一种结合稀疏重建和匹配滤波的距离模糊抑制方法

齐萌 黄丽佳 仇晓兰 张问一 胡玉新 初庆伟

齐萌, 黄丽佳, 仇晓兰, 等. 一种结合稀疏重建和匹配滤波的距离模糊抑制方法[J]. 雷达学报, 2022, 11(1): 95–106. doi: 10.12000/JR21181
引用本文: 齐萌, 黄丽佳, 仇晓兰, 等. 一种结合稀疏重建和匹配滤波的距离模糊抑制方法[J]. 雷达学报, 2022, 11(1): 95–106. doi: 10.12000/JR21181
QI Meng, HUANG Lijia, QIU Xiaolan, et al. Method of range ambiguity suppression combining sparse reconstruction and matched filtering[J]. Journal of Radars, 2022, 11(1): 95–106. doi: 10.12000/JR21181
Citation: QI Meng, HUANG Lijia, QIU Xiaolan, et al. Method of range ambiguity suppression combining sparse reconstruction and matched filtering[J]. Journal of Radars, 2022, 11(1): 95–106. doi: 10.12000/JR21181

一种结合稀疏重建和匹配滤波的距离模糊抑制方法

DOI: 10.12000/JR21181
基金项目: 国家重点研发计划(2018YFC1407200)
详细信息
    作者简介:

    齐 萌(1997–),女,山东潍坊人,中国科学院空天信息创新研究院硕士研究生,研究方向为合成孔径雷达信号处理与图像分析

    黄丽佳(1984–),女,辽宁大连人,博士,中国科学院空天信息创新研究院研究员,博士生导师,研究方向为合成孔径雷达信号处理与图像分析

    仇晓兰(1982–),女,江苏苏州人,中国科学院空天信息创新研究院研究员,博士生导师,IEEE高级会员、IEEE地球科学与遥感快报副主编、雷达学报青年编委。主要研究方向为SAR成像处理、SAR图像理解

    张问一(1984–),男,重庆人,中国科学院空天信息创新研究院副研究员,硕士生导师。主要研究方向为遥感信息处理系统体系架构,基于遥感数据的人工智能和大数据,智能遥感数据接收和处理

    胡玉新(1981–),男,内蒙古赤峰人,于中国科学院电子学研究所获博士学位,现为中国科学院空天信息创新研究院研究员,硕士生导师。主要研究方向为星载SAR信号处理,遥感卫星地面系统、空间信息处理系统体系架构

    初庆伟(1987–),男,山东烟台人,中国科学院空天信息创新研究院助理研究员,主要研究方向为遥感卫星数据接收处理相关技术

    通讯作者:

    黄丽佳 iecas8huanglijia@163.com

  • 责任主编:王岩 Corresponding Editor: WANG Yan
  • 中图分类号: TN958; TP391

Method of Range Ambiguity Suppression Combining Sparse Reconstruction and Matched Filtering

Funds: National Key R&D Program of China (2018YFC1407200)
More Information
  • 摘要: 由于SAR天线旁瓣特性和脉冲工作体制,SAR图像在一定程度上受到距离模糊的影响。距离模糊抑制工作分别聚焦在SAR系统设计和SAR信号处理两个方面。前者通过天线赋形、正交编码等方式减小距离模糊能量接收,后者利用信号处理技术在回波域和图像域消除距离模糊能量。该文提出了一种结合稀疏重建和匹配滤波技术的距离模糊抑制方法。该方法对模糊区进行稀疏重建,利用模糊区图像和重建矩阵估计模糊区信号,从回波信号中将其分离得到模糊抑制后的主像信号,后续利用匹配滤波技术获得主像图像。该方法利用稀疏重建技术保证了模糊区信号估计的精度,利用匹配滤波技术保证了成像处理的效率。仿真实验表明,该方法可以有效抑制距离模糊,抑制效果可达10 dB及以上,并且对主像弱目标和细节具有很好的保持能力。

     

  • 图  1  能量比1:1,匹配滤波的主像结果

    Figure  1.  Energy ratio 1:1, primary image results of matching filtering

    图  2  能量比1:1,本文方法的主像结果

    Figure  2.  Energy ratio 1:1, primary image results of the proposed method

    图  3  能量比100:1,匹配滤波的主像结果

    Figure  3.  Energy ratio 100:1, primary image results of matching filtering

    图  4  能量比100:1,本文方法的主像结果

    Figure  4.  Energy ratio 100:1, primary image results of the proposed method

    图  5  距离徙动差异对距离模糊抑制效果的影响

    Figure  5.  The effect of range migration difference on range ambiguity suppression

    图  6  主像区弱目标,匹配滤波的主像结果

    Figure  6.  Weak target in the main image area, primary image results of matching filtering

    图  7  主像区弱目标,经典稀疏重建的主像结果

    Figure  7.  Weak target in the main image area, primary image results of sparse reconstruction

    图  8  主像区弱目标,本文方法的主像结果

    Figure  8.  Weak target in the main image area, primary image results of the proposed method

    图  9  主像区面目标,匹配滤波的主像结果

    Figure  9.  Surface target in the main image area, primary image results of matching filtering

