHz
    脉冲重复周期 Tr40 μs子脉冲脉宽 Ts1 μs
    中心载频 f014 GHz采样率 fs80 MHz
    下载: 导出CSV
  • [1] WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series F:Information Sciences, 2007, 50(1): 113–123. doi: 10.1007/s11432-007-2017-y
    [2] 全英汇, 方文, 沙明辉, 等. 频率捷变雷达波形对抗技术现状与展望[J]. 系统工程与电子技术, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11

    QUAN Yinghui, FANG Wen, SHA Minghui, et al. Present situation and prospects of frequency agility radar wave form countermeasures[J]. Systems Engineering and Electronics, 2021, 43(11): 3126–3136. doi: 10.12305/j.issn.1001-506X.2021.11.11
    [3] 刘智星, 全英汇, 沙明辉, 等. 载频-重频联合捷变雷达目标参数估计方法[J/OL]. 系统工程与电子技术. http://kns.cnki.net/kcms/detail/11.2422.TN.20211215.0856.002.html, 2021.

    LIU Zhixing, QUAN Yinghui, SHA Minghui, et al. Target parameter estimation for frequency agile and PRF agile radar[J/OL]. Systems Engineering and Electronics. http://kns.cnki.net/kcms/detail/11.2422.TN.20211215.0856.002.html, 2021.
    [4] AKHTAR J. Orthogonal block coded ECCM schemes against repeat radar jammers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1218–1226. doi: 10.1109/TAES.2009.5259195
    [5] YU Muyao, DONG Shengbo, DUAN Xiangyu, et al. A novel interference suppression method for interrupted sampling repeater jamming based on singular spectrum entropy function[J]. Sensors, 2019, 19(1): 136. doi: 10.3390/s19010136
    [6] HANBALI S B S. Technique to counter improved active echo cancellation based on ISRJ with frequency shifting[J]. IEEE Sensors Journal, 2019, 19(20): 9194–9199. doi: 10.1109/JSEN.2019.2925004
    [7] WEI Zhenhua, LIU Zhen, PENG Bo, et al. ECCM scheme against interrupted sampling repeater jammer based on parameter-adjusted waveform design[J]. Sensors, 2018, 18(4): 1141. doi: 10.3390/s18041141
    [8] CHEN Jian, WU Wenzhen, XU Shiyou, et al. Band pass filter design against interrupted-sampling repeater jamming based on time-frequency analysis[J]. IET Radar, Sonar & Navigation, 2019, 13(10): 1646–1654. doi: 10.1049/iet-rsn.2018.5658
    [9] XIONG Wei, ZHANG Gong, and LIU Wenbo. Efficient filter design against interrupted sampling repeater jamming for wideband radar[J]. EURASIP Journal on Advances in Signal Processing, 2017, 2017(1): 9. doi: 10.1186/s13634-017-0446-3
    [10] GONG Shixian, WEI Xizhang, and LI Xiang. ECCM scheme against interrupted sampling repeater jammer based on time-frequency analysis[J]. Journal of Systems Engineering and Electronics, 2014, 25(6): 996–1003. doi: 10.1109/JSEE.2014.00114
    [11] ZHOU Chao, LIU Feifeng, and LIU Quanhua. An adaptive transmitting scheme for interrupted sampling repeater jamming suppression[J]. Sensors, 2017, 17(11): 2480. doi: 10.3390/s17112480
    [12] 周畅, 汤子跃, 余方利, 等. 基于脉内正交的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06

    ZHOU Chang, TANG Ziyue, YU Fangli, et al. Anti intermittent sampling repeater jamming method based on intrapulse orthogonality[J]. Systems Engineering and Electronics, 2017, 39(2): 269–276. doi: 10.3969/j.issn.1001-506X.2017.02.06
    [13] ZHOU Chao, LIU Quanhua, and CHEN Xinliang. Parameter estimation and suppression for DRFM based interrupted sampling repeater jammer[J]. IET Radar, Sonar & Navigation, 2018, 12(1): 56–63. doi: 10.1049/iet-rsn.2017.0114
    [14] HUAN Sha, DAI Gane, LUO Gaoyong, et al. Bayesian compress sensing based countermeasure scheme against the interrupted sampling repeater jamming[J]. Sensors, 2019, 19(15): 3279. doi: 10.3390/s19153279
    [15] LI Feng, HAN Xue, LI Yang, et al. Interrupted-sampling repeater jamming (ISRJ) suppression based on cyclostationarity[C]. IET International Radar Conference (IET IRC 2020). 2020: 793–797.
    [16] 张建中, 穆贺强, 文树梁, 等. 基于LFM分段脉冲压缩的抗间歇采样转发干扰方法[J]. 电子与信息学报, 2019, 41(7): 1712–1720. doi: 10.11999/JEIT180851

