基于无监督域适应的仿真辅助SAR目标分类方法及模型可解释性分析

吕小玲 仇晓兰 俞文明 徐丰

吕小玲, 仇晓兰, 俞文明, 等. 基于无监督域适应的仿真辅助SAR目标分类方法及模型可解释性分析[J]. 雷达学报, 2022, 11(1): 168–182. doi: 10.12000/JR21179
引用本文: 吕小玲, 仇晓兰, 俞文明, 等. 基于无监督域适应的仿真辅助SAR目标分类方法及模型可解释性分析[J]. 雷达学报, 2022, 11(1): 168–182. doi: 10.12000/JR21179
LYU Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-assisted SAR target classification based on unsuperviseddomain adaptation and model interpretability analysis[J]. Journal of Radars, 2022, 11(1): 168–182. doi: 10.12000/JR21179
Citation: LYU Xiaoling, QIU Xiaolan, YU Wenming, et al. Simulation-assisted SAR target classification based on unsupervised domain adaptation and model interpretability analysis[J]. Journal of Radars, 2022, 11(1): 168–182. doi: 10.12000/JR21179

基于无监督域适应的仿真辅助SAR目标分类方法及模型可解释性分析

doi: 10.12000/JR21179
基金项目: 国家自然科学基金(61991421)
详细信息
    作者简介:

    吕小玲(1997–),女,四川人,中国科学院空天信息创新研究院在读硕士,研究方向为SAR目标识别

    仇晓兰(1982–),女,江苏人,中国科学院空天信息创新研究院研究员,博士生导师,主要研究方向为SAR成像处理、SAR图像理解,担任IEEE高级会员、IEEE地球科学与遥感快报副主编、雷达学报青年编委

    俞文明(1980–),男,浙江人,东南大学信息科学与工程学院副研究员,主要研究方向为电磁场数值计算

    徐 丰(1982–),男,浙江人,复旦大学信息科学与工程学院教授,主要研究方向为SAR图像解译、电磁散射建模、人工智能,担任IEEE地球科学与遥感快报副主编、IEEE地球科学与遥感学会上海分会主席

    通讯作者:

    仇晓兰 xlqiu@mail.ie.ac.cn

  • 责任主编:杜兰 Corresponding Editor: DU Lan
  • 中图分类号: TP753

Simulation-assisted SAR Target Classification Based on Unsupervised Domain Adaptation and Model Interpretability Analysis

Funds: The National Natural Science Foundation of China (61991421)
More Information
  • 摘要: 卷积神经网络(CNN)在光学图像分类领域中得到广泛应用,然而,合成孔径雷达(SAR)图像样本标注难度大、成本高,难以获取满足CNN训练所需的样本数量。随着SAR仿真技术的发展,生成大量带标签的仿真SAR图像并不困难。然而仿真SAR图像样本与真实样本间难免存在差异,往往难以直接支撑实际样本的分类任务。为此,该文提出了一种基于无监督域适应的仿真辅助SAR目标分类方法,集成了多核最大均值差异(MK-MMD)和域对抗训练,以解决由仿真图像分类任务迁移到真实图像分类任务中的域偏移问题。进一步使用逐层相关性传播(LRP)和对比逐层相关性传播(CLRP)两种可解释性方法,对域适应前后的模型进行了解释分析。实验结果表明,该文方法通过修正模型对输入数据的关注区域,找到了域不变的分类特征,显著提升了模型在真实SAR数据上的分类准确率。

     

  • 图  1  特征是否具备域不变性对找到不同域通用分类器的影响

    Figure  1.  The influence of domain invariance of features on finding a general classifier between different domains

    图  2  模型框架示意图

    Figure  2.  Schematic diagram of the model framework

    图  3  网络结构示意图

    Figure  3.  Schematic diagram of the model structure

    图  4  LRP原理示意图

    Figure  4.  An overview of LRP

    图  5  CLRP原理示意图

    Figure  5.  An overview of CLRP

    图  6  SAR目标光学图像及典型角度下的真实图像和仿真图像

    Figure  6.  Optical images of SAR targets and the corresponding simulated and real SAR images under typical azimuths and depressions

