天基穿冰雷达系统:机遇与挑战

肖鹏 于志同 陈卓奇 崔祥斌 赵博 稂时楠 李萌 胡洛佳 黄彦 刘敏 王成 陈亮 刘露 眭晓虹 袁春柱

肖鹏, 于志同, 陈卓奇, 等. 天基穿冰雷达系统:机遇与挑战[J]. 雷达学报, 2022, 11(3): 479–498. doi: 10.12000/JR21196
引用本文: 肖鹏, 于志同, 陈卓奇, 等. 天基穿冰雷达系统:机遇与挑战[J]. 雷达学报, 2022, 11(3): 479–498. doi: 10.12000/JR21196
XIAO Peng, YU Zhitong, CHEN Zhuoqi, et al. Orbital radar sounding of earth’s ice sheets: Opportunities and challenges[J]. Journal of Radars, 2022, 11(3): 479–498. doi: 10.12000/JR21196
Citation: XIAO Peng, YU Zhitong, CHEN Zhuoqi, et al. Orbital radar sounding of earth’s ice sheets: Opportunities and challenges[J]. Journal of Radars, 2022, 11(3): 479–498. doi: 10.12000/JR21196

天基穿冰雷达系统:机遇与挑战

doi: 10.12000/JR21196
基金项目: 东方红联合研发基金,五院杰出青年人才基金,国家自然科学基金(42074225, 41601483, 41730102)
详细信息
    作者简介:

    肖 鹏(1984–),男,黑龙江哈尔滨人,博士,高级工程师。2014 年在北京航空航天大学电子信息工程学院获得博士学位,现为中国空间技术研究院钱学森空间技术实验室高级工程师。主要研究方向为新型星载合成孔径雷达系统设计、先进雷达信号处理、高分辨率微波遥感图像质量提升与应用等,目前已发表学术论文 20余篇

    于志同(1985–),男,河北衡水人,博士,副研究员。2015年在中国科学院大学获得博士学位,现为中国空间技术研究院钱学森空间技术实验室高级工程师、PI。主要研究方向为全球变化天基观测、生物地球化学、碳循环,目前已出版专著1部、发表论文30余篇

    陈卓奇(1982–),男,江西南昌人,博士,副教授。2009年在中国科学院地理科学与资源研究所获得博士学位,现为中山大学测绘科学与技术学院副教授。主要研究方向为全球变化、碳循环,目前已发表论文50余篇

    崔祥斌(1981–),男,山西朔州人,博士,研究员。2010年获浙江大学地质资源与地质工程专业博士学位,现为中国极地研究中心极地冰雪与气候变化研究所研究员,主要研究方向为南极雷达冰川学,发表论文70多篇

    赵 博(1983–),男,山西芮城人,博士,副研究员。2009年获中国科学院电子学研究所电磁场与微波技术专业博士学位,现为中国科学院空天信息创新研究院副研究员,主要研究方向为超宽带雷达技术,发表论文20余篇

    稂时楠(1988–),女,陕西汉中人,博士,副教授。2015年获中国科学院电子学研究所电磁场与微波技术专业博士学位,现为北京工业大学信息学部副教授。主要研究方向为冰雷达成像与数据处理方法,发表论文30多篇

    李 萌(1985–),男,吉林扶余人,博士,研究员。2013年在哈尔滨工业大学宇航空间机构及控制研究中心获得工学博士学位,现为钱学森空间技术实验室研究员。主要研究方向为空间大型可展天线、星球探测着陆缓冲技术,发表论文30余篇,出版专著2部

    胡洛佳(1990–),女,山西太原人,博士,助理研究员。2018年在北京师范大学全球变化与地球科学研究院获得博士学位,现为钱学森空间技术实验室助理研究员。主要研究方向为海岸带遥感、星载激光雷达系统模拟仿真及数据应用

