Loading [MathJax]/jax/output/SVG/jax.js

典型几何基元的高频散射建模方法梳理

张旭 徐丰 金亚秋

张凌志, 刘飞峰, 胡程. 基于导航卫星的干涉SAR数据采集策略优选方法分析[J]. 雷达学报, 2019, 8(5): 624–630. doi: 10.12000/JR19065
引用本文: 张旭, 徐丰, 金亚秋. 典型几何基元的高频散射建模方法梳理[J]. 雷达学报, 2022, 11(1): 126–143. doi: 10.12000/JR21163
ZHANG Lingzhi, LIU Feifeng, and HU Cheng. Optimization method and analysis of data acquisition strategy based on interference SAR with GNSS transmitters[J]. Journal of Radars, 2019, 8(5): 624–630. doi: 10.12000/JR19065
Citation: ZHANG Xu, XU Feng, and JIN Yaqiu. Review of high-frequency scattering model of canonical geometric primitives[J]. Journal of Radars, 2022, 11(1): 126–143. doi: 10.12000/JR21163

典型几何基元的高频散射建模方法梳理

DOI: 10.12000/JR21163 CSTR: 32380.14.JR21163
基金项目: 国家自然科学基金(61991422)
详细信息
    作者简介:

    张 旭(1996–),女,山西长治人,复旦大学电磁波信息科学教育部重点实验室博士研究生,主要研究方向为电磁散射建模

    徐 丰(1982–),男,浙江东阳人,复旦大学博士,教授。研究方向为SAR图像解译、电磁散射建模、人工智能。担任IEEE地球科学与遥感快报副主编、IEEE地球科学与遥感学会上海分会主席

    金亚秋(1946–),男,上海人,美国麻省理工学院博士学位,教授,中国科学院院士。主要研究方向为复杂自然环境与目标电磁散射辐射传输、空间微波遥感和计算电磁,获国家自然科学奖二等奖、上海市科技功臣奖、IEEE GRSS杰出成就奖等奖项

    通讯作者:

    徐丰 fengxu@fudan.edu.cn

  • 责任主编:赵志钦 Corresponding Editor: ZHAO Zhiqin
  • 中图分类号: TN957.51

Review of High-frequency Scattering Model of Canonical Geometric Primitives

Funds: The National Natural Science Foundation of China (61991422)
More Information
  • 摘要: 高分辨率SAR图像中蕴含目标与环境丰富的信息,但复杂的电磁散射机制使其难以直观解译,这一直是SAR图像解译的重要研究课题。该文简单梳理了典型几何基元的高频散射建模方法,以面散射、线散射和点散射为线索简要回顾了若干高频散射机制的研究发展过程,并给出几种典型几何基元的散射机制表达式及部分仿真结果,分析了典型散射机制表征面临的难点及应用于SAR图像解译的关键科学问题,提出从几何基元出发,发展对应的散射基元,通过散射基元进行组合和相互作用以树状方式实现更完备和广泛的散射特征表征体系,最后讨论了面向SAR图像散射信息解译来构建散射机制字典的可行性。

     

  • 基于导航卫星的双基地SAR(Bistatic Synthetic Aperture Radar based on Global Navigation Satellite System, GNSS-BSAR)是空-地双基地SAR中一种典型的应用[1],使用在轨的导航卫星作为发射源,地面部署接收机(地基、车载、机载)构成双基地SAR系统[2]。由于导航星座的日趋完善,其全球覆盖性以及重轨特性所带来的优势是其他照射源暂时所不能替代的,其中以地基接收机为主的导航卫星干涉合成孔径雷达(Interference Synthetic Aperture Radar based on the Global Navigation Satellite System, GNSS-InSAR)在场景形变监测领域有着广阔的应用前景[3],成为了近年来研究热点。

    在GNSS-BSAR系统成像方面,已有研究者分别使用不同的导航卫星星座进行了成像验证,包括了北斗[4,5]、GPS[6]、格洛纳斯[7]、伽利略[8]。除此以外文献[9]还提出了多角度融合方法以增强图像信噪比。在形变监测方面,来自伯明翰大学的学者们[10]使用直达波天线,配合长约50 m的线缆构建了理想点目标,并使用格洛纳斯作为发射源,首次实现了精度约为1 cm的1维形变反演结果。该实验初步验证了GNSS-InSAR应用于形变监测的可行性。为了进一步验证场景形变监测的可能,2017年文献[11]通过对接收机进行高精度移位来模拟场景建筑形变,成功反演出了形变,精度约为1 cm。在3维形变方面,2018年北京理工大学的技术团队[12]通过人为构建转发器,进行了精度可控的强点目标形变模拟,使用我国的北斗IGSO卫星,成功实现了精度优于5 mm的3维形变反演,这些验证性实验充分表明了GNSS-InSAR应用于场景形变检测的可能。

    若要实现GNSS-InSAR场景的3维形变反演,需要同时至少3颗卫星从不同角度照射场景。由于GNSS-InSAR系统的拓扑高度非对称性以及导航信号的窄带特性[13],加上导航卫星的重轨并非是严格意义上的重轨,除了不可避免的空间基线外,重轨时间也并非严格一致,因此在实际数据采集中,需要对系统构型以及数据采集时间进行严格的优化设计。文献[14]提出了一种联合优化方法,解决了面向大场景下的多星多角度构型优化问题,配合多个接收机实现综合分辨性能优异的大场景成像。文献[15]提出了空间去相干的理论描述框架,表明了空间去相干在GNSS-InSAR中的必要性,但未对数据采集时间进行说明。从当前实际情况出发,不精确的数据采集时间可能会造成存储资源浪费,空间去相干导致的数据截取进一步降低了数据有效性。具体如图1所示:

