基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法

李志远 郭嘉逸 张月婷 黄丽佳 李洁 吴一戎

李志远, 郭嘉逸, 张月婷, 等. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法[J]. 雷达学报, 2022, 11(1): 83–94. doi: 10.12000/JR21159
引用本文: 李志远, 郭嘉逸, 张月婷, 等. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法[J]. 雷达学报, 2022, 11(1): 83–94. doi: 10.12000/JR21159
LI Zhiyuan, GUO Jiayi, ZHANG Yueting, et al. A novel autofocus algorithm of ship target in SAR image based on the adaptive momentum estimation optimizer and space-variant minimum entropy criteria[J]. Journal of Radars, 2022, 11(1): 83–94. doi: 10.12000/JR21159
Citation: LI Zhiyuan, GUO Jiayi, ZHANG Yueting, et al. A novel autofocus algorithm of ship target in SAR image based on the adaptive momentum estimation optimizer and space-variant minimum entropy criteria[J]. Journal of Radars, 2022, 11(1): 83–94. doi: 10.12000/JR21159

基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法

DOI: 10.12000/JR21159
基金项目: 国家自然科学基金(61991421)
详细信息
    作者简介:

    李志远(1997–),男,山东人,中国科学院空天信息创新研究院博士研究生,2019年获北京理工大学信息与电子学院学士学位。主要研究方向为深度学习、SAR图像处理与图像质量提升等

    郭嘉逸(1989–),男,河北人,博士,现任中国科学院空天信息创新研究院助理研究员,研究方向为SAR图像深度学习应用、SAR图像与遥感图像复原应用,发表SCI论文10余篇

    张月婷(1983–),女,河北人,博士,现任中国科学院空天信息创新研究院副研究员,研究方向为SAR目标特性、SAR图像与遥感图像应用,发表SCI论文10余篇

    黄丽佳(1984–),女,辽宁人,博士,研究员。2011年在中国科学院电子学研究所获得博士学位,现任中国科学院空天信息创新研究院研究员。主要研究方向为合成孔径雷达信号处理与图像分析

    李 洁(1996–),女,山东人,中国科学院空天信息创新研究院博士研究生,2019年获北京理工大学信息与电子学院学士学位。主要研究方向为微波成像理论与技术、稀疏信号处理等

    吴一戎(1963–),男,安徽人,博士,中国科学院院士,博士生导师,国家杰出青年基金获得者,“百千万工程”国家级人选入选者。主要研究方向为微波成像理论与技术、雷达信号处理与雷达系统等

    通讯作者:

    郭嘉逸 jyguo@mail.ie.ac.cn

  • 责任主编:杨淑媛 Corresponding Editor: YANG Shuyuan
  • 中图分类号: TN958; TP391

A Novel Autofocus Algorithm for Ship Targets in SAR Images Based on the Adaptive Momentum Estimation Optimizer and Space-variant Minimum Entropy Criteria

Funds: The National Natural Science Foundation of China (61991421)
More Information
  • 摘要: 在SAR散焦船舶图像中,部分船舶目标的散焦现象具有沿距离向空变的特性。针对此类散焦船舶目标,该文提出了一种基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法,该算法直接对复图像进行处理,可以实现对任意阶次相位误差的补偿。在仿真数据和GF-3数据上的实验结果表明,所提算法可以有效地实现SAR图像空变散焦船舶目标自聚焦,聚焦后的船舶图像在图像熵与对比度上都有所改善,且算法聚焦速度有很大提升。

     

  • 图  1  添加不同阶次相位误差时方位回波信号压缩结果

    Figure  1.  The compression results of azimuth echo signal when adding different order phase error

    图  2  GF-3 空变散焦船舶目标

    Figure  2.  GF-3 space-variant defocused ship target

    图  3  算法流程图

    Figure  3.  Flowchart of the proposed algorithm

    图  4  空变散焦数据仿真算法流程图

    Figure  4.  Flowchart of space-variant defocused data simulation algorithm

    图  5  仿真空变散焦船舶图像

    Figure  5.  Simulated space-variant defocused ship images

    图  6  GF-3空变散焦船舶图像

    Figure  6.  GF-3 space-variant defocused ship images

    图  7  在仿真数据上的自聚焦结果(a1—d1:GF-3原始船舶图像,a2—d2:仿真的空变散焦船舶图像,a3—d3:算法1船舶图像聚焦结果,a4—d4:算法2船舶图像聚焦结果,a5—d5:算法3船舶图像聚焦结果,a6—d6:算法4船舶图像聚焦结果,a7—d7:算法5船舶图像聚焦结果)