    黄 彦(1985–),女,四川汶川人,博士,助理研究员。2015年在南京大学国际地球系统科学研究所获博士学位,现为钱学森空间技术实验室助理研究员。主要研究方向为全球变化遥感,已发表论文30余篇

    刘 敏(1986–),女,重庆合川人,博士,高级工程师。2014年在北京航空航天大学电子信息工程学院获得博士学位。现就职于钱学森空间技术实验室军事智能信息体系研究室。主要研究方向为星载合成孔径雷达SAR成像处理,包括各种成像算法研究、图像质量提升、星载SAR图像定位等。目前已发表论文10多篇

    王 成(1988–),男,陕西西安人,博士,副研究员。2015年在西安电子科技大学物理与光电工程学院获得博士学位,现为中国空间技术研究院钱学森空间技术实验室副研究员。主要研究方向为电波传播、电离层误差探测与补偿,目前已发表论文20余篇

    陈 亮(1982–),男,河南信阳人,博士,高级工程师。2009年在中国科学院获得博士学位,现为中国空间技术研究院钱学森空间技术实验室高级工程师,主要研究方向为微波遥感系统仿真、参数定量反演

    刘 露(1988–),男,安徽六安人,博士,副研究员。2015年在北京航空航天大学数学学院获得博士学位,现为钱学森空间技术实验室副研究员。主要研究方向为压缩感知、机器学习理论、遥感图像智能处理及目标识别,目前已发表论文27篇,受理或授权11项发明专利

    眭晓虹(1988–),女,山西晋中人,博士,工程师。2017年在中国空间技术研究院飞行器设计专业获博士学位,现就职于钱学森空间技术实验室。主要研究方向为海洋测高卫星应用、海洋重力场与海底地形反演

    袁春柱(1987–),男,山西临沂人,硕士,高级工程师。2011年在北京航空航天大学仪器科学与技术专业获硕士学位,现就职于航天东方红卫星有限公司。主要研究方向为卫星总体设计

    通讯作者:

    肖鹏 xiaopeng_email1984@163.com

    于志同 yuzhitong@qxslab.cn

  • 责任主编:刘小军 Corresponding Editor: LIU Xiaojun
  • 中图分类号: TN958

Orbital Radar Sounding of Earth’s Ice Sheets: Opportunities and Challenges

Funds: DFH Joint Research and Development Fund, Young Talents Fund of China Academy of Space Technology, The National Natural Science Foundation of China (42074225, 41601483, 41730102)
More Information
  • 摘要: 极地冰盖特殊的热交换属性和庞大的含水量,使其成为全球气候变化的“指示器”和“放大器”。由于特殊的地理位置及严峻的气候环境,目前对极地冰盖的立体探测及认识仍旧匮乏。穿冰雷达具备强穿透性和高精度测距能力,成为冰盖立体层析探测的最佳选择,促进了极地科学的快速发展。受制于低频电磁波跨冰冻圈层传播的复杂性和雷达作用距离的大幅增加,迄今为止,利用天基平台实现穿冰探测依然是对地遥感的空白领域。该文针对天基穿冰雷达系统的科学需求和面临的特殊问题展开讨论,分析了天基穿冰系统面临的3大问题:传输衰减、积雪杂波干扰和垂直航迹向分辨率恶化;结合现有研究成果和技术发展趋势,分析了利用微小卫星平台进行分布式编队实现天基穿冰探测的可行性,论证了分布式穿冰雷达关键指标,指出了天基穿冰雷达未来发展亟需解决的关键技术难题,探索实现百米空间分辨率、季节尺度重访的天基穿冰雷达实施方案。

     

  • 图  1  机载穿冰雷达观测示意图

    Figure  1.  Schematic diagram of airborne ice sounding radar observation

    图  2  南极冰盖层析图像(中科院电子所穿冰雷达系统)

    Figure  2.  A tomographic image of the Antarctic ice sheet obtained by the ice sounding radar developed by the Chinese Academy of Sciences