    图  1  数据截取与有效数据示意图
    Figure  1.  Effective data interception diagram

    针对上述问题,本文提出了一种GNSS-InSAR场景连续数据采集优化方法,通过结合当前数据的卫星轨迹和两行星历数据文件(STK Two-Line Element sets, TLE)预测轨迹,基于相干系数轨迹对齐,获取卫星重轨时间间隔,得到最优的数据采集策略,从源头上降低数据的空间去相干性,提升所采集数据有效性,节约存储资源。在第2部分对GNSS-InSAR场景数据采集优化方法进行了详细介绍。第3部分针对提出的方法进行了实验设计,开展了实测数据采集,并针对采集的数据进行了初步分析。第4部分对全文进行总结。

    对于GNSS-InSAR图像而言,经过保相成像处理后,场景中任意一点(x0,y0)的像素信息分别对应分辨单元内所有散射体回波的相参叠加,可建模为

    s(x0,y0)=f(x,y;t)exp[j2πλr(x,y;P)]W(xx0,yy0;P)dxdy+n(x0,y0;t) (1)

    其中,f(x,y;t)为时间t下的地表散射系数,P为对应的合成孔径中心位置矢量,W(x,y;P)表示系统的点扩散函数(PSF), n(x,y;t)为图像的加性噪声。对于SAR图像的同名点像素,其相干系数可表示为[16]

    ρ=sm(x0,y0)ss(x0,y0)dxdysm(x0,y0)sm(x0,y0)dxdyss(x0,y0)ss(x0,y0)dxdy (2)

    其中,下标m表示主图像,s表示辅图像。根据柯西不等式可以判断:0ρ1,当ρ=0时表示同名点完全不相干,当ρ=1时,同名点完全相干。

    将点目标像素模型式(1)带入到式(2)并化简得到

    ρ=sav(x,y)exp[j2πλ(r(x,y;Pm)r(x,y;Ps))]|W(xx0,yy0;Pm)|2dxdy(sm(x,y)exp[j2πλr(x,y;Pm)]|W(xx0,yy0;Pm)|2dxdy+nm)×(ss(x,y)exp[+j2πλr(x,y;Ps)]|W(xx0,yy0;Pm)|2dxdy+ns) (3)

    式(3)的推导使用了如下近似:

    (1) 由于导航卫星的高轨道特性,使得W(xx0,yy0;Pm)W(xx0,yy0;Ps)成立;

    (2) 相邻两天的噪声相干系数为0,即

    n(x0,y0;tm)×n(x0,y0;ts)=0 (4)

    (3) 相邻两天的目标散射系数为sav(x,y),即

    sav(x,y)f(x,y;tm)f(x,y;ts) (5)

    对式(3)中的相干系数ρ进一步分解得到

    ρ=ρth×ρti×ρsp (6)

    其中,热噪声相干系数ρth与时间相干系数ρti分别由系统与实际目标决定。

    对于PS点[17]而言,地表散射系数相对稳定,不随时间变化,同时为了便于后续分析,假定散射系数为1得到空间相干系数ρsp的简化式为

    ρsp=exp[j2πλ(r(x,y;Pm)r(x,y;Ps))]|W(xx0,yy0;Pm)|2dxdy(|W(xx0,yy0;Pm)|2dxdy)(|W(xx0,yy0;Pm)|2dxdy) (7)

    从式(7)推导结果可以知道,空间基线主要是影响r(x,y;P)从而导致空间去相干。

    导航卫星的重轨时间并非稳定不变,因此需要对数据采集时间进行有效预测,从源头上降低空间去相干,提高数据有效性。

    假定主图像数据采集时间为tm,该采集时间可以通过文献[14]中的广义优化模型进行求解,辅图像数据采集时间为ts=tm+Δt, Δt为时间间隔,那么最优化数据采集模型可通过式(7)推导而来

    Δt=argmax{|˜W(x,y;Pm)|2exp[j2πλ(r(x,y;Pm)r(x,y;P(tm+Δt)))]dxdy} (8)

    其中,˜W(x,y;Pm)tm下等效归一化PSF, P(tm+Δt)Δt时间偏置下得合成孔径中心位置矢量。

    第1天数据采集需要进行实验设计以确定最优数据采集时刻,往后的重轨天数据采集可以根据数据采集优化模型,同时结合星历文件进行预测。整体的预测流程如图2所示,n为任意一天采集的数据,k为重轨天数间隔。

    图  2  GNSS-InSAR数据采集时间优化流程
    Figure  2.  Time optimization process of GNSS-InSAR data acquisition

    实际卫星位置对应的实际时间设为tn,经过模型优化得到的时间偏差为Δt,那么第n+k天对应的实际数据采集时间可表示为

    tn+k=tn+Δt (9)