    图  7  SOC测试集的混淆矩阵

    Figure  7.  The confusion matrix of the SOC test set

    图  8  EOC测试集的混淆矩阵

    Figure  8.  The confusion matrixes of the EOC test set

    图  9  使用t-SNE进行特征可视化

    Figure  9.  Visualization of extracted features using t-SNE

    图  10  LRP可视化真实数据训练得到的模型决策依据

    Figure  10.  Using LRP to visualize the decision basis of the model trained by the real data

    图  11  CLRP可视化真实数据训练得到的模型决策依据

    Figure  11.  Using CLRP to visualize the decision basis of the model trained by the real data

    图  12  LRP和CLRP可视化仿真数据训练得到的模型决策依据

    Figure  12.  Using LRP and CLRP to visualize the decision basis of the model trained by the simulated data

    图  13  域适应前模型对T72图像的LRP及CLRP解释

    Figure  13.  The predicted results of the T72 images by the model before domain adaptation and the corresponding explanations generated by LRP and CLRP

    图  14  域适应前后模型对T72真实图像的预测结果及CLRP解释

    Figure  14.  The predicted results of the real T72 image by the model before and after domain adaptation and the corresponding explanations generated by CLRP

    表  1  数据集

    Table  1.   Dataset

    数据集目标类别俯仰角数量
    源域(仿真)训练集BMP217°, 15°3462
    BTR7017°, 15°3462
    T7217°, 15°3462
    源域(仿真)测试集BMP217°, 15°864
    BTR7017°, 15°864
    T7217°, 15°864
    目标域(真实)训练集BMP217°233
    BTR7017°233
    T7217°233
    目标域(真实)测试集
    (SOC和EOC)
    BMP215°, 17°1052
    BTR7015°196
    T7215°, 17°, 30°5906
    下载: 导出CSV

    表  2  SOC数据集

    Table  2.   SOC dataset

    目标类别目标型号训练集测试集
    俯仰角数量俯仰角数量
    BMP2956317°23315°195
    BTR70C7117°23315°196
    T7213217°23315°196
    下载: 导出CSV

    表  3  EOC-1测试集(大俯仰角)

    Table  3.   EOC-1 test set (large depression variation)

    目标类别目标型号俯仰角数量
    T72A6430°288
    下载: 导出CSV

    表  4  EOC-2测试集(配置变化)

    Table  4.   EOC-2 test set (configuration variant)

    目标类别目标型号俯仰角数量
    T72S715°, 17°419
    A3215°, 17°572
    A6215°, 17°573
    A6315°, 17°573
    A6415°, 17°573
    下载: 导出CSV

    表  5  EOC-3测试集(版本变化)

    Table  5.   EOC-3 test set (version variant)

    目标类别目标型号俯仰角数量
    BMP2956615°, 17°428
    C2115°, 17°429
    81215°, 17°426
    A0415°, 17°573
    T72A0515°, 17°573
    A0715°, 17°573
    A1015°, 17°567
    下载: 导出CSV

    表  6  网络训练过程中参数设置

    Table  6.   Parameters for the model training procedure

    名称参数值
    batch size32
    优化器SGD
    初始学习率${\text{l}}{{\text{r}}_{\text{0}}}$0.01
    GRL参数$\lambda $1
    惩罚因子$\gamma $1
    epoch500
    iteration/epoch35
    下载: 导出CSV

    表  7  结合不同背景仿真SAR图像的消融实验结果

    Table  7.   Results of ablation experiments with simulation SAR images of different backgrounds