    图  3  “雪鹰601”科学调查平台

    Figure  3.  “Snow Eagle 601” scientific investigation platform

    图  4  Bedmap2数据库示意图[28]

    Figure  4.  Bedmap2 database diagram[28]

    图  5  WMO-GCW天基冰冻圈观测计划及能力[36]

    Figure  5.  WMO-GCW spaceborne cryosphere observation programs and capabilities[36]

    图  6  火星探测雷达

    Figure  6.  Mars sounding radars

    图  7  JPL OASIS计划

    Figure  7.  JPL’s OASIS program

    图  8  不同频率下南极冰盖冰衰减估算结果

    Figure  8.  Ice attenuation estimations of the Antarctic ice sheet with different frequencies

    图  9  穿冰雷达积雪杂波干扰示意图

    Figure  9.  Schematic diagram of snow clutter jamming for ice sounding radar

    图  10  “雪鹰601”穿冰雷达积雪杂波干扰示意图

    Figure  10.  Snow clutter interference of “snow Eagle 601” ice sounding radar

    图  11  VHF频段积雪杂波强度空间分布特性(基于“雪鹰601”实测数据)

    Figure  11.  Spatial distribution characteristics of snow clutter intensity based on “snow Eagle 601” data

    图  12  天基条件下杂波抑制需求曲线

    Figure  12.  Clutter suppression demand for spaceborne radar

    图  13  DEBRIS系统示意图[59]

    Figure  13.  DEBRIS system schematic[59]

    图  14  STRATUS系统

    Figure  14.  STRATUS system

    图  15  CubeSat Train系统[61]

    Figure  15.  CubeSat Train system[61]

    图  16  空间收发角度示意图

    Figure  16.  Spatial transmitting and receiving angles diagram

    图  17  垂直航迹向分辨率与卫星数量

    Figure  17.  Cross-track direction resolution with the number of satellites

    表  1  PRISM科学测量体系[35]

    Table  1.   PRISM scientific measurement system[35]

    测量参数相关科学目标要求精度空间分辨率(m)传感器
    冰厚1, 25 m100(普查)、10(详查)宽带穿冰雷达
    冰底消融/冻结395%可信度100单基/双基SAR
    底部水层及厚度3, 450%以上准确度、4 mm~0.5 m100(普查)、10(详查)单基/双基SAR
    内部层5, 2, 610 cm(浅部)、5 m(深部)100(普查)、10(详查)宽带穿冰雷达
    冰下地形25 m100(普查)、10(详查)宽带穿冰雷达
    冰面地形20.5 m100(普查)、10(详查)InSAR,雷达/激光高度计,GPS
    冰流速度1, 2, 65%(速度)、5°(方向)500InSAR
    注:科学目标:1. 物质通量;2. 应力估计;3. 底部边界条件;4. 底部剪应力;5. 积累率;6. 冰流历史
    下载: 导出CSV

    表  2  次表层探测雷达卫星参数

    Table  2.   The paramenters of sounding radar satellites

    参数MARSIS[40]SHARAD[41]OASIS[44]
    频率范围(MHz)2.5~3.5(较多使用)15~2540~50
    地下垂直分辨率(m)
    (相对介电常数为3时)
    ~100~10~10
    航迹向分辨率(km)5~150.3~3.0~1
    垂直航迹向分辨率(km)9~301~7/
    预期穿透能力(km)0.5~5.00.1~1.00.1(沙漠)~5.0(冰)
    发射功率(W)510100
    天线长度(m)40(偶极子天线)10(偶极子天线)10(八木天线)
    下载: 导出CSV

    表  3  Fujita参数表1[47]

    Table  3.   Fujita parameters table 1[47]

    温度(K)$A (\times {10^4})$$B (\times {10^5})$$C$
    1900.0051.5371.175
    2000.0101.7471.168
    2200.0312.4691.129
    2400.2683.4951.088
    2480.6354.0061.073
    2531.0594.3801.062
    2581.7284.6961.056
    2632.7695.2771.038
    2653.3265.6461.024
    下载: 导出CSV