    对于固定场景的形变监测,首次数据采集的时候需要严格设计系统构型,使分辨率达到最优化。本次实验接收机部署在北京理工大学信息科学试验楼楼顶西北角,实施监测场景位于西偏北30°。使用理论分辨率计算公式[18]对该场景进行分辨率设计。仿真参数具体参见表1

    表  1  数据采集试验仿真参数
    Table  1.  Data acquisition test simulation parameters
    参数
    照射源北斗 IGSO1~5
    PRF1000 Hz
    带宽10.23 MHz
    合成孔径时间600 s
    TLE文件更新日期2019年4月29日
    预定数据采集日期2019年4月30日
    下载: 导出CSV 
    | 显示表格

    以分辨单元面积作为判定依据,得到预定采集日期当天全时段下各个卫星在预定场景下所能得到的分辨单元面积如图3所示。

    图  3  全时段下场景分辨单元面积
    Figure  3.  Scene resolution unit area in full time

    为了实现3维形变反演,需要同一时间下有3颗卫星对场景进行照射。图3中10点前后与17点前后满足当前场景上空有3颗IGSO卫星可见的条件。更进一步,为了使分辨单元面积达到最优,可以得到具体的数据采集时间。具体如图4红框标注,分别是9点30分前后与17点30分前后。

    图  4  首次数据采集时间设计结果
    Figure  4.  Design results of first data acquisition time

    为了配合实验,在场景布置转发器,整体的系统构型如图5所示。

    图  5  GNSS-InSAR场景3维形变反演实验拓扑构型设计结果
    Figure  5.  GNSS-InSAR topological configuration design results of 3D deformation retrieval experiment

    以2019年4月30日采集的实测数据作为第n天数据,对于北斗的IGSO而言,重轨时间约为1天,即m=1,同时下载当天最新的TLE文件。以IGSO1为例,结合图2进行详细说明:

    (1) 使用实测数据的直达波进行卫星位置解算,同时根据TLE文件推算当天和相邻天的卫星轨迹。经过相干系数轨迹匹配之后,得到的轨迹如图6所示。

    图  6  对齐后的TLE卫星轨迹与实测数据卫星轨迹
    Figure  6.  Aligned TLE satellite trajectory and measured data satellite trajectory

    (2) 以匹配得到的TLE卫星轨迹作为参考,对重轨天的TLE卫星轨迹进行数据采集优化模型求解,系统的PSF与优化模型仿真结果分别如图7图8所示。

    图  7  场景[–147, 20, 0]处理论PSF
    Figure  7.  Theoretical PSF in scene at position of [–147, 20, 0]
    图  8  数据采集优化模型仿真结果
    Figure  8.  Simulation results of data acquisition optimization model

    图8的结果分析可知,第1个峰值点为其本身,由于空间基线为0,相干系数为1。第2个峰值点相干系数为0.999644,满足除了第1个峰值点外相邻天相干系数最大值条件,因此第2个峰值点就是最佳重轨时的空间相干系数。此时经过模型优化得到的时间间隔为:Δt=86163s=23h56min3s,结合第1天的实测数据轨迹对应的时间t1=9h26min0s,第2天准确的数据采集时间为:t2=9h22min3s

    为了说明优化结果的正确性,在实验场景中放置转发器模拟理想点目标(图5),同时按照优化后的时间进行5月1日数据采集。实际采集时间为9h21min53s,总采集时间约650 s。相邻两天的空间相干系数轨迹匹配结果如图9所示。

    图  9  实测数据重轨空间相干系数
    Figure  9.  The spatial coherence coefficient of measured data

    图9中峰值点位置来看,重轨数据采集优化模型得到的结果和实际结果相吻合。为了进一步说明,图10给出了IGSO1卫星实测数据成像结果。

    图  10  场景成像结果
    Figure  10.  Imaging results of scene

    对相邻两天的图像相干系数进行求解,得到图11所示结果。在同一坐标系下,仿真目标位于[–147, 20, 0],空间相干系数为0.999644;转发器位于[–147, 20, 0],相干系数为0.9996;两者的相干系数基本保持一致。

    图  11  相干系数结果
    Figure  11.  Coherence coefficient result

    图9图10的结果表明经过数据采集优化模型后得到的时间间隔与实际卫星轨迹的重轨时间相互吻合,在保证600 s预期合成孔径时间下,可以最大限度减少数据采集时间,节约存储资源。同时避免后期由于数据对齐带来的数据有效性降低问题。

    在GNSS-InSAR场景1维/3维形变反演应用中,针对由于导航卫星重轨时间的非严格一致性与有效数据截取带来的数据冗余,数据有效性低等问题,本文提出了一种面向GNSS-InSAR场景数据采集的优化模型,采用实测数据与TLE文件相结合,根据当天数据采集时间,预测相邻天重轨时间,从而实现精确的数据采集。实测数据验证结果表明了数据采集时间优化模型的正确性。该方法的提出有利于GNSS-InSAR场景1维/3维形变反演实验的开展,在降低原始数据冗余度基础上,保证了有效数据时间长度大于预期合成孔径时间。

