涡旋电磁波旋转多普勒效应研究进展

郭忠义 汪彦哲 王运来 郭凯

郭忠义, 汪彦哲, 王运来, 等. 涡旋电磁波旋转多普勒效应研究进展[J]. 雷达学报, 2021, 10(5): 725–739. doi: 10.12000/JR21109
引用本文: 郭忠义, 汪彦哲, 王运来, 等. 涡旋电磁波旋转多普勒效应研究进展[J]. 雷达学报, 2021, 10(5): 725–739. doi: 10.12000/JR21109
GUO Zhongyi, WANG Yanzhe, WANG Yunlai, et al. Research advances on the rotational Doppler effect of vortex electromagnetic waves[J]. Journal of Radars, 2021, 10(5): 725–739. doi: 10.12000/JR21109
Citation: GUO Zhongyi, WANG Yanzhe, WANG Yunlai, et al. Research advances on the rotational Doppler effect of vortex electromagnetic waves[J]. Journal of Radars, 2021, 10(5): 725–739. doi: 10.12000/JR21109

涡旋电磁波旋转多普勒效应研究进展

DOI: 10.12000/JR21109
基金项目: 国家自然科学基金(61775050),中央高校基本研究经费(PA2019GDZC0098)
详细信息
    作者简介:

    郭忠义(1981–),男,安徽阜南人,合肥工业大学教授、博士生导师。主要研究方向包括涡旋雷达系统、智能传感系统、偏振智能信息处理、先进光通信技术、复杂电磁环境等。发表SCI检索论文200余篇,被国际国内同行正面引用2600余次

    汪彦哲(1996–),男,安徽芜湖人,在读硕士。2019年于合肥工业大学计算机与信息学院攻读硕士学位。研究方向为涡旋电磁波天线与涡旋电磁波雷达成像

    王运来(1999–),男,安徽铜陵人,在读硕士。2020年于合肥工业大学计算机与信息学院攻读硕士学位。研究方向为涡旋电磁波天线与涡旋电磁波雷达成像

    郭 凯(1987–),男,安徽界首人,合肥工业大学副教授、硕士生导师。主要研究方向为涡旋雷达系统、偏振智能信息处理、先进光通信技术、纳米光子学等。发表SCI检索论文60余篇,被国际国内同行正面引用800余次

    通讯作者:

    郭忠义 guozhongyi@hfut.edu.cn

  • 责任主编:李龙 Corresponding Editor: LI Long
  • 中图分类号: TN98

Research Advances on the Rotational Doppler Effect of Vortex Electromagnetic Waves

Funds: The National Natural Science Foundation of China (61775050), Fundamental Research Funds for the Central Universities of China (PA2019GDZC0098)
More Information
  • 摘要: 依据多普勒效应,传统雷达可以实现对运动目标探测,但是在对旋转目标的角向运动趋势感知存在检测盲区。涡旋电磁波的旋转多普勒效应的发现,因有助于解决直视下的旋转目标的角向运动趋势感知问题,引起了国内外研究人员的广泛关注。该文主要介绍了近年来涡旋电磁波旋转多普勒效应的研究进展,特别是微波波段的相关研究成果,包括目标在准轴和非准轴状况下的旋转多普勒效应研究,复杂运动条件下的径向多普勒、微多普勒和旋转多普勒效应的解耦合研究,以及旋转多普勒效应在雷达成像和测速中的应用研究。同时,该文也对该领域亟待解决的问题进行了总结分析,并对未来的研究方向及相关应用进行了展望。

     

  • 图  1  不同模式OAM波束图

    Figure  1.  OAM beam patterns of different modes

    图  2  常见的4种涡旋电磁波天线

    Figure  2.  Four kinds of common vortex electromagnetic wave antennas

    图  3  多普勒效应示意图

    Figure  3.  Schematic diagram of the Doppler effect

    图  4  光波段的旋转多普勒效应研究

    Figure  4.  Researches of the rotational Doppler effect in the optical band

    图  5  准轴情况下的旋转多普勒效应研究

    Figure  5.  Researches of the rotational Doppler effect in on-axis case

    图  6  非准轴情况下的旋转多普勒效应研究

    Figure  6.  Researches of the rotational Doppler effect in off-axis case

    图  7  多普勒效应解耦合研究

    Figure  7.  Researches of decoupling the Doppler effect

    图  8  基于旋转多普勒效应的雷达系统研究

    Figure  8.  Researches of radar system based on the rotational Doppler effect

    图  9  阵列半径a=5λ时,不同OAM模式数的涡旋电磁波在传输过程中的发散情况

    Figure  9.  Divergence situation of transmitting vortex electromagnetic waves with different OAM modes generated by the UCA with radius of a=5λ