    表  4  Fujita参数表2[47]

    Table  4.   Fujita parameters table 2[47]

    温度(K)$a$$b$
    2634.283–0.337
    2534.875–0.423
    2435.279–0.480
    2334.996–0.456
    下载: 导出CSV

    表  5  天基与机载穿冰雷达相关参数对比

    Table  5.   The paramenters of spaceborne and airborne ice sounding radars

    参数天基系统机载系统差异
    飞行高度500 km500 m/
    载频波长5 m5 m/
    传播衰减//90 dB
    积雪杂波干扰深度冰底以下280 m
    垂直航迹向分辨率2.2 km180 m
    下载: 导出CSV

    表  6  分布式穿冰雷达系统

    Table  6.   Distributed orbital ice sounding radar systems

    参数DEBRIS[59]STRATUS[60]CubeSat Train[61]
    载频(MHz)45, 43545144
    星群数量11颗(多发多收)1+4颗(一发多收)50颗(多发多收)
    发射功率(W)未知80050
    天线尺寸(m)3.3×3.3
    四组柔性反射天线
    10
    八木天线阵
    15
    多通道十字天线
    飞行高度(km)400500400
    预期穿冰深度(km)<54.73~4
    冰内垂直分辨率(m)101020
    水平分辨率(航迹向×垂直航迹向)1 km×20 km1.3 km×7.5 km200 m×200 m
    下载: 导出CSV
  • [1] PÖRTNER H O, ROBERTS D C, MASSON-DELMOTTE V, et al. IPCC special report on the ocean and cryosphere in a changing climate[R/OL]. https://www.ipcc.ch/site/assets/uploads/sites/3/2019/12/SROCC_FullReport_FINAL.pdf, 2019.
    [2] https://www.nsf.gov/geo/opp/antarct/science/icesheet.jsp.
    [3] FARINOTTI D, HUSS M, FÜRST J J, et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth[J]. Nature Geoscience, 2019, 12(3): 168–173. doi: 10.1038/s41561-019-0300-3
    [4] LIU Yan, MOORE J C, CHENG Xiao, et al. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3263–3268. doi: 10.1073/pnas.1415137112
    [5] STOCKER T F, QIN D, PLATTNER G K, et al. Climate change 2013: The physical science basis[R]. 2014. doi: 10.1017/CBO9781107415324.
    [6] 车涛, 李新, 李新武, 等. 冰冻圈遥感: 助力“三极”大科学计划[J]. 中国科学院院刊, 2020, 35(4): 484–493. doi: 10.16418/j.issn.1000-3045.20200323001

    CHE Tao, LI Xin, LI Xinwu, et al. Developing cryospheric remote sensing, promoting scientific programme of earth’s three poles[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(4): 484–493. doi: 10.16418/j.issn.1000-3045.20200323001
    [7] 崔祥斌, 孙波, 张向培, 等. 极地冰盖冰雷达探测技术的发展综述[J]. 极地研究, 2009, 21(4): 322–335.