    仿真背景方法准确率(%)
    MK-MMD域对抗训练
    ××28.00±1.39
    ×47.53±1.39
    ×35.48±0.52
    43.44±2.22
    ××73.20±1.38
    ×77.40±2.18
    ×85.20±1.19
    87.03±1.29
    ××65.07±0.52
    ×65.19±2.89
    ×73.57±0.62
    77.29±1.58
    全部应用××74.79±1.35
    ×83.99±1.19
    ×85.85±2.33
    90.43±0.95
    下载: 导出CSV

    表  8  使用不同仿真背景数据时,各方法在SOC测试集上的分类准确率对比

    Table  8.   Comparison of the classification accuracy on the SOC test set when using different methods with simulated data under different backgrounds

    训练方法准确率(%)
    全部仿真
    背景
    仿真
    背景①
    仿真
    背景②
    仿真
    背景③
    CNN(仅仿真训练集)75.8127.7773.5959.63
    CDAN[19]76.8341.7477.8572.23
    DSAN[14]84.8438.3388.0869.67
    本文域适应方法90.2941.9188.7678.36
    下载: 导出CSV
  • [1] EL-DARYMLI K, MCGUIRE P, POWER D, et al. Target detection in synthetic aperture radar imagery: A state-of-the-art survey[J]. Journal of Applied Remote Sensing, 2013, 7(1): 071598. doi: 10.1117/1.JRS.7.071598
    [2] CHEN Sizhe, WANG Haipeng, XU Feng, et al. Target classification using the deep convolutional networks for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8): 4806–4817. doi: 10.1109/TGRS.2016.2551720
    [3] ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. doi: 10.1109/TGRS.2017.2743222
    [4] PAN Zongxu, BAO Xianjie, ZHANG Yueting, et al. Siamese network based metric learning for SAR target classification[C]. IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1342–1345.
    [5] 董纯柱, 胡利平, 朱国庆, 等. 地面车辆目标高质量SAR图像快速仿真方法[J]. 雷达学报, 2015, 4(3): 351–360. doi: 10.12000/JR15057

    DONG Chunzhu, HU Liping, ZHU Guoqing, et al. Efficient simulation method for high quality SAR images of complex ground vehicles[J]. Journal of Radars, 2015, 4(3): 351–360. doi: 10.12000/JR15057
    [6] SONG Qian, CHEN Hui, XU Feng, et al. EM simulation-aided zero-shot learning for SAR automatic target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 1092–1096. doi: 10.1109/LGRS.2019.2936897
    [7] 胡利平, 董纯柱, 刘锦帆, 等. 基于SAR仿真图像的地面车辆非同源目标识别[J]. 系统工程与电子技术, 2021, 43(12): 3518–3525. doi: 10.12305/j.issn.1001-506X.2021.12.13

    HU Liping, DONG Chunzhu, LIU Jinfan, et al. Non-homologous target recognition of ground vehicles based on SAR simulation image[J]. Systems Engineering and Electronics, 2021, 43(12): 3518–3525. doi: 10.12305/j.issn.1001-506X.2021.12.13
    [8] MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1484–1488. doi: 10.1109/LGRS.2017.2717486
    [9] ZHANG Linbin, LENG Xiangguang, FENG Sijia, et al. Domain knowledge powered two-stream deep network for few-shot SAR vehicle recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1–15. doi: 10.1109/TGRS.2021.3116349
    [10] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238