    图  10  主像区面目标,本文方法的主像结果

    Figure  10.  Surface target in the main image area, primary image results of the proposed method

    图  11  实际图像场景

    Figure  11.  Real image scene

    图  12  区域3主像、区域1模糊像,匹配滤波的主像结果

    Figure  12.  Primary image results of matching filtering, where region 3 is the main image, region 1 is the fuzzy image

    图  13  区域3主像、区域1模糊像,本文方法的主像结果

    Figure  13.  Primary image results of the proposed method, where region 3 is the main image, region 1 is the fuzzy image

    图  14  区域3主像、区域1模糊像,针对模糊区匹配滤波的成像结果

    Figure  14.  Fuzzy area image results of matching filtering, where region 3 is the main image, region 1 is the fuzzy image

    图  15  按照幅度大小排序后的主像(蓝色线)与模糊像(红色线)幅度曲线

    Figure  15.  Amplitude curves of main image (blue line) and fuzzy image (red line), sorted according to amplitude

    图  16  区域3主像、区域1模糊像,式(22)模糊像重建结果

    Figure  16.  Fuzzy reconstruction results using Eq. (22), where region 3 is the main image, region 1 is the fuzzy image

    图  17  区域3主像、区域1模糊像,式(18)模糊像重建结果

    Figure  17.  Fuzzy reconstruction results using Eq. (18), where region 3 is the main image, region 1 is the fuzzy image

    图  18  区域2主像、区域1模糊像,匹配滤波的主像结果

    Figure  18.  Primary image results of matching filtering, where region 2 is the main image, region 1 is the fuzzy image

    图  19  区域2主像、区域1模糊像,式(22)模糊抑制和主像结果

    Figure  19.  Fuzzy reconstruction results using Eq. (22), where region 2 is the main image, region 1 is the fuzzy image

    图  20  区域2主像、区域1模糊像,式(18)模糊抑制和主像结果

    Figure  20.  Fuzzy reconstruction results using Eq. (18), where region 2 is the main image, region 1 is the fuzzy image

    表  1  典型场景后向散射系数变化范围

    Table  1.   Variation range of backscattering coefficients in typical scenes

    场景最大值-平均值(dB)最大值-最小值(dB)
    山区15.9368.32
    海面3.0878.01
    港口14.4193.73
    城区17.7496.06
    下载: 导出CSV

    表  2  雷达仿真参数

    Table  2.   Radar simulation parameters

    雷达参数数值
    雷达载频(GHz)9.6
    雷达发射信号带宽(MHz)100
    脉冲重复频率(Hz)5000
    目标中心斜距(km)600
    平台飞行速度(m/s)7000
    合成孔径时间(s)0.7
    距离向名义分辨率(m)<2.0
    方位向名义分辨率(m)<2.0
    下载: 导出CSV

    表  3  距离模糊抑制前后,模糊像和主像能量比

    Table  3.   Energy ratio before and after distance fuzzy suppression

    序号方法能量和之比(dB)峰值能量之比(dB)
    1模糊像/主像能量1:1,匹配滤波0.0128–18.9953
    2模糊像/主像能量1:1,本文方法–11.9414–26.1393
    3模糊像/主像能量100:1,匹配滤波19.39271.0088
    4模糊像/主像能量100:1,本文方法7.9140–6.1270
    5模糊像/主像能量1:1,加噪声匹配滤波0.0175–8.9656
    6模糊像/主像能量1:1,加噪声本文方法–10.7281–11.9066
    注:5和6中,模糊像峰值能量统计受噪声影响大;能量和统计减去了噪声能量,受噪声影响较小。
    下载: 导出CSV

    表  4  成像前后弱目标能量对比

    Table  4.   Comparison of weak target energy before and after imaging

    参数数值(J)
    弱目标原始能量强度7.2703e+07
    传统方法处理后弱目标能量强度5.3230e+07
    本文方法处理后弱目标能量强度7.1773e+07
    下载: 导出CSV

    表  5  距离模糊抑制前后,模糊像和主像总能量比

    Table  5.   Total energy ratio of fuzzy image and main image before and after fuzzy suppression