    CUI Xiangbin, SUN Bo, ZHANG Xiangpei, et al. A review of ice radar’s technical development in polar ice sheet investigation[J]. Chinese Journal of Polar Research, 2009, 21(4): 322–335.
    [8] VAUGHAN D G and ARTHERN R. Why is it hard to predict the future of ice sheets?[J]. Science, 2007, 315(5818): 1503–1504. doi: 10.1126/science.1141111
    [9] IVINS E R. Ice sheet stability and sea level[J]. Science, 2009, 324(5929): 888–889. doi: 10.1126/science.1173958
    [10] KENNICUTT M C, CHOWN S L, CASSANO J J, et al. Polar research: Six priorities for Antarctic science[J]. Nature, 2014, 512(7512): 23–25. doi: 10.1038/512023a
    [11] JOUGHIN I, SMITH B E, and MEDLEY B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica[J]. Science, 2014, 344(6185): 735–738. doi: 10.1126/science.1249055
    [12] BELL R E, FERRACCIOLI F, CREYTS T T, et al. Widespread persistent thickening of the east Antarctic ice sheet by freezing from the base[J]. Science, 2011, 331(6024): 1592–1595. doi: 10.1126/science.1200109
    [13] WAITE A H. Ice depth soundings with ultra-high frequency radio waves in the Arctic and Antarctic, and some observed over-ice altimeter errors[R]. Technical Report 2092, 1959.
    [14] EVANS S. Radio techniques for the measurement of ice thickness[J]. Polar Record, 1963, 11(73): 406–410. doi: 10.1017/S0032247400053523
    [15] SIEGERT M J. On the origin, nature and uses of Antarctic ice-sheet radio-echo layering[J]. Progress in Physical Geography:Earth and Environment, 1999, 23(2): 159–179. doi: 10.1191/030913399671124903
    [16] DREWRY D J. Antarctica: Glaciological and Geophysical Folio[M]. Cambridge, U.K.: Scott Polar Research Institute, University of Cambridge, 1983. ISBN: 0901021040.
    [17] CHUAH T S. Design and development of a coherent radar depth sounder for measurement of Greenland ice sheet thickness[R]. RSL Technical. Report 10470–5, 1997. https://cresis.ku.edu/sites/default/files/biblio/TechRpt151.pdf.
    [18] GOGINENI S, TAMMANA D, BRAATEN D, et al. Coherent radar ice thickness measurements over the Greenland ice sheet[J]. Journal of Geophysical Research, 200l, 106(D24): 33761–33772.
    [19] BAMBER J L, LAYBERRY R L, and GOGINENI S P. A new ice thickness and bed data set for the Greenland ice sheet: 1. Measurement, data reduction, and errors[J]. Journal of Geophysical Research, 2001, 106(D24): 33773–33780. doi: 10.1029/2001JD900054
    [20] PADEN J, MOZAFFAR S, DUNSON D, et al. Multiband multistatic synthetic aperture radar for measuring ice sheet basal conditions[C]. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004: 139.
    [21] MATSUOKA K, FURUKAWA T, FUJITA S, et al. Crystal orientation fabrics within the Antarctic ice sheet revealed by a multipolarization plane and dual-frequency radar survey[J]. Journal of Geophysical Research, 2003, 108(B10): 2499. doi: 10.1029/2003JB002425
    [22] STUDINGER M, KOENIG L, MARTIN S, et al. Operation icebridge: Using instrumented aircraft to bridge the observational gap between icesat and icesat-2[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 1918–1919.
    [23] 杨树瑚, 顾祈明, 张云, 等. 利用冰雷达诊断南极冰盖底部环境的研究综述[J]. 极地研究, 2016, 28(2): 277–286. doi: 10.13679/j.jdyj.2016.2.277