    Figure  7.  Autofocus results on simulated data (a1—d1: the ground truth obtained in GF-3UFS mode, a2—d2: the simulated space-variant defocused ship images, a3—d3: the ship images refocused by algorithm 1, a4—d4: the ship images refocused by algorithm 2, a5—d5: the ship images refocused by algorithm 3, a6—d6: the ship images refocused by algorithm 4, a7—d7: the ship images refocused by algorithm 5)

    图  8  仿真数据自聚焦结果图像熵与对比度可视化

    Figure  8.  Visualization of image entropy and contrast of autofocus results on simulated data

    图  9  在GF-3数据上的自聚焦结果(a1—d1:GF-3超精细条带模式下获得的空变散焦船舶图像,a2—d2:算法1船舶图像聚焦结果,a3—d3:算法2船舶图像聚焦结果,a4—d4:算法3船舶图像聚焦结果,a5—d5:算法4船舶图像聚焦结果,a6—d6:算法5船舶图像聚焦结果)

    Figure  9.  Autofocus results on GF-3 data (a1—d1: the space-variant defocused ship images obtained in GF-3UFS mode, a2—d2: the ship images refocused by algorithm 1, a3—d3: the ship images refocused by algorithm 2, a4—d4: the ship images refocused by algorithm 3, a5—d5: the ship images refocused by algorithm 4, a6—d6: the ship images refocused by algorithm 5)

    图  10  GF-3数据自聚焦结果图像熵和对比度可视化

    Figure  10.  Visualization of image entropy and contrast of autofocus results on GF-3 data

    图  11  算法3中补偿的相位误差

    Figure  11.  The compensated phase error by algorithm 3

    表  1  使用Adam优化器估计相位误差系数伪代码

    Table  1.   Pseudo code for estimating phase error coefficients using Adam optimizer

     输入:图像I
     输出:自聚焦图像$ f\left( {\boldsymbol I, \boldsymbol \alpha } \right) $
     初始化:学习率$ \varepsilon $,矩估计的指数衰减速率$ {\gamma _{\text{1}}} $, $ {\gamma _{\text{2}}} $,相位误差系
         数$\boldsymbol \alpha = \left[ { {\alpha _{\text{1} } },{\alpha _{\text{2} } },\cdots,{\alpha _{{i} } } } \right]$,用于数值稳定的小常数$ \delta $,梯度
         1阶矩和2阶矩变量$ {\boldsymbol s}, {\boldsymbol r} $,迭代次数$ t $。
     While 图像熵未收敛 do
       计算图像熵梯度:$\boldsymbol g \leftarrow {\nabla _\alpha }L\left( {f\left( { {\boldsymbol I}, {\boldsymbol \alpha} } \right)} \right)$
       更新有偏1阶矩估计:$ {\boldsymbol s} \leftarrow {\gamma _1}{\boldsymbol s} + \left( {1 - {\gamma _1}} \right){\boldsymbol g} $
       更新有偏2阶矩估计:$ {\boldsymbol r} \leftarrow {\gamma _2}{\boldsymbol r} + \left( {1 - {\gamma _2}} \right){\boldsymbol g} \cdot {\boldsymbol g} $ (‘$ \cdot $’: 逐元素
       相乘)
       修正1阶矩偏差:$\hat {\boldsymbol s}{\rm{ = } }\displaystyle\frac{\boldsymbol s}{ {1 - \gamma _1^t} }$
       修正2阶矩偏差:$\hat {\boldsymbol r}{\rm{ = } }\displaystyle\frac{\boldsymbol r}{ {1 - \gamma _2^t} }$
       更新相位误差系数:${\boldsymbol \alpha} = {\boldsymbol \alpha} - \displaystyle\frac{\varepsilon }{ {\sqrt {\hat {\boldsymbol r} } + \delta } }\hat {\boldsymbol s}$
     end while
    下载: 导出CSV

    表  2  GF-3超精细条带图像参数

    Table  2.   The detailed information of GF-3 UFS SAR images

    参数
    成像模式UFS
    产品类型SLC
    产品级别L1A
    轨道模式ASC
    极化方式HH/HV
    地距分辨率(m)2.5~5.0
    方位向分辨率(m)3
    幅宽(km)30
    像元间距[Rg×Az](m)1.124~1.728
    入射角(°)39.51~41.08
    下载: 导出CSV

    表  3  仿真数据上的算法速度对比

    Table  3.   Algorithm speed comparison on simulation data

    算法运行时间(s)
    图像a图像b图像c图像d
    算法1101.3581.2596.2594.35
    算法232.1621.5332.4532.49
    算法32.311.731.752.36
    算法40.690.690.570.68
    算法50.250.230.250.18
    下载: 导出CSV