    FAN Cangning, LIU Peng, XIAO Ting, et al. A review of deep domain adaptation: General situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515–548. doi: 10.16383/j.aas.c200238
    [11] TZENG E, HOFFMAN J, ZHANG Ning, et al. Deep domain confusion: Maximizing for domain invariance[EB/OL]. https://arxiv.org/abs/1412.3474v1, 2014.
    [12] LONG Mingsheng, CAO Yue, WANG Jianmin, et al. Learning transferable features with deep adaptation networks[C]. The 32nd International Conference on International Conference on Machine Learning, Lille, France, 2015: 97–105.
    [13] LONG Mingsheng, ZHU Han, WANG Jianmin, et al. Deep transfer learning with joint adaptation networks[C]. The 34th International Conference on Machine Learning, Sydney, Australia, 2017: 2208–2217.
    [14] ZHU Yongchun, ZHUANG Fuzhen, WANG Jindong, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713–1722. doi: 10.1109/TNNLS.2020.2988928
    [15] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096–2030.
    [16] SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3723–3732.
    [17] PEI Zhongyi, CAO Zhangjie, LONG Mingsheng, et al. Multi-adversarial domain adaptation[C]. The 32nd AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018: 3934–3941.
    [18] DU Zhekai, LI Jingjing, SU Hongzu, et al. Cross-domain gradient discrepancy minimization for unsupervised domain adaptation[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, USA, 2021: 3936–3945.
    [19] LONG Mingsheng, CAO Zhangjie, WANG Jianmin, et al. Conditional adversarial domain adaptation[C]. Neural Information Processing Systems, Montréal, Canada, 2018: 1647–1657.
    [20] GHIFARY M, KLEIJN W B, ZHANG Mengjie, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]. The 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 2016: 597–613.
    [21] BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]. The 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 2016: 343–351.
    [22] SANKARANARAYANAN S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: Aligning domains using generative adversarial networks[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 8503–8512.
    [23] HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/TGRS.2019.2947634
    [24] WANG Ke, ZHANG Gong, and LEUNG H. SAR target recognition based on cross-domain and cross-task transfer learning[J]. IEEE Access, 2019, 7: 153391–153399. doi: 10.1109/ACCESS.2019.2948618
    [25] ZHANG Wei, ZHU Yongfeng, and FU Qiang. Adversarial deep domain adaptation for multi-band SAR images classification[J]. IEEE Access, 2019, 7: 78571–78583. doi: 10.1109/ACCESS.2019.2922844
    [26] XU Yongjie, LANG Haitao, NIU Lihui, et al. Discriminative adaptation regularization framework-based transfer learning for ship classification in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(11): 1786–1790. doi: 10.1109/LGRS.2019.2907139
    [27] BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. PLoS One, 2015, 10(7): e0130140. doi: 10.1371/journal.pone.0130140
    [28] GU Jindong, YANG Yinchong, and TRESP V. Understanding individual decisions of CNNs via contrastive backpropagation[C]. The 14th Asian Conference on Computer Vision, Perth, Australia, 2018: 119–134.
    [29] GRETTON A, SRIPERUMBUDUR B, SEJDINOVIC D, et al. Optimal kernel choice for large-scale two-sample tests[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1205–1213.
    [30] KRIZHEVSKY A, SUTSKEVER I, and HINTON G E. ImageNet classification with deep convolutional neural networks[C]. The 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, 2012: 1097–1105.
    [31] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]. The 27th International Conference on Neural Information Processing Systems, Montreal, Canada, 2014: 2672–2680.
    [32] CHOI J, JEONG M, KIM T, et al. Pseudo-labeling curriculum for unsupervised domain adaptation[C]. The 30th British Machine Vision Conference, Cardiff, UK, 2019: 67.
    [33] SHU Yang, CAO Zhangjie, LONG Mingsheng, et al. Transferable curriculum for weakly-supervised domain adaptation[C]. The 33rd AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019: 4951–4958.
    [34] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017: 618–626.
    [35] ZEILER M D and FERGUS R. Visualizing and understanding convolutional networks[C]. The 13th European Conference on Computer Vision, Zurich, Switzerland, 2014: 818–833.
    [36] MONTAVON G, LAPUSCHKIN S, BINDER A, et al. Explaining nonlinear classification decisions with deep taylor decomposition[J]. Pattern Recognition, 2017, 65: 211–222. doi: 10.1016/j.patcog.2016.11.008
    [37] VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
  • 加载中
图(14) / 表(8)
计量
  • 文章访问数:  1731
  • HTML全文浏览量:  851
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-14
  • 修回日期:  2022-01-13
  • 网络出版日期:  2022-02-16
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回