    YANG Shuhu, GU Qiming, ZHANG Yun, et al. A review of the use of ice penetrating radar to diagnose the subglacial environments[J]. Chinese Journal of Polar Research, 2016, 28(2): 277–286. doi: 10.13679/j.jdyj.2016.2.277
    [24] WANG Bangbing, TIAN Gang, CUI Xiangbin, et al. The internal COF features in Dome A of Antarctica revealed by multi-polarization-plane RES[J]. Applied Geophysics, 2008, 5(3): 230–237. doi: 10.1007/s11770-008-0029-z
    [25] SUN Bo, SIEGERT M J, MUDD S M, et al. The Gamburtsev mountains and the origin and early evolution of the Antarctic ice sheet[J]. Nature, 2009, 459(7247): 690–693. doi: 10.1038/nature08024
    [26] CUI Xiangbin, GREENBAUM J S, BEEM L H, et al. The first fixed-wing aircraft for Chinese Antarctic expeditions: Airframe, modifications, scientific instrumentation and applications[J]. Journal of Environmental and Engineering Geophysics, 2018, 23(1): 1–13. doi: 10.2113/JEEG23.1.1
    [27] CUI Xiangbin, JEOFRY H, GREENBAUM J S, et al. Bed topography of princess Elizabeth Land in East Antarctica[J]. Earth System Science Data, 2020, 12(4): 2765–2774. doi: 10.5194/essd-12-2765-2020
    [28] FRETWELL P, PRITCHARD H D, VAUGHAN D G, et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica[J]. The Cryosphere Discussions, 2012, 6: 4305–4361. doi: 10.5194/tcd-6-4305-2012
    [29] MORLIGHEM M, RIGNOT E, BINDER T, et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet[J]. Nature Geoscience, 2020, 13(2): 132–137. doi: 10.1038/s41561-019-0510-8
    [30] MACKIE E J, SCHROEDER D M, CAERS J, et al. Antarctic topographic realizations and geostatistical modeling used to map Subglacial Lakes[J]. Journal of Geophysical Research, 2020, 125(3): e2019JF005420. doi: 10.1029/2019JF005420
    [31] GCOS. The global observing system for climate: Implementation needs (GCOS-200)[EB/OL]. https://library.wmo.int/doc_num.php?explnum_id=3417, 2016.
    [32] VERTENSTEIN M, CRAIG T, MIDDLETON A, et al. CESM 1.0. 4 user’s guide[R/OL]. http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_4/book1.html, 2012.
    [33] 万修全, 刘泽栋, 沈飙, 等. 地球系统模式CESM及其在高性能计算机上的配置应用实例[J]. 地球科学进展, 2014, 29(4): 482–491. doi: 10.11867/j.issn.1001-8166.2014.04.0482

    WAN Xiuquan, LIU Zedong, SHEN Biao, et al. Introduction to the community earth system model and application to high performance computing[J]. Advances in Earth Science, 2014, 29(4): 482–491. doi: 10.11867/j.issn.1001-8166.2014.04.0482
    [34] 林岩銮, 王磊, 苏洁, 等. 全球气候系统中冰冻圈的模拟研究[M]. 北京: 科学出版社, 2019: 145–147.

