基于稀疏和低秩结构的层析SAR成像方法

赵曜 许俊聪 全相印 崔莉 张柘

赵曜, 许俊聪, 全相印, 等. 基于稀疏和低秩结构的层析SAR成像方法[J]. 雷达学报, 2022, 11(1): 52–61. doi: 10.12000/JR21210
引用本文: 赵曜, 许俊聪, 全相印, 等. 基于稀疏和低秩结构的层析SAR成像方法[J]. 雷达学报, 2022, 11(1): 52–61. doi: 10.12000/JR21210
ZHAO Yao, XU Juncong, QUAN Xiangyin, et al. Tomographic SAR imaging method based on sparse and low-rank structures[J]. Journal of Radars, 2022, 11(1): 52–61. doi: 10.12000/JR21210
Citation: ZHAO Yao, XU Juncong, QUAN Xiangyin, et al. Tomographic SAR imaging method based on sparse and low-rank structures[J]. Journal of Radars, 2022, 11(1): 52–61. doi: 10.12000/JR21210

基于稀疏和低秩结构的层析SAR成像方法

DOI: 10.12000/JR21210
基金项目: 国家自然科学基金(61907008, 61991421, 61991420),广东省自然科学基金(2021A1515012009),中科院空天院科学与颠覆性先导基金“结构信号的自适应高效感知理论及在微波成像中的应用”
详细信息
    作者简介:

    赵 曜(1984–),男,江西人,高级工程师,硕士生导师。主要研究方向为信号与信息处理、稀疏微波成像算法

    许俊聪(1999–),男,广东人,硕士研究生。主要研究方向为层析SAR成像

    全相印(1989–),男,吉林人,工程师。主要研究方向为稀疏微波成像、先进微波探测理论与应用等

    崔 莉(1978–),女,安徽人,工程师。主要研究方向为遥感信息处理、遥感卫星任务控制、资源调度

    张 柘(1988–),男,陕西人,博士,中国科学院空天信息研究院、苏州空天信息研究院副研究员,硕士生导师。主要研究方向为稀疏信号处理与合成孔径雷达成像

    通讯作者:

    张柘 zhangzhe01@aircas.ac.cn

  • 责任主编:王彦平 Corresponding Editor: WANG Yanping
  • 中图分类号: TN957.52

Tomographic SAR Imaging Method Based on Sparse and Low-rank Structures

Funds: The National Natural Science Foundation of China (61907008, 61991421, 61991420), The Natural Science Foundation of Guangdong Province (2021A1515012009), AIRCAS grant “Structural sparsity signal high performance adaptive sensing theory and its applications in microwave imaging”
More Information
  • 摘要: 该文提出了一种基于稀疏和低秩结构的层析SAR三维成像方法。传统基于压缩感知的层析SAR成像方法仅仅对给定方位-距离单元的高程向进行稀疏表征和重建。考虑城市和森林等区域中各自的布局分布较为类似,目标在相邻方位-距离单元的高程向分布具有较强相关性。该方法通过引入Karhunen Loeve变换来表征相邻方位-距离单元的高程向的低秩结构特性,构建稀疏和低秩结构相结合的目标区域层析SAR成像模型,采用ADMM算法对层析SAR成像模型进行求解,将复杂的原优化问题分解为若干相对简单的子问题,通过优化变量交替投影的方式进行算法求解,得到层析SAR成像结果。该方法提高了低航过数或低通道数情况下的重建精度,拥有更好的成像性能。仿真和实测数据实验表明,该重建方法能够有效分离散射体并保证重建能量的精度,且在降低航过数或通道数的情况下保持良好的成像效果,有效抑制伪影现象。

     

  • 图  1  算法流程图

    Figure  1.  Algorithm flowchart

    图  2  高程向归一化能量分布

    Figure  2.  Normalized energy distribution in the elevation direction

    图  3  F-SAR观测场景的光学图像

    Figure  3.  Optical image of F-SAR measured scene

    图  4  峨眉区域的图像

    Figure  4.  Image of Emei area

    图  5  航过数为9时各算法获得的高程向后向散射能量分布与仿真结果的对比

    Figure  5.  Comparison of the simulation result of backscattered energy distribution of the elevation obtained by each algorithm with 9 interferograms

    图  6  航过数为6时各算法获得的高程向后向散射能量分布与仿真结果的对比

    Figure  6.  Comparison of the simulation result of backscattered energy distribution of the elevation obtained by each algorithm with 6 interferograms

    图  7  航过数为9时不同信噪比情况下各算法的均方误差

    Figure  7.  Mean square error of each algorithm at different SNR values with 9 interferograms

    图  8  航过数为6时不同信噪比情况下各算法的均方误差

    Figure  8.  Mean square error of each algorithm at different SNR values with 6 interferograms

    图  9  航过数为9时各算法获得的森林区域重建结果

    Figure  9.  Reconstruction results of the forest area by each algorithm with 9 interferograms

    图  10  航过数为6时各算法获得的森林区域重建结果

    Figure  10.  Reconstruction results of the forest area by each algorithm with 6 interferograms

    图  11  通道数为12时各算法的峨眉区域重建结果

    Figure  11.  Reconstruction results of Emei area by each algorithm with 12 channels

    图  12  通道数为8时各算法的峨眉区域重建结果

    Figure  12.  Reconstruction results of Emei area by each algorithm with 8 channels

    图  13  各方法成像结果的距离向切片对比

    Figure  13.  Comparison of range slices of imaging results of each method

    表  1  Ku波段雷达系统参数

    Table  1.   Ku-band radar system parameters

    参数数值
    载波频率(GHz)
    通道数N
    成像场景海拔(m)
    图像最近斜距(m)
    航线海拔(m)
    距离向像素尺寸(m)
    方位向像素尺寸(m)
    基线长度(m)
    14.5
    12
    420
    1861
    2157
    0.1362
    0.1051
    2
    下载: 导出CSV