    表  1  报道的准轴情况下的旋转多普勒效应检测性能

    Table  1.   Reported performances of detecting the rotational Doppler effect in on-axis case

    文献检测方法检测目标检测距离 (λ)工作频率 (GHz)OAM模式旋转速度 (π rad/s)检测误差 (%)
    [60]相位测量法金属圆盘33201500.36
    [61]频谱分析法金属圆盘332.471–11~+113.00
    [62]时频分析法理想散射点61300~20000(加速度)/
    下载: 导出CSV

    表  2  报道的非准轴情况下的旋转多普勒效应检测性能

    Table  2.   Reported performances of detecting the rotational Doppler effect in off-axis case

    文献检测方法检测目标检测距离 (λ)工作频率 (GHz)OAM模式旋转速度 (π rad/s)检测误差 (%)
    [63]频谱分析法金属风扇25101, 2, 3112.88, 1.36, 0.30
    [64]时频分析法理想散射点3331054/
    [65]时频分析法理想散射点666100, 310/
    下载: 导出CSV

    表  3  报道的多普勒效应解耦合方法

    Table  3.   Reported methods of decoupling the Doppler effect

    文献检测方法检测目标检测距离 (λ)工作频率 (GHz)OAM模式旋转速度 (π rad/s)检测误差 (%)
    [66]频谱分析法理想散射点/631.8×109/
    [67]频谱分析法金属圆盘/9.9–6~+640/
    [68]时频分析法超表面,螺旋桨/5.8, 30±1, ±247.74, 51.663.60, 2.70
    [69]频谱分析法金属风扇25102, 3111.36
    下载: 导出CSV

    表  4  报道的旋转多普勒效应雷达系统

    Table  4.   Reported rotational Doppler effect radar systems

    文献检测方法检测目标检测距离 (λ)工作频率 (GHz)OAM模式旋转速度 (π rad/s)检测误差 (%)
    [70]相位测量法金属圆盘709.9140, 50/
    [72]时频分析法超表面天线505.8–147.840.33
    下载: 导出CSV
  • [1] KRAJEWSKI W F and SMITH J A. Radar hydrology: Rainfall estimation[J]. Advances in Water Resources, 2002, 25(8/12): 1387–1394. doi: 10.1016/S0309-1708(02)00062-3
    [2] 李晓峰, 张彪, 杨晓峰. 星载合成孔径雷达遥感海洋风场波浪场[J]. 雷达学报, 2020, 9(3): 425–443. doi: 10.12000/JR20079

    LI Xiaofeng, ZHANG Biao, and YANG Xiaofeng. Remote sensing of sea surface wind and wave from spaceborne synthetic aperture radar[J]. Journal of Radars, 2020, 9(3): 425–443. doi: 10.12000/JR20079
    [3] FIORANI L, COLAO F, and PALUCCI A. Environmental monitoring by laser radar[J]. Romanian Journal of Physics, 2011, 56(3/4): 448–459.
    [4] NEAL A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress[J]. Earth-Science Reviews, 2004, 66(3/4): 261–330. doi: 10.1016/j.earscirev.2004.01.004
    [5] KUSTAS W P, FRENCH A N, HATFIELD J L, et al. Remote sensing research in hydrometeorology[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(6): 631–646. doi: 10.14358/PERS.69.6.631
    [6] NIELSEN E and GREENWALD R A. Electron flow and visual aurora at the Harang discontinuity[J]. Journal of Geophysical Research: Space Physics, 1979, 84(A8): 4189–4200. doi: 10.1029/JA084iA08p04189
    [7] 赵耀东, 吕晓德, 李纪传, 等. 无源雷达多普勒谱分析实现动目标检测的方法[J]. 雷达学报, 2013, 2(2): 247–256. doi: 10.3724/SP.J.1300.2012.20081

    ZHAO Yaodong, LÜ Xiaode, LI Jichuan, et al. Detection of moving targets based on Doppler spectrum analysis technique for passive coherent radar[J]. Journal of Radars, 2013, 2(2): 247–256. doi: 10.3724/SP.J.1300.2012.20081
    [8] 陈世超, 罗丰, 胡冲, 等. 基于多普勒谱非广延熵的海面目标检测方法[J]. 雷达学报, 2019, 8(3): 344–354. doi: 10.12000/JR19012