    LIN Yanluan, WANG Lei, SU Jie, et al. Simulation of Cryosphere in Global Climate System[M]. Beijing: Science Press, 2019: 145–147.
    [35] GOGINENI S, PRESCOTT G, BRAATEN D, et al. Polar radar for ice sheet measurements[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 1607–1609.
    [36] https://globalcryospherewatch.org/satellites/overview.html.
    [37] https://europa.nasa.gov/spacecraft/instruments/reason/.
    [38] https://sci.esa.int/web/rosetta/-/35061-instruments?section=consert-comet-nucleus-sounding-experiment-by-radiowave-transmission.
    [39] ZOU Yongliao, ZHU Yan, BAI Yunfei, et al. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission[J]. Advances in Space Research, 2021, 67(2): 812–823. doi: 10.1016/j.asr.2020.11.005
    [40] PICARDI G, BICCARI D, SEU R, et al. MARSIS: Mars advanced radar for subsurface and ionosphere sounding[R/OL]. https://sci.esa.int/documents/33745/35957/1567254616449-PicardiWeb.pdf, 2004.
    [41] SEU R, BICCARI D, OROSEI R, et al. SHARAD: The MRO 2005 shallow radar[J]. Planetary and Space Science, 2004, 52(1/3): 157–166. doi: 10.1016/j.pss.2003.08.024
    [42] HEGGY E, ROSEN P A, BEATTY R, et al. Orbiting arid subsurface and ice sheet sounder (OASIS): Exploring desert aquifers and polar ice sheets and their role in current and paleo-climate evolution[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 3483–3486.
    [43] FREEMAN A, PI Xiaoqing, and HEGGY E. Radar sounding through the Earth's ionosphere at 45 MHz[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5833–5842. doi: 10.1109/TGRS.2017.2715838
    [44] HEGGY E, ROSEN P A, BEATTY R, et al. Exploring desert aquifers and polar ice sheets and their responses to climate evolution: OASIS mission concept[C]. The 1st Springer Conference of the Arabian Journal of Geosciences, Tunisia, 2018: 7–10.
    [45] HEGGY E. Exploring deserts response to climate change from the orbiting arid subsurface and ice sheet sounder (OASIS)[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 655–656.
    [46] SANDER K F and REED G A L. Transmission and Propagation of Electromagnetic Waves[M]. Cambridge, UK: Cambridge University Press, 1986: 13–19.
    [47] MATSUOKA T, FUJITA S, and MAE S. Effect of temperature on dielectric properties of ice in the range 5–39 GHz[J]. Journal of Applied Physics, 1996, 80(10): 5884–5890. doi: 10.1063/1.363582
    [48] MÄTZLER C and WEGMÜLLER U. Dielectric properties of freshwater ice at microwave frequencies[J]. Journal of Physics D:Applied Physics, 1987, 20(12): 1623–1630. doi: 10.1088/0022-3727/20/12/013
    [49] CORR H, MOORE J C, and NICHOLLS K W. Radar absorption due to impurities in Antarctic ice[J]. Geophysical Research Letters, 1993, 20(11): 1071–1074. doi: 10.1029/93GL01395
    [50] MATSUOKA K, MACGREGOR J A, and PATTYN F. Predicting radar attenuation within the Antarctic ice sheet[J]. Earth and Planetary Science Letters, 2012, 359/360: 173–183. doi: 10.1016/j.jpgl.2012.10.018
    [51] PATTYN F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model[J]. Earth and Planetary Science Letters, 2010, 295(3/4): 451–461. doi: 10.1016/j.jpgl.2010.04.025
    [52] HINDMARSH R C A and LE MEUR E. Dynamical processes involved in the retreat of marine ice sheets[J]. Journal of Glaciology, 2001, 47(157): 271–282. doi: 10.3189/172756501781832269
    [53] http://websrv.cs.umt.edu/isis/index.php/Data.
    [54] SCHROEDER D M, BIENERT N L, CULBERG R, et al. Glaciological constraints on link budgets for orbital radar sounding of Earth's ice sheets[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 647–650.
    [55] CULBERG R and SCHROEDER D M. Firn clutter constraints on the design and performance of orbital radar ice sounders[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6344–6361. doi: 10.1109/TGRS.2020.2976666
    [56] ULABY F T and DOBSON M C. Handbook of Radar Scattering Statistics for Terrain[M]. Norwood, USA: Artech House, 1989: 287–288.
    [57] 稂时楠. 极地高分辨率冰雷达成像与数据处理方法研究[D]. 北京: 中国科学院大学, 2015: 19–20. https://d.wanfangdata.com.cn/thesis/Y2851481.