  • 图  1  高频散射发展历程示意图

    Figure  1.  Schematic diagram of the development of high frequency scattering

    图  2  几何光学波传播示意图

    Figure  2.  Wave propagation diagram in GO

    图  3  射线管传播示意图

    Figure  3.  Astigmatic tube of rays

    图  4  几何光学示意图

    Figure  4.  Schematic diagram of GO

    图  5  多边形平板散射示意图

    Figure  5.  Polygonal flat plate scattering diagram

    图  6  正六边形平板散射仿真示意图

    Figure  6.  Schematic diagram of regular hexagonal plate scattering simulation

    图  7  正六边形平板散射仿真结果图

    Figure  7.  Scattering simulation result of regular hexagonal plate

    图  8  椭球散射示意图

    Figure  8.  Scattering schematic diagram of ellipsoid

    图  9  椭球散射仿真示意图

    Figure  9.  Scattering simulation schematic diagram of ellipsoid

    图  10  椭球散射仿真结果图

    Figure  10.  Scattering simulation result of ellipsoid

    图  11  球散射仿真示意图

    Figure  11.  Scattering simulation schematic diagram of sphere

    图  12  球散射仿真结果图

    Figure  12.  Scattering simulation result of sphere

    图  13  组合曲面模型后向散射仿真示意图

    Figure  13.  Backscattering simulation schematic diagram of combined curved surface model

    图  14  组合曲面模型仿真结果图

    Figure  14.  Scattering simulation result of combined curve surface model

    图  15  劈尖边散射发展示意图

    Figure  15.  Schematic diagram of wedge scattering development

    图  16  曲边劈尖边散射示意图

    Figure  16.  Scattering schematic diagram of curved wedge

    图  17  平板散射仿真示意图

    Figure  17.  Scattering schematic diagram of flat plane

    图  18  平板散射仿真结果图

    Figure  18.  Scattering simulation result of flat plane

    图  19  劈尖边散射仿真示意图

    Figure  19.  Scattering schematic diagram of wedge

    图  20  劈尖边散射仿真结果图

    Figure  20.  Scattering simulation result of wedge

    图  21  房屋模型散射仿真示意图

    Figure  21.  Scattering schematic diagram of house

    图  22  房屋模型散射仿真结果图

    Figure  22.  Scattering simulation results of house

    图  23  直边尖顶散射示意图

    Figure  23.  Scattering schematic diagram of straight vertex

    图  24  尖顶散射发展示意图

    Figure  24.  Schematic diagram of vertex scattering development

    图  25  典型结构的几何基元表征

    Figure  25.  Geometric primitive characterization of typical structures

    图  26  SLICY的树状表征体系

    Figure  26.  The tree representation system of SLICY

    表  1  正六边形平板散射仿真参数表

    Table  1.   Scattering simulation parameters of regular hexagonal plate

    参数数值参数数值
    频率(GHz)1角度间隔(°)1
    入射角(°)0观测距离远场
    出射角(°)–80°~80°外切圆半径(m)0.8485
    下载: 导出CSV

    表  2  椭球散射仿真参数表

    Table  2.   Scattering simulation parameters of ellipsoid

    参数数值参数数值
    频率(GHz)10角度间隔(°)1
    入射角(°)0观测距离远场
    出射角(°)–100~100半径(m)3, 2, 2
    下载: 导出CSV

    表  3  球散射仿真参数表

    Table  3.   Scattering simulation parameters of sphere

    参数数值参数数值
    频率(GHz)10角度间隔(°)1
    入射角(°)0观测距离远场
    出射角(°)–100~100半径(m)3
    下载: 导出CSV

    表  4  组合曲面模型散射仿真参数表

    Table  4.   Scattering simulation parameters of combined curve surface model

    参数数值参数数值
    频率(GHz)1角度间隔(°)2
    入射角(°)0观测距离远场
    角度范围0~180
    下载: 导出CSV

    表  5  平板散射仿真参数表

    Table  5.   Scattering simulation parameters of flat plane

    参数数值参数数值
    频率(GHz)1角度间隔(°)1
    入射角(°)0观测距离300
    出射角(°)–81~79平板边长(m)8
    下载: 导出CSV