    表  4  GF-3数据上的算法速度对比

    Table  4.   Algorithm speed comparison on GF-3 data

    算法运行时间(s)
    图像a图像b图像c图像d
    算法192.2581.11205.56170.38
    算法210.7310.7342.3932.28
    算法31.751.764.612.88
    算法40.710.690.700.73
    算法50.230.240.230.24
    下载: 导出CSV
  • [1] NAKAMURA K, WAKABAYASHI H, NAOKI K, et al. Observation of sea-ice thickness in the sea of Okhotsk by using dual-frequency and fully polarimetric airborne SAR (pi-SAR) data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(11): 2460–2469. doi: 10.1109/TGRS.2005.853928
    [2] KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/LGRS.2004.832700
    [3] REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: Signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759–783. doi: 10.1109/JPROC.2012.2220511
    [4] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [5] JING Wenbo, JIN Tian, and XIANG Deliang. Content-sensitive superpixel generation for SAR images with edge penalty and contraction-expansion search strategy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210715. doi: 10.1109/TGRS.2021.3077407
    [6] NOVIELLO C, FORNARO G, and MARTORELLA M. Focused SAR image formation of moving targets based on Doppler parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(6): 3460–3470. doi: 10.1109/TGRS.2014.2377293
    [7] SUN Huadong, ZHO Lei, MA Jinzhao, et al. The hybrid SAR-ISAR imaging algorithm applied to SAR moving target imaging[C]. The IEEE 9th International Conference on Fuzzy Systems and Knowledge Discovery, Chongqing, China, 2012: 1985–1988, doi: 10.1109/FSKD.2012.6234082.
    [8] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [9] CALLOWAY T M and DONOHOE G W. Subaperture autofocus for synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 617–621. doi: 10.1109/7.272285
    [10] MANCILL C E and SWIGER J M. A map drift autofocus technique for correcting higher order SAR phase errors[C]. The 27th Annual Tri-Service Radar Symposium Record, Monterey, USA, 1981: 391–400.
    [11] 侯育星, 邢孟道, 陈士超, 等. 稳健多子孔径图像偏移的SAR自聚焦算法[J]. 系统工程与电子技术, 2014, 36(9): 1731–1739. doi: 10.3969/j.issn.1001-506X.2014.09.10

    HOU Yuxing, XING Mengdao, CHEN Shichao, et al. Robust autofocus algorithm of multiple subaperture mapdrift in SAR[J]. Systems Engineering and Electronics, 2014, 36(9): 1731–1739. doi: 10.3969/j.issn.1001-506X.2014.09.10
    [12] WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752
    [13] BERIZZI F, CORSINI G, DIANI M, et al. Autofocus of wide azimuth angle SAR images by contrast optimisation[C]. 1996 International Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996. doi: 10.1109/IGARSS.1996.516624.
    [14] ZENG Tao, WANG Rui, and LI Feng. SAR image autofocus utilizing minimum-entropy criterion[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(6): 1552–1556. doi: 10.1109/LGRS.2013.2261975
    [15] 武昕伟, 朱兆达. 一种基于最小熵准则的SAR图像自聚焦算法[J]. 系统工程与电子技术, 2003, 25(7): 867–869. doi: 10.3321/j.issn:1001-506X.2003.07.027

    WU Xinwei and ZHU Zhaoda. A novel autofocus algorithm based on minimum entropy criteria for SAR images[J]. Systems Engineering and Electronics, 2003, 25(7): 867–869. doi: 10.3321/j.issn:1001-506X.2003.07.027
    [16] CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995: 203–206
    [17] KINGMA D P and BA J. Adam: A method for stochastic optimization[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015.
    [18] XI Li, LIU Guosui, and NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442
    [19] KASILINGAM D, WANG Junfeng, LEE J S, et al. Focusing of synthetic aperture radar images of moving targets using minimum entropy adaptive filters[C]. IEEE 2000 International Geoscience and Remote Sensing Symposium on Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment, Honolulu, USA, 2000: 74–76. doi: 10.1109/IGARSS.2000.860426.
    [20] WU Haishan and BARBA J. Minimum entropy restoration of star field images[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) , 1998, 28(2): 227–231. doi: 10.1109/3477.662762
    [21] 马琳, 潘宗序, 黄钟泠, 等. 基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别[J]. 雷达学报, 2021, 10(1): 159–172. doi: 10.12000/JR20106

    MA Lin, PAN Zongxu, HUANG Zhongling, et al. Multichannel false-target discrimination in SAR images based on sub-aperture and full-aperture feature learning[J]. Journal of Radars, 2021, 10(1): 159–172. doi: 10.12000/JR20106
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1383
  • HTML全文浏览量:  740
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-28
  • 修回日期:  2022-01-05
  • 网络出版日期:  2022-01-21
  • 刊出日期:  2022-02-28

目录

    /

    返回文章
    返回