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling repeater jamming method based on LFM segmented pulse compression[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1712–1720. doi: 10.11999/JEIT180851
    [17] 张建中, 穆贺强, 文树梁, 等. 基于脉内LFM-Costas频率步进的抗间歇采样干扰方法[J]. 系统工程与电子技术, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling jamming method based on intra-pulse LFM-Costas frequency stepping[J]. Systems Engineering and Electronics, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03
    [18] 张建中, 穆贺强, 文树梁, 等. 基于脉内步进LFM时频分析的抗间歇采样干扰方法[J]. 北京理工大学学报, 2020, 40(5): 543–551. doi: 10.15918/j.tbit1001-0645.2018.202

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling repeater jamming method based on stepped LFM joint time-frequency analysis[J]. Transactions of Beijing institute of Technology, 2020, 40(5): 543–551. doi: 10.15918/j.tbit1001-0645.2018.202
    [19] 万鹏程, 白渭雄, 付孝龙. 基于FrFT的LFM间歇采样转发干扰对抗方法[J]. 火力与指挥控制, 2018, 43(10): 35–39. doi: 10.3969/j.issn.1002-0640.2018.10.007

    WAN Pengcheng, BAI Weixiong, and FU Xiaolong. Fractional Fourier transform-based LFM radars for countering interrupted-sampling repeater jamming[J]. Fire Control &Command Control, 2018, 43(10): 35–39. doi: 10.3969/j.issn.1002-0640.2018.10.007
    [20] 董淑仙, 全英汇, 沙明辉, 等. 捷变频雷达联合脉内频率编码抗间歇采样干扰[J/OL]. 系统工程与电子技术. http://kns.cnki.net/kcms/detail/11.2422.TN.20210910.1808.015.html, 2021.

    DONG Shuxian, QUAN Yinghui, SHA Minghui, et al. Frequency agile radar combined with intra-pulse frequency coding to resist intermittent sampling jamming[J/OL]. Systems Engineering and Electronics. http://kns.cnki.net/kcms/detail/11.2422.TN.20210910.1808.015.html, 2021.
    [21] QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range-Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421
    [22] 陶然, 邓兵, 王越. 分数阶FOURIER变换在信号处理领域的研究进展[J]. 中国科学E辑: 信息科学, 2006, 36(2): 113–136. doi: 10.3969/j.issn.1674-7259.2006.02.001

    TAO Ran, DENG Bing, and WANG Yue. Research progress of the fractional Fourier transform in signal processing[J]. Science in China:Series F Information Sciences, 2006, 36(2): 113–136. doi: 10.3969/j.issn.1674-7259.2006.02.001
  • 期刊类型引用(4)

    1. 潘浩然,马晖,胡敦法,刘宏伟. 基于涡旋电磁波新体制的雷达前视三维成像. 雷达学报. 2024(05): 1109-1122 . 本站查看
    2. 马晖,胡敦法,师竹雨,刘宏伟. 基于涡旋电磁波的雷达应用研究进展. 现代雷达. 2023(05): 27-41 . 百度学术
    3. 石立华,冉峪舟,王建宝. 基于吸散一体隐身超构表面的透射型涡旋电磁波产生器设计. 陆军工程大学学报. 2022(01): 30-37 . 百度学术
    4. 李海,毕金枝,孟凡旺,郑蕾. 机载柱形共形阵低空风切变风速估计方法. 雷达科学与技术. 2022(06): 651-657 . 百度学术

    其他类型引用(7)

  • 加载中
图(12) / 表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-01-05
  • 修回日期:  2022-03-17
  • 网络出版日期:  2022-03-31
  • 刊出日期:  2022-04-28

目录

    /

    返回文章
    返回