    表  2  各方法耗时对比

    Table  2.   Time comparison of each method

    方法耗时(s)
    CAPON61.844378
    CS43386.651744
    本文方法72769.757387
    下载: 导出CSV
  • [1] 李震, 张平, 乔海伟, 等. 层析SAR地表参数信息提取研究进展[J]. 雷达学报, 2021, 10(1): 116–130. doi: 10.12000/JR20095

    LI Zhen, ZHANG Ping, QIAO Haiwei, et al. Advances in information extraction of surface Parameters using Tomographic SAR[J]. Journal of Radars, 2021, 10(1): 116–130. doi: 10.12000/JR20095
    [2] SCHMITT M and ZHU Xiaoxiang. Demonstration of single-pass millimeterwave SAR tomography for forest volumes[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 202–206. doi: 10.1109/LGRS.2015.2506150
    [3] 张斌, 韦立登, 胡庆荣, 等. 基于四阶累积量的机载多基线SAR谱估计解叠掩方法[J]. 雷达学报, 2018, 7(6): 740–749. doi: 10.12000/JR18087

    ZHANG Bin, WEI Lideng, HU Qingrong, et al. Solution to layover problemin airborne multi-baseline SAR based on spectrum estimation with fourth-order cumulant[J]. Journal of Radars, 2018, 7(6): 740–749. doi: 10.12000/JR18087
    [4] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像—从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [5] 张冰尘, 王万影, 毕辉, 等. 基于压缩多信号分类算法的森林区域极化SAR层析成像[J]. 电子与信息学报, 2015, 37(3): 625–630. doi: 10.11999/JEIT140584

    ZHANG Bingchen, WANG Wanying, BI Hui, et al. Polarimetric SAR tomography for forested areas based on compressive multiple signal classification[J]. Journal of Electronics &Information Technology, 2015, 37(3): 625–630. doi: 10.11999/JEIT140584
    [6] SHI Yilei, BAMLER R, WANG Yuanyuan, et al. SAR tomography at the limit: Building height reconstruction using only 3–5 TanDEM-X bistatic interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 8026–8037. doi: 10.1109/TGRS.2020.2986052
    [7] CAPON J. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of the IEEE, 1969, 57(8): 1408–1418. doi: 10.1109/PROC.1969.7278
    [8] LOMBARDINI F and REIGBER A. Adaptive spectral estimation for multibaseline SAR tomography with airborne L-band data[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium IGARSS’03, Toulouse, France, 2003: 2014–2016.
    [9] SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830
    [10] 庞礴, 代大海, 邢世其, 等. SAR层析成像技术的发展和展望[J]. 系统工程与电子技术, 2013, 35(7): 1421–1429. doi: 10.3969/j.issn.1001-506X.2013.07.12

    PANG Bo, DAI Dahai, XING Shiqi, et al. Development and perspective of tomographic SAR imaging technique[J]. Systems Engineering and Electronics, 2013, 35(7): 1421–1429. doi: 10.3969/j.issn.1001-506X.2013.07.12
    [11] 解金卫, 李真芳, 王帆, 等. 基于幅相不一致准则的建筑物SAR层析成像[J]. 雷达学报, 2020, 9(1): 154–165. doi: 10.12000/JR19062

    XIE Jinwei, LI Zhenfang, WANG Fan, et al. SAR tomography imaging for buildings using an inconsistency criterion for amplitude and phase[J]. Journal of Radars, 2020, 9(1): 154–165. doi: 10.12000/JR19062
    [12] ZHU Xiaoxiang and BAMLER R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 247–258. doi: 10.1109/TGRS.2011.2160183
    [13] ZHU Xiaoxiang and BAMLER R. Tomographic SAR inversion by L1-Norm regularization—The compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117
    [14] 廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 123–129. doi: 10.12000/JR15031

    LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 123–129. doi: 10.12000/JR15031
    [15] AGUILERA E, NANNINI M, and REIGBER A. Wavelet-based compressed sensing for SAR tomography of forested areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(12): 5283–5295. doi: 10.1109/TGRS.2012.2231081
    [16] LINGALA S G, HU Yue, DIBELLA E, et al. Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-T SLR[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1042–1054. doi: 10.1109/TMI.2010.2100850
    [17] ZHU Xiaoxiang and BAMLER R. Sparse reconstrcution techniques for SAR tomography[C]. 17th International Conference on Digital Signal Processing (DSP), Corfu, Greece, 2011: 1–8.
    [18] LEE K and BRESLER Y. ADMiRA: Atomic decomposition for minimum rank approximation[J]. IEEE Transactions on Information Theory, 2010, 56(9): 4402–4416. doi: 10.1109/TIT.2010.2054251
    [19] RECHT B, FAZEL M, and PARRILO P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM Review, 2010, 52(3): 471–501. doi: 10.1137/070697835
    [20] TRUCKENBRODT J. EO-College tomography tutorial[EB/OL]. https://github.com/EO-College/tomography_tutorial, 2018.
    [21] 仇晓兰, 焦泽坤, 彭凌霄, 等. SARMV3D-1.0: SAR微波视觉三维成像数据集[J]. 雷达学报, 2021, 10(4): 485–498. doi: 10.12000/JR21112

    QIU Xiaolan, JIAO Zekun, PENG Lingxiao, et al. SARMV3D-1.0: Synthetic aperture radar microwave vision 3D imaging dataset[J]. Journal of Radars, 2021, 10(4): 485–498. doi: 10.12000/JR21112
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  2009
  • HTML全文浏览量:  569
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-28
  • 修回日期:  2022-01-28
  • 网络出版日期:  2022-02-23
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回