    CHEN Shichao, LUO Feng, HU Chong, et al. Small target detection in sea clutter background based on Tsallis entropy of Doppler spectrum[J]. Journal of Radars, 2019, 8(3): 344–354. doi: 10.12000/JR19012
    [9] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [10] TAMBURINI F, MARI E, PARISI G, et al. Ripling the capacity of a point-to-point radio link by using electromagnetic vortices[J]. Radio Science, 2015, 50(6): 501–508. doi: 10.1002/2015RS005662
    [11] PARK W, WANG Lei, BRÜNS H D, et al. Introducing a mixed-mode matrix for investigation of wireless communication related to orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(3): 1719–1728. doi: 10.1109/TAP.2018.2889033
    [12] ZHANG Yiming and LI Jialin. An orbital angular momentum-based array for in-band full-duplex communications[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 417–421. doi: 10.1109/LAWP.2019.2893035
    [13] LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006
    [14] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [15] YUAN Tiezhu, WANG Hongqiang, CHENG Yongqiang, et al. Electromagnetic vortex-based radar imaging using a single receiving antenna: Theory and experimental results[J]. Sensors, 2017, 17(3): 630. doi: 10.3390/s17030630
    [16] LIU Kang, LI Xiang, GAO Yue, et al. High-resolution electromagnetic vortex imaging based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2017, 17(21): 6918–6927. doi: 10.1109/JSEN.2017.2754554
    [17] WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814
    [18] NGUYEN D K, PASCAL O, SOKOLOFF J, et al. Antenna gain and link budget for waves carrying orbital angular momentum[J]. Radio Science, 2015, 50(11): 1165–1175. doi: 10.1002/2015RS005772
    [19] YAO Yu, LIANG Xianling, ZHU Weiren, et al. Experiments of orbital angular momentum phase properties for long-distance transmission[J]. IEEE Access, 2019, 7: 62689–62694. doi: 10.1109/ACCESS.2019.2916029
    [20] ZHANG Chao and ZHAO Yufei. Orbital angular momentum nondegenerate index mapping for long distance transmission[J]. IEEE Transactions on Wireless Communications, 2019, 18(11): 5027–5036. doi: 10.1109/TWC.2019.2927672
    [21] GARETZ B A and ARNOLD S. Variable frequency shifting of circularly polarized laser radiation via a rotating half-wave retardation plate[J]. Optics Communications, 1979, 31(1): 1–3. doi: 10.1016/0030-4018(79)90230-X
    [22] NIENHUIS G. Doppler effect induced by rotating lenses[J]. Optics Communications, 1996, 132(1/2): 8–14. doi: 10.1016/0030-4018(96)00295-7
    [23] BIALYNICKI-BIRULA I and BIALYNICKA-BIRULA Z. Rotational frequency shift[J]. Physical Review Letters, 1997, 78(13): 2539–2542. doi: 10.1103/PhysRevLett.78.2539
    [24] COURTIAL J, DHOLAKIA K, ROBERTSON D A, et al. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum[J]. Physical Review Letters, 1998, 80(15): 3217–3219. doi: 10.1103/PhysRevLett.80.3217
    [25] LAVERY M P J, SPEIRITS F C, BARNETT S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537–540. doi: 10.1126/science.1239936
    [26] FANG Liang, PADGETT M J, and WANG Jian. Sharing a common origin between the rotational and linear Doppler effects[J]. Laser & Photonics Reviews, 2017, 11(6): 1700183. doi: 10.1002/lpor.201700183
    [27] ZHOU Hailong, FU Dongzhi, DONG Jianji, et al. Theoretical analysis and experimental verification on optical rotational Doppler effect[J]. Optics Express, 2016, 24(9): 10050–10056. doi: 10.1364/OE.24.010050
    [28] ZHAI Yanwang, FU Shiyao, YIN Ci, et al. Detection of angular acceleration based on optical rotational Doppler effect[J]. Optics Express, 2019, 27(11): 15518–15527. doi: 10.1364/OE.27.015518
    [29] ZHAI Yanwang, FU Shiyao, ZHANG Jianqiang, et al. Remote detection of a rotator based on rotational Doppler effect[J]. Applied Physics Express, 2020, 13(2): 022012. doi: 10.35848/1882-0786/ab6e0c
    [30] FU Shiyao, WANG Tonglu, ZHANG Zheyuan, et al. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions[J]. Optics Express, 2017, 25(17): 20098–20108. doi: 10.1364/OE.25.020098
    [31] QIU Song, REN Yuan, LIU Tong, et al. Spinning object detection based on perfect optical vortex[J]. Optics and Lasers in Engineering, 2020, 124: 105842. doi: 10.1016/j.optlaseng.2019.105842
    [32] QIU Song, LIU Tong, LI Zhimeng, et al. Influence of lateral misalignment on the optical rotational Doppler effect[J]. Applied Optics, 2019, 58(10): 2650–2655. doi: 10.1364/AO.58.002650
    [33] ZHANG Zijing, CEN Longzhu, ZHANG Jiandong, et al. Rotation velocity detection with orbital angular momentum light spot completely deviated out of the rotation center[J]. Optics Express, 2020, 28(5): 6859–6867. doi: 10.1364/OE.380324
    [34] QIU Song, LIU Tong, REN Yuan, et al. Detection of spinning objects at oblique light incidence using the optical rotational Doppler effect[J]. Optics Express, 2019, 27(17): 24781–24792. doi: 10.1364/OE.27.024781
    [35] PADGETT M J, MIATTO F M, LAVERY M P J, et al. Divergence of an orbital-angular-momentum-carrying beam upon propagation[J]. New Journal of Physics, 2015, 17(2): 023011. doi: 10.1088/1367-2630/17/2/023011
    [36] LEACH J, PADGETT M J, BARNETT S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 2002, 88(25): 257901. doi: 10.1103/PhysRevLett.88.257901
    [37] TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001
    [38] TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188. doi: 10.1016/0030-4018(96)00070-3
    [39] 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091

    GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091
    [40] XU Jianchun, ZHAO Mingyang, ZHANG Ru, et al. A wideband F-shaped microstrip antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 829–832. doi: 10.1109/LAWP.2016.2606118
    [41] SHEN Fei, MU Jiangnan, GUO Kai, et al. Generating circularly polarized vortex electromagnetic waves by the conical conformal patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 5763–5771. doi: 10.1109/TAP.2019.2922545
    [42] ZHENG Shilie, HUI Xiaonan, JIN Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1530–1536. doi: 10.1109/TAP.2015.2393885
    [43] WANG Lulu, CHEN Huiyong, GUO Kai, et al. An inner-and outer-fed dual-arm Archimedean spiral antenna for generating multiple orbital angular momentum modes[J]. Electronics, 2019, 8(2): 251. doi: 10.3390/electronics8020251
    [44] SHEN Fei, MU Jiangnan, GUO Kai, et al. Generation of continuously variable-mode vortex electromagnetic waves with three-dimensional helical antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(6): 1091–1095. doi: 10.1109/LAWP.2019.2907931
    [45] YANG Yang, GUO Kai, SHEN Fei, et al. Generating multiple OAM based on a nested dual-arm spiral antenna[J]. IEEE Access, 2019, 7: 138541–138547. doi: 10.1109/ACCESS.2019.2942601
    [46] YANG Yang, GONG Yubin, GUO Kai, et al. Broad-band multiple OAMs’ generation with eight-arm Archimedean spiral antenna (ASA)[J]. IEEE Access, 2020, 8: 53232–53239. doi: 10.1109/ACCESS.2020.2980751
    [47] THIDÉB, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
    [48] MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    [49] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [50] YIN Zhiping, ZHENG Qun, GUO Kai, et al. Tunable beam steering, focusing and generating of orbital angular momentum vortex beams using high-order patch array[J]. Applied Sciences, 2019, 9(15): 2949. doi: 10.3390/app9152949
    [51] GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914
    [52] CENSOR D. Theory of the Doppler effect: Fact, fiction and approximation[J]. Radio Science, 1984, 19(4): 1027–1040. doi: 10.1029/RS019i004p01027
    [53] MO L Y L and COBBOLD R S C. "Speckle" in continuous wave Doppler ultrasound spectra: A simulation study[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1986, 33(6): 747–753. doi: 10.1109/T-UFFC.1986.26891
    [54] BARLOW E J. Doppler radar[J]. Proceedings of the IRE, 1949, 37(4): 340–355. doi: 10.1109/JRPROC.1949.231638
    [55] PADGETT M. Like a speeding watch[J]. Nature, 2006, 443(7114): 924–925. doi: 10.1038/443924a
    [56] LEACH J, KEEN S, PADGETT M J, et al. Direct measurement of the skew angle of the Poynting vector in a helically phased beam[J]. Optics Express, 2006, 14(25): 11919–11924. doi: 10.1364/OE.14.011919
    [57] LAVERY M P J, BARNETT S M, SPEIRITS F C, et al. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body[J]. Optica, 2014, 1(1): 1–4. doi: 10.1364/OPTICA.1.000001
    [58] PHILLIPS D B, LEE M P, SPEIRITS F C, et al. Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles[J]. Physical Review A, 2014, 90(1): 011801(R). doi: 10.1103/PhysRevA.90.011801