    LANG Shinan. Research on the Imaging and Signal Processing of High-resolution Ice-sounding Radar[D]. Beijing: The University of Chinese Academy of Sciences, 2015: 19–20. https://d.wanfangdata.com.cn/thesis/Y2851481.
    [58] CARRER L, GEREKOS C, BOVOLO F, et al. Distributed radar sounder: A novel concept for subsurface investigations using sensors in formation flight[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 9791–9809. doi: 10.1109/TGRS.2019.2929422
    [59] HAYNES M S, BEAUCHAMP R M, KHAZENDAR A, et al. Debris: Distributed element beamformer radar for ice and subsurface sounding[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 651–654.
    [60] BRUZZONE L, BOVOLO F, CARRER L, et al. STRATUS: A new mission concept for monitoring the subsurface of polar and arid regions[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 661–664.
    [61] GOGINENI S, YAN S, SONG P, et al. UWB MIMO radars for sounding and imaging of ice on the Earth and other celestial bodies[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 657–660.
    [62] GOGINENI P, SIMPSON C R, YAN Jiebang, et al. A CubeSat train for radar sounding and imaging of Antarctic ice sheet[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 4138–4141.
    [63] HEIMILLER R C, BELYEA J E, and TOMLINSON P G. Distributed array radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, AES-19(6): 831–839. doi: 10.1109/TAES.1983.309395
    [64] CHRISTIANSON K, JACOBEL R W, HORGAN H J, et al. Basal conditions at the grounding zone of Whillans ice stream, west Antarctica, from ice-penetrating radar[J]. Journal of Geophysical Research, 2016, 121(11): 1954–1983. doi: 10.1002/2015JF003806
    [65] XIAO Peng, GUO Wei, LIU Bo, et al. A spaceborne multistatic radar sounding system for the tomographic observation of polar ice sheets[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3502205. doi: 10.1109/LGRS.2020.3043356
    [66] NASA-ISRO SAR (NISAR) mission science users’ handbook[R]. 2018. https://nisar.jpl.nasa.gov/system/documents/files/26_NISAR_FINAL_9-6-19.pdf?_ga=2.129501448.504649304.1621295245-843208160.1541002583.
    [67] CARBONE A, COSTA G, FEHRINGER M, et al. The biomass system - overview and development status[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Brussels, Belgium, 2021: 775–778.
    [68] HUBER S, DE ALMEIDA F Q, VILLANO M, et al. Tandem-L: A technical perspective on future spaceborne SAR sensors for Earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4792–4807. doi: 10.1109/TGRS.2018.2837673
    [69] 张威, 尹冉冉, 沈俊. TerreStar卫星移动通信系统[J]. 数字通信世界, 2012(1): 32–34. doi: 10.3969/j.issn.1672-7274.2012.01.007

    ZHANG Wei, YIN Ranran, and SHEN Jun. TerreStar satellite mobile communication system[J]. Digital Communication World, 2012(1): 32–34. doi: 10.3969/j.issn.1672-7274.2012.01.007
    [70] BREIT H, YOUNIS M, BALSS U, et al. Bistatic synchronization and processing of TanDEM-X data[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 2424–2427.
    [71] LIANG Da, Liu Kaiyu, Zhang Heng, Z et al. An advanced non-interrupted phase synchronization scheme with internal calibration for LuTan-1[C]. The 13th European Conference on Synthetic Aperture Radar, 2021. https://ieeexplore.ieee.org/document/9472743.
    [72] ŚWIERAD D, HÄFNER S, VOGT S, et al. Ultra-stable clock laser system development towards space applications[J]. Scientific Reports, 2016, 6(1): 33973. doi: 10.1038/srep33973
    [73] LEZIUS M, WILKEN T, DEUTSCH C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381–1387. doi: 10.1364/optica.3.001381
    [74] MCGREW W F, ZHANG X, FASANO R, et al. Atomic clock performance enabling geodesy below the centimetre level[J]. Nature, 2018, 564(7734): 87–90. doi: 10.1038/s41586-018-0738-2
    [75] HINKLEY N, SHERMAN J A, PHILLIPS N B, et al. An atomic clock with 10–18 instability[J]. Science, 2013, 341(6151): 1215–1218. doi: 10.1126/science.1240420
    [76] NICHOLSON T L, CAMPBELL S L, HUTSON R B, et al. Systematic evaluation of an atomic clock at 2×10−18 total uncertainty[J]. Nature Communications, 2015, 6(1): 6896. doi: 10.1038/ncomms7896
    [77] MITTERMAYER J, KRIEGER G, BOJARSKI A, et al. MirrorSAR: An HRWS add-on for single-pass multi-baseline SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, in press, 2021.
    [78] PERAL E, TANELLI S, STATHAM S, et al. Raincube - A new paradigm to observe weather processes[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 4978–4981.
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  1348
  • HTML全文浏览量:  490
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-30
  • 修回日期:  2022-01-11
  • 网络出版日期:  2022-02-24
  • 刊出日期:  2022-06-28

目录

    /

    返回文章
    返回