    表  6  劈尖边散射仿真参数表

    Table  6.   Scattering simulation parameters of wedge

    参数数值参数数值
    r/λ0~1n0.6189
    ϕ045°r0212.15 m
    ϕ90°r50 m
    下载: 导出CSV

    表  7  房屋模型散射仿真参数表

    Table  7.   Scattering simulation parameters of house

    参数数值参数数值
    频率(GHz)1角度间隔(°)2
    入射角(°)1观测距离远场
    角度范围(°)–90~90
    下载: 导出CSV
  • [1] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging—from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [2] COIFMAN R, ROKHLIN V, and WANDZURA S. The fast multipole method for electromagnetic scattering calculations[C]. IEEE Antennas and Propagation Society International Symposium, Ann Arbor, USA, 1993: 48–51.
    [3] HARRINGTON R F. Field Computation by Moment Method[M]. New York: MacMillan, 1968.
    [4] ZHAO Zihao and YE Hongxia. Sparse matrix canonical grid method for three-dimension rough surface[C]. 2018 International Conference on Microwave and Millimeter Wave Technology, Chengdu, China, 2018: 1–3.
    [5] FU W N, ZHAO Yanpu, HO S L, et al. An electromagnetic field and electric circuit coupled method for solid conductors in 3-D finite-element method[J]. IEEE Transactions on Magnetics, 2016, 52(3): 7401704. doi: 10.1109/TMAG.2015.2487362
    [6] XU Feng and JIN Yaqiu. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(5): 1495–1505. doi: 10.1109/TAP.2009.2016691
    [7] LOANE J and LEE S W. A geometrical optics approximation for refraction at a planar interface between arbitrarily lossy media[J]. Journal of Electromagnetic Waves and Applications, 1987, 1(4): 349–376. doi: 10.1163/156939387X00180
    [8] ROEDDER J M. CADDSCAT version 2.3: A high-frequency physical optics code modified for trimmed IGES B-spline surfaces[J]. IEEE Antennas and Propagation Magazine, 1999, 41(3): 69–80. doi: 10.1109/74.775250
    [9] UFIMTSEV P Y. Method of edge waves in the physical theory of diffraction[R]. FTD-HC-23-259-71, 1962.
    [10] KNOTT E. The relationship between Mitzner’s ILDC and Michaeli’s equivalent currents[J]. IEEE Transactions on Antennas and Propagation, 1985, 33(1): 112–114. doi: 10.1109/TAP.1985.1143482
    [11] KELLER J B. Geometrical theory of diffraction[J]. Journal of the Optical Society of America, 1962, 52(2): 116–130. doi: 10.1364/josa.52.000116
    [12] KOUYOUMJIAN R G and PATHAK P H. A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface[J]. Proceedings of the IEEE, 1974, 62(11): 1448–1461. doi: 10.1109/PROC.1974.9651
    [13] ALBANI M, CAPOLINO F, CARLUCCIO G, et al. UTD vertex diffraction coefficient for the scattering by perfectly conducting faceted structures[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(12): 3911–3925. doi: 10.1109/TAP.2009.2027455
    [14] ALBANI M, CARLUCCIO G, and PATHAK P H. A uniform geometrical theory of diffraction for vertices formed by truncated curved wedges[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3136–3143. doi: 10.1109/TAP.2015.2427877
    [15] JACKSON J A, RIGLING B D, and MOSES R L. Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 525–541. doi: 10.1109/TAES.2010.5461639
    [16] POTTER L C and MOSES R L. Attributed scattering centers for SAR ATR[J]. IEEE Transactions on Image Processing, 1997, 6(1): 79–91. doi: 10.1109/83.552098
    [17] GERRY M J, POTTER L C, GUPTA I J, et al. A parametric model for synthetic aperture radar measurements[J]. IEEE Transactions on Antennas and Propagation, 1999, 47(7): 1179–1188. doi: 10.1109/8.785750
    [18] LI Jian, WU Renbiao, BI Zhaoqiang, et al. Robust semiparametric method for feature extraction and SAR image formation of targets consisting of trihedrals and dihedrals[C]. Proceedings of SPIE 3721, Algorithms for Synthetic Aperture Radar Imagery VI, Orlando, USA, 1999: 92–103.
    [19] AI Fazhi, ZHOU Jianxiong, HU Lei, et al. The parametric model of non-uniformly distributed scattering centers[C]. The IET International Conference on Radar Systems (Radar 2012), Glasgow, UK, 2012: 1–5.
    [20] 周剑雄. 光学区雷达目标三维散射中心重构理论与技术[D]. [博士论文], 国防科学技术大学, 2006.

    ZHOU Jianxiong. Theory and technology on reconstructing 3D scattering centers of radar targets in optical region[D]. [Ph. D. dissertation], National University of Defense Technology, 2006.
    [21] ZHOU Jianxiong, SHI Zhiguang, and FU Qiang. Three-dimensional scattering center extraction based on wide aperture data at a single elevation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1638–1655. doi: 10.1109/TGRS.2014.2346509
    [22] HE Yang, HE Siyuan, ZHANG Yunhua, et al. A forward approach to establish parametric scattering center models for known complex radar targets applied to SAR ATR[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(12): 6192–6205. doi: 10.1109/TAP.2014.2360700
    [23] RICHARDS J A. Target model generation from multiple synthetic aperture radar images[D]. [Ph. D. dissertation], Massachusetts Institute of Technology, 1996.
    [24] RIGLING B D. Signal processing strategies for bistatic synthetic aperture radar[D]. [Ph. D. dissertation], The Ohio State University, 2003.
    [25] JACKSON J A and MOSES R L. An algorithm for 3D target scatterer feature estimation from sparse SAR apertures[C]. Proceedings of SPIE 7337, Algorithms for Synthetic Aperture Radar Imagery XVI, Orlando, USA, 2009: 1–12.
    [26] JACKSON J A. Three-dimensional feature models for synthetic aperture radar and experiments in feature extraction[D]. [Ph. D. dissertation], The Ohio State University, 2009.
    [27] 文贡坚, 朱国强, 殷红成, 等. 基于三维电磁散射参数化模型的SAR目标识别方法[J]. 雷达学报, 2017, 6(2): 115–135. doi: 10.12000/JR17034

    WEN Gongjian, ZHU Guoqiang, YIN Hongcheng, et al. SAR ATR based on 3D parametric electromagnetic scattering model[J]. Journal of Radars, 2017, 6(2): 115–135. doi: 10.12000/JR17034
    [28] XING Xiaoyu, YAN Hua, YIN Hongcheng, et al. A bistatic attributed scattering center model for SAR ATR[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(11): 7855–7866. doi: 10.1109/TAP.2021.3083817
    [29] 文贡坚, 马聪慧, 丁柏圆, 等. 基于部件级三维参数化电磁模型的SAR目标物理可解释识别方法[J]. 雷达学报, 2020, 9(4): 608–621. doi: 10.12000/JR20099