    [59] ANDERSON A Q, STRONG E F, HEFFERNAN B M, et al. Detection technique effect on rotational Doppler measurements[J]. Optics Letters, 2020, 45(9): 2636–2639. doi: 10.1364/OL.390425
    [60] ZHAO Mingyang, GAO Xinlu, XIE Mutong, et al. Measurement of the rotational Doppler frequency shift of a spinning object using a radio frequency orbital angular momentum beam[J]. Optics Letters, 2016, 41(11): 2549–2552. doi: 10.1364/OL.41.002549
    [61] BROUSSEAU C, MAHDJOUBI K, and EMILE O. Measurement of the rotational sense and velocity of an object using OAM wave in the radio-frequency band[J]. Electronics Letters, 2019, 55(12): 709–711. doi: 10.1049/el.2019.0942
    [62] ZHOU Zhenglong, CHENG Yongqiang, LIU Kang, et al. Detection of uniformly accelerated spinning target based on OAM beams[C]. 2018 International conference On Microwave and Millimeter Wave Technology, Chengdu, China, 2018: 1–3. doi: 10.1109/ICMMT.2018.8563538.
    [63] ZHENG Jiayu, ZHENG Shilie, SHAO Zhenlei, et al. Analysis of rotational Doppler effect based on radio waves carrying orbital angular momentum[J]. Journal of Applied Physics, 2018, 124(16): 164907. doi: 10.1063/1.5050448
    [64] LUO Ying, CHEN Yijun, ZHU Yongzhong, et al. Doppler effect and micro-Doppler effect of vortex-electromagnetic-wave-based radar[J]. IET Radar, Sonar & Navigation, 2020, 14(1): 2–9. doi: 10.1049/iet-rsn.2019.0124
    [65] WANG Yu, LIU Kang, LIU Hongyan, et al. Detection of rotational object in arbitrary position using vortex electromagnetic waves[J]. IEEE Sensors Journal, 2021, 21(4): 4989–4994. doi: 10.1109/JSEN.2020.3032665
    [66] YANG Tao and WANG Gang. Rotational Doppler shift for electromagnetic waves carrying orbital angular momentum based on spectrum analysis[J]. AIP Conference Proceedings, 2017, 1820(1): 090024. doi: 10.1063/1.4977408
    [67] GONG Ting, CHENG Yongqiang, LI Xiang, et al. Micromotion detection of moving and spinning object based on rotational Doppler shift[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 843–845. doi: 10.1109/LMWC.2018.2858552
    [68] LIU Baiyang, CHU Hongchen, GIDDENS H, et al. Experimental observation of linear and rotational Doppler shifts from several designer surfaces[J]. Scientific Reports, 2019, 9(1): 8971. doi: 10.1038/s41598-019-45516-1
    [69] ZHENG Jiayu, ZHENG Shilie, SHAO Zhenlei, et al. Rotational Doppler effect based on the radio orbital angular momentum wave[C]. 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 2017: 1298–1301. doi: 10.1109/APMC.2017.8251700.
    [70] LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655
    [71] ZHOU Zhenglong, CHENG Yongqiang, LIU Kang, et al. Rotational Doppler resolution of spinning target detection based on OAM beams[J]. IEEE Sensors Letters, 2019, 3(3): 5500404. doi: 10.1109/LSENS.2019.2900227
    [72] LIU Baiyang, GIDDENS H, LI Yin, et al. Design and experimental demonstration of Doppler cloak from spatiotemporally modulated metamaterials based on rotational Doppler effect[J]. Optics Express, 2020, 28(3): 3745–3755. doi: 10.1364/OE.382700
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  2991
  • HTML全文浏览量:  1938
  • PDF下载量:  382
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-08
  • 修回日期:  2021-08-27
  • 网络出版日期:  2021-09-24
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回