    方法 能量和之
    比(dB)
    峰值能量
    之比(dB)
    模糊像点目标/主像面目标能量1:1,匹配滤波–0.2622–1.2186
    模糊像点目标/主像面目标能量1:1,本文方法–15.1669–11.8238
    下载: 导出CSV
  • [1] CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York, USA: Wiley, 1991: 115–320.
    [2] GRIFFLTHS H D and MANCINI P. Ambiguity suppression in sars using adaptive array techniques[C]. 1991 IEEE International Symposium on Geoscience and Remote Sensing, Espoo, Finland, 1991. doi: 10.1109/IGARSS.1991.580292.
    [3] KRIEGER G, HUBER S, VILLANO M, et al. CEBRAS: Cross elevation beam range ambiguity suppression for high-resolution wide-swath and MIMO-SAR imaging[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015.
    [4] MITTERMAYER J and MARTINEZ J M. Analysis of range ambiguity suppression in SAR by up and down chirp modulation for point and distributed targets[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 4077–4079. doi: 10.1109/IGARSS.2003.1295367.
    [5] WEN Xuejiao, QIU Xiaolan, HAN Bing, et al. A range ambiguity suppression processing method for spaceborne SAR with up and down chirp modulation[J]. Sensors, 2018, 18(5): 1454. doi: 10.3390/s18051454
    [6] MO Hongbo and ZENG Zhimin. Investigation of multichannel ScanSAR with up and down chirp modulation for range ambiguity suppression[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 2016: 1130–1133. doi: 10.1109/IGARSS.2016.7729286.
    [7] LIU Mingqian, ZHANG Bingchen, XU Zhongqiu, et al. Ambiguities suppression for azimuth multichannel SAR based on L2, q regularization with application to gaofen-3 ultra-fine stripmap mode[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1532–1544. doi: 10.1109/JSTARS.2020.3046366
    [8] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi: 10.1109/TIT.2006.871582
    [9] 吴一戎. 稀疏微波成像提升雷达性能[J]. 科学世界, 2019(9): 106–111.

    WU Yirong. Sparse microwave imaging improves radar performance[J]. Science World, 2019(9): 106–111.
    [10] 肖鹏, 吴有明, 于泽, 等. 一种基于压缩感知恢复算法的SAR图像方位模糊抑制方法[J]. 雷达学报, 2016, 5(1): 35–41. doi: 10.12000/JR16004

    XIAO Peng, WU Youming, YU Ze, et al. Azimuth ambiguity suppression in SAR images based on compressive sensing recovery algorithm[J]. Journal of Radars, 2016, 5(1): 35–41. doi: 10.12000/JR16004
    [11] FANG Jian, XU Zongben, JIANG Chenglong, et al. SAR range ambiguity suppression via sparse regularization[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012. doi: 10.1109/IGARSS.2012.6350582.
    [12] 田菁, 康利鸿, 孙希龙, 等. 稀疏微波成像技术在轨验证及应用探讨[J]. 通信学报, 2017, 38(S2): 37–42. doi: 10.11959/j.issn.1000-436x.2017263

    TIAN Jing, KANG Lihong, SUN Xilong, et al. Experiment based on orbit satellite and application for sparse microwave imaging[J]. Journal on Communications, 2017, 38(S2): 37–42. doi: 10.11959/j.issn.1000-436x.2017263
    [13] 毕辉, 张冰尘, 洪文, 等. 基于复图像的稀疏SAR成像方法在高分三号数据上的验证[J]. 雷达学报, 2020, 9(1): 123–130. doi: 10.12000/JR19092

    BI Hui, ZHANG Bingchen, HONG Wen, et al. Verification of complex image based sparse SAR imaging method on GaoFen-3 dataset[J]. Journal of Radars, 2020, 9(1): 123–130. doi: 10.12000/JR19092
    [14] XU Zhongqiu, LIU Mingqian, ZHOU Guoru, et al. An accurate sparse SAR imaging method for enhancing region-based features via nonconvex and TV regularization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 350–363. doi: 10.1109/JSTARS.2020.3034431
    [15] BI Hui, ZHANG Bingchen, ZHU Xiaoxiang, et al. L1-regularization-based SAR imaging and CFAR detection via complex approximated message passing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3426–3440. doi: 10.1109/TGRS.2017.2671519
    [16] ÇETIN M, STOJANOVIĆ I, ÖNHON N Ö, et al. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27–40. doi: 10.1109/MSP.2014.2312834
    [17] 胡长雨, 汪玲, 朱栋强. 结合字典学习技术的ISAR稀疏成像方法[J]. 电子与信息学报, 2019, 41(7): 1735–1742. doi: 10.11999/JEIT180747

    HU Changyu, WANG Ling, and ZHU Dongqiang. Sparse ISAR imaging exploiting dictionary learning[J]. Journal of Electronics &Information Technology, 2019, 41(7): 1735–1742. doi: 10.11999/JEIT180747
    [18] LI Feng, XIN Lei, GUO Yi, et al. A framework of mixed sparse representations for remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 1210–1221. doi: 10.1109/TGRS.2016.2621123
    [19] LI Bo, LIU Falin, ZHOU Chongbin, et al. Mixed sparse representation for approximated observation-based compressed sensing radar imaging[J]. Journal of Applied Remote Sensing, 2018, 12(3): 035015. doi: 10.1117/1.JRS.12.035015
    [20] APPLEBAUM L, HOWARD S D, SEARLE S, et al. Chirp sensing codes: Deterministic compressed sensing measurements for fast recovery[J]. Applied and Computational Harmonic Analysis, 2009, 26(2): 283–290. doi: 10.1016/j.acha.2008.08.002
    [21] MALLAT S G and ZHANG Zhifeng. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397–3415. doi: 10.1109/78.258082
    [22] CANDES E J and TAO T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203–4215. doi: 10.1109/TIT.2005.858979
  • 加载中
图(20) / 表(5)
计量
  • 文章访问数:  1158
  • HTML全文浏览量:  498
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 修回日期:  2021-12-29
  • 网络出版日期:  2022-01-28
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回