    WEN Gongjian, MA Conghui, DING Baiyuan, et al. SAR target physics interpretable recognition method based on three dimensional parametric electromagnetic part model[J]. Journal of Radars, 2020, 9(4): 608–621. doi: 10.12000/JR20099
    [30] PHAEBUA K, PHONGCHAROENPANICH C, and LERTWIRIYAPRAPA T. On an accuracy of the modified UTD solution for a convex impedance cylinder surface[C]. 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, 2012: 1–4.
    [31] 汪茂光. 几何绕射理论[M]. 2版. 西安: 西安电子科技大学出版社, 1994.

    WANG Maoguang. Geometrical Theory of Diffraction[M]. 2nd ed. Xi’an: Xidian University Press, 1994.
    [32] KLINE M. An asymptotic solution of Maxwell’s equations[J]. Communications on Pure and Applied Mathematics, 1951, 4(2/3): 225–262. doi: 10.1002/cpa.3160040203
    [33] GORDON W. Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields[J]. IEEE Transactions on Antennas and Propagation, 1975, 23(4): 590–592. doi: 10.1109/TAP.1975.1141105
    [34] LUDWIG A. Computation of radiation patterns involving numerical double integration[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(6): 767–769. doi: 10.1109/TAP.1968.1139296
    [35] VICO-BONDIA F, FERRANDO-BATALLER M, and VALERO-NOGUEIRA A. A new fast physical optics for smooth surfaces by means of a numerical theory of diffraction[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(3): 773–789. doi: 10.1109/TAP.2009.2039308
    [36] ZHANG Jun, YU Wenming, ZHOU Xiaoyang, et al. Efficient evaluation of the physical-optics integrals for conducting surfaces using the uniform stationary phase method[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2398–2408. doi: 10.1109/TAP.2012.2189737
    [37] MOSCHOVITIS C G, KARAKATSELOS K T, PAPKELIS E G, et al. Scattering of electromagnetic waves from a rectangular plate using an enhanced stationary phase method approximation[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(1): 233–238. doi: 10.1109/TAP.2009.2024015
    [38] RUCK G T, BARRICK D E, STUART W D, et al. Radar Cross Section Handbook[M]. New York: Plenum Press, 1970.
    [39] CRISPIN J W JR and SIEGEL K M. Methods of Radar Cross-section Analysis[M]. New York: Academic Press, 1968.
    [40] BOWMAN J J, SENIOR T B A, and USLENGHI P L E. Electromagnetic and Acoustic Scattering by Simple Shapes[M]. New York: Hemisphere Publishing Corp. , 1987.
    [41] TROTT K D. Stationary phase derivation for RCS of an ellipsoid[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 240–243. doi: 10.1109/LAWP.2007.891521
    [42] YUAN Haobo, WANG Nan, and LIANG Changhong. Combining the higher order method of moments with geometric modeling by NURBS surfaces[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(11): 3558–3563. doi: 10.1109/TAP.2009.2023095
    [43] HUANG Kai, HE Zhili, and LIANG Changhong. Efficient analysis of antenna around electrically large NURBS platform with accelerating MOM-PO method[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 134–137. doi: 10.1109/LAWP.2010.2044861
    [44] GIOVAMPAOLA C D, CARLUCCIO G, PUGGELLI F, et al. Efficient algorithm for the evaluation of the physical optics scattering by NURBS surfaces with relatively general boundary condition[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4194–4203. doi: 10.1109/TAP.2013.2261447
    [45] TABOADA J M and OBELLEIRO F. Including multibounce effects in the moment-method physical-optics (MMPO) method[J]. Microwave and Optical Technology Letters, 2002, 32(6): 435–439. doi: 10.1002/mop.10202
    [46] CONDE O M, PEREZ J, and CATEDRA M P. Stationary phase method application for the analysis of radiation of complex 3-D conducting structures[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(5): 724–731. doi: 10.1109/8.929626
    [47] ZHANG Yong and LIN Hai. MLFMA-PO hybrid technique for efficient analysis of electrically large structures[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1676–1679. doi: 10.1109/LAWP.2014.2351422
    [48] KELLER J. Diffraction of a convex cylinder[J]. IRE Transactions on Antennas and Propagation, 1956, 4(3): 312–321. doi: 10.1109/TAP.1956.1144427
    [49] LEVY B R and KELLER J B. Diffraction by a smooth object[J]. Communications on Pure and Applied Mathematics, 1959, 12(1): 159–209. doi: 10.1002/cpa.3160120108
    [50] PATHAK P, BURNSIDE W, and MARHEFKA R. A uniform GTD analysis of the diffraction of electromagnetic waves by a smooth convex surface[J]. IEEE Transactions on Antennas and Propagation, 1980, 28(5): 631–642. doi: 10.1109/TAP.1980.1142396
    [51] ROUSSEAU P R. Time domain version of the uniform geometrical theory of diffraction[D]. [Ph. D. dissertation], The Ohio State University, 1995.
    [52] ROUSSEAU P R, PATHAK P H, and CHOU H T. A time domain formulation of the uniform geometrical theory of diffraction for scattering from a smooth convex surface[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(6): 1522–1534. doi: 10.1109/TAP.2007.897204
    [53] PATHAK P H. Techniques for High-frequency Problems[M]. LO Y T and LEE S W. Antenna Handbook: Theory, Applications, and Design. Boston: Springer, 1988: 195–311.
    [54] CHOU H T, PATHAK P H, and ROUSSEAU P R. TD-UTD solutions for the transient radiation and surface fields of pulsed antennas placed on PEC smooth convex surfaces[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(5): 1626–1637. doi: 10.1109/TAP.2011.2122235
    [55] KIM H T and WANG Nan. UTD solution for electromagnetic scattering by a circular cylinder with thin lossy coatings[J]. IEEE Transactions on Antennas and Propagation, 1989, 37(11): 1463–1472. doi: 10.1109/8.43566
    [56] HUSSAR P E. A uniform GTD treatment of surface diffraction by impedance and coated cylinders[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(7): 998–1008. doi: 10.1109/8.704801
    [57] TOKGOZ C and MARHEFKA R J. A UTD based asymptotic solution for the surface magnetic field on a source excited circular cylinder with an impedance boundary condition[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(6): 1750–1757. doi: 10.1109/TAP.2006.875490
    [58] PAULI W. On asymptotic series for functions in the theory of diffraction of light[J]. Physical Review Journals Archive, 1938, 54(11): 924–931. doi: 10.1103/PhysRev.54.924
    [59] BURNSIDE W and BURGENER K. High frequency scattering by a thin lossless dielectric slab[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(1): 104–110. doi: 10.1109/TAP.1983.1143019
    [60] HUTCHINS D L and KOUYOUMJIAN R G. Asymptomatic series describing the diffraction of a plane wave by a wedge[J]. ElectroScience Laboratory Department of Electrical Engineering, Ohio State University, Columbus, 1969.
    [61] PATHAK P H and KOUYOUMJIAN R G. The dyadic diffraction coefficient for a perfectly-conducting wedge[R]. DTIC Document, 1970.
    [62] AHLUWALIA D S, LEWIS R M, and BOERSMA J. Uniform asymptotic theory of diffraction by a plane screen[J]. SIAM Journal on Applied Mathematics, 1968, 16(4): 783–807. doi: 10.1137/0116065
    [63] LEWIS R M and BOERSMA J. Uniform asymptotic theory of edge diffraction[J]. Journal of Mathematical Physics, 1969, 10(12): 2291–2305. doi: 10.1063/1.1664835
    [64] AHLUWALIA D S. Uniform asymptotic theory of diffraction by the edge of a three-dimensional body[J]. SIAM Journal on Applied Mathematics, 1970, 18(2): 287–301. doi: 10.1137/0118024
    [65] MEIXNER J. The behavior of electromagnetic fields at edges[J]. IEEE Transactions on Antennas and Propagation, 1972, 20(4): 442–446. doi: 10.1109/TAP.1972.1140243
    [66] LUEBBERS R. Finite conductivity uniform GTD versus knife edge diffraction in prediction of propagation path loss[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(1): 70–76. doi: 10.1109/TAP.1984.1143189
    [67] CAKIR G, SEVGI L, and UFIMTSEV P Y. FDTD modeling of electromagnetic wave scattering from a wedge with perfectly reflecting boundaries: Comparisons against analytical models and calibration[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(7): 3336–3342. doi: 10.1109/TAP.2012.2196948
    [68] ALBANI M, CAPOLINO F, MACI S, et al. Diffraction at a thick screen including corrugations on the top face[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(2): 277–283. doi: 10.1109/8.560346
    [69] CAPOLINO F, ALBANI I M, MACI S, et al. Double diffraction at a pair of coplanar skew edges[J]. IEEE Transactions on Antennas and Propagation, 1997, 45(8): 1219–1226. doi: 10.1109/8.611240
    [70] ALBANI M, PIAZZESI P, CAPOLINO F, et al. Shielding effect of a thick screen with corrugations[J]. IEEE Transactions on Electromagnetic Compatibility, 1998, 40(3): 235–239. doi: 10.1109/15.709421
    [71] ALBANI M. A uniform double diffraction coefficient for a pair of wedges in arbitrary configuration[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(2): 702–710. doi: 10.1109/TAP.2004.841289
    [72] KRAUS L and LEVINE L M. Diffraction by an elliptic cone[J]. Communications on Pure and Applied Mathematics, 1961, 14(1): 49–68. doi: 10.1002/cpa.3160140104
    [73] SATTERWHITE R. Diffraction by a quarter plane, the exact solution, and some numerical results[J]. IEEE Transactions on Antennas and Propagation, 1974, 22(3): 500–503. doi: 10.1109/TAP.1974.1140803
    [74] SAHALOS J and THIELE G. The eigenfunction solution for scattered fields and surface currents of a vertex[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(1): 206–211. doi: 10.1109/TAP.1983.1142987
    [75] HANSEN T B. Diffraction by a plane angular sector, a new derivation[J]. IEEE Transactions on Antennas and Propagation, 1990, 38(11): 1892–1894. doi: 10.1109/8.102757
    [76] BLUME S. Spherical-multipole analysis of electromagnetic and acoustical scattering by a semi-infinite elliptic cone[J]. IEEE Antennas and Propagation Magazine, 1996, 38(2): 33–44. doi: 10.1109/74.500230
    [77] BLUME S and KREBS V. Numerical evaluation of dyadic diffraction coefficients and bistatic radar cross sections for a perfectly conducting semi-infinite elliptic cone[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(3): 414–424. doi: 10.1109/8.662661
    [78] KLINKENBUSCH L. Electromagnetic scattering by semi-infinite circular and elliptic cones[J]. Radio Science, 2007, 42(6): RS6S10. doi: 10.1029/2007RS003649
    [79] RADLOW J. Diffraction by a quarter-plane[J]. Archive for Rational Mechanics and Analysis, 1961, 8(1): 139–158. doi: 10.1007/BF00277435
    [80] RADLOW J. Note on the defraction at a corner[J]. Archive for Rational Mechanics and Analysis, 1965, 19(1): 62–70. doi: 10.1007/BF00252278
    [81] ALBERTSEN N C. Diffraction by a quarterplane of the field from a halfwave dipole[J]. IEE Proceedings-Microwaves, Antennas and Propagation, 1997, 144(3): 191–196. doi: 10.1049/ip-map:19971151
    [82] ALBANI M. On Radlow’s quarter-plane diffraction solution[J]. Radio Science, 2007, 42(6): RS6S11. doi: 10.1029/2006RS003528
    [83] SIKTA F, BURNSIDE W, CHU T T, et al. First-order equivalent current and corner diffraction scattering from flat plate structures[J]. IEEE Transactions on Antennas and Propagation, 1983, 31(4): 584–589. doi: 10.1109/TAP.1983.1143116
    [84] HILL K C. A UTD solution to the EM-scattering by the vertex of a perfectly conducting plane angular sector[D]. [Ph. D. dissertation], The Ohio State University, 1990.
    [85] HILL K C and PATHAK P H. A UTD solution for the EM diffraction by a corner in a plane angular sector[C]. The Antennas and Propagation Society Symposium 1991 Digest, London, Canada, 1991: 2–5.
    [86] HANSEN T B. Corner diffraction coefficients for the quarter plane[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(7): 976–984. doi: 10.1109/8.86918
    [87] MACI S, TIBERIO R, and TOCCAFONDI A. Diffraction at a plane angular sector[J]. Journal of Electromagnetic Waves and Applications, 1994, 8(9/10): 1247–1276. doi: 10.1163/156939394X01028
    [88] CAPOLINO F and MACI S. Uniform high-frequency description of singly, doubly, and vertex diffracted rays for a plane angular sector[J]. Journal of Electromagnetic Waves and Applications, 1996, 10(9): 1175–1197. doi: 10.1163/156939396X00658
    [89] MACI S, ALBANI M, and CAPOLINO F. ITD formulation for the currents on a plane angular sector[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(9): 1318–1327. doi: 10.1109/8.719975
    [90] MICHAELI A. Comments on "First-order equivalent current and corner diffraction scattering from flat plate structures"[J]. IEEE Transactions on Antennas and Propagation, 1984, 32(9): 1011–1012. doi: 10.1109/TAP.1984.1143436
    [91] JONES D S. A uniform asymptotic expansion for a certain double integral[J]. Proceedings of the Royal Society of Edinburgh Section A:Mathematics, 1971, 69(3): 205–226. doi: 10.1017/S0080454100008694
    [92] CLEMMOW P C and SENIOR T B A. A note on a generalized Fresnel integral[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1953, 49(3): 570–572. doi: 10.1017/S0305004100028723
    [93] CAPOLINO F and MACI S. Simplified closed-form expressions for computing the generalized fresnel integral and their application to vertex diffraction[J]. Microwave and Optical Technology Letters, 1995, 9(1): 32–37. doi: 10.1002/mop.4650090113
    [94] MACI S, TIBERIO R, and TOCCAFONDI A. Incremental diffraction coefficients for source and observation at finite distances from an edge[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(5): 593. doi: 10.1109/8.496244
    [95] SMYSHLYAEV V P. The high-frequency diffraction of electromagnetic waves by cones of arbitrary cross sections[J]. SIAM Journal on Applied Mathematics, 1993, 53(3): 670–688. doi: 10.1137/0153034
    [96] BABICH V M, SMYSHLYAEV V P, DEMENT’EV D B, et al. Numerical calculation of the diffraction coefficients for an arbitrary shaped perfectly conducting cone[J]. IEEE Transactions on Antennas and Propagation, 1996, 44(5): 740. doi: 10.1109/8.496260
    [97] ALBANI M, CARLUCCIO G, and PATHAK P H. Uniform ray description for the PO scattering by vertices in curved surface with curvilinear edges and relatively general boundary conditions[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(5): 1587–1596. doi: 10.1109/TAP.2011.2123062
    [98] SI Zhangzhang and ZHU Songchun. Learning AND-OR templates for object recognition and detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(9): 2189–2205. doi: 10.1109/TPAMI.2013.35
  • 加载中
图(26) / 表(7)
计量
  • 文章访问数: 1862
  • HTML全文浏览量: 1435
  • PDF下载量: 285
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 修回日期:  2022-01-26
  • 网络出版日期:  2022-02-24
  • 刊出日期:  2022-02-28

目录

/

返回文章
返回