电控时变电磁材料的SAR成像特性研究

王俊杰 冯德军 王志凇 邢世其 李永祯 王雪松

王俊杰, 冯德军, 王志凇, 等. 电控时变电磁材料的SAR成像特性研究[J]. 雷达学报, 2021, 10(6): 865–873. doi: 10.12000/JR21104
引用本文: 王俊杰, 冯德军, 王志凇, 等. 电控时变电磁材料的SAR成像特性研究[J]. 雷达学报, 2021, 10(6): 865–873. doi: 10.12000/JR21104
WANG Junjie, FENG Dejun, WANG Zhisong, et al. Synthetic aperture rader imaging characteristics of electronically controlled time-varying electromagnetic materials[J]. Journal of Radars, 2021, 10(6): 865–873. doi: 10.12000/JR21104
Citation: WANG Junjie, FENG Dejun, WANG Zhisong, et al. Synthetic aperture rader imaging characteristics of electronically controlled time-varying electromagnetic materials[J]. Journal of Radars, 2021, 10(6): 865–873. doi: 10.12000/JR21104

电控时变电磁材料的SAR成像特性研究

DOI: 10.12000/JR21104
基金项目: 国家自然科学基金(62071475, 61890542, 62001481)
详细信息
    作者简介:

    王俊杰(1991–),男,博士,讲师,主要研究方向为新材料电磁调控、雷达信号处理与新型电子对抗

    冯德军(1972–),男,研究员,博士生导师,主要研究方向为智能电子对抗、精确制导与目标识别

    王志凇(1988–),男,硕士,主要研究方向为武器装备实验鉴定

    邢世其(1984–),男,博士,副研究员,主要研究方向为极化雷达成像、雷达信号处理与合成孔径雷达对抗

    李永祯(1977–),男,研究员,博士生导师,主要研究方向为极化雷达与电子对抗

    王雪松(1972–),男,教授,博士生导师,主要研究方向为极化雷达、目标识别与电子对抗

    通讯作者:

    王俊杰 wangjunjie14@vip.qq.com

    冯德军 fdj117@sina.com

  • 责任主编:丁泽刚 Corresponding Editor: DING Zegang
  • 中图分类号: TN955

Synthetic Aperture Rader Imaging Characteristics of Electronically Controlled Time-varying Electromagnetic Materials

Funds: The National Nature Science Foundation of China (62071475, 61890542, 62001481)
More Information
  • 摘要: 微动目标因具有在不同方向的运动分量,能够对电磁波进行微多普勒调制,导致目标成像特征出现方位向散焦效应,这种现象在目标识别与反识别领域被广泛关注与研究。相较而言,电控时变电磁材料通过外加激励实现对电磁波特征的灵活调控,具有更快的调制速度,而其成像特性没有被过多关注。该文以此为切入点,对电控时变电磁材料的合成孔径雷达(SAR)图像距离向调制特性进行了研究,分析了时变电磁材料谱变换模型和SAR目标特征控制原理。以相位调制表面(PSS)为代表,建立了非周期PSS相位调制模型,其频谱具有连续频移特性。在此基础上,探讨了PSS连续频移调制对SAR的影响,揭露了距离向目标散焦现象。通过SAR实测数据仿真,验证了所提理论方法的有效性。

     

  • 图  1  电控时变电磁材料

    Figure  1.  Electronically controlled time-varying electromagnetic materials

    图  2  SAR成像模型

    Figure  2.  SAR imaging model

    图  3  非周期PSS相位调制波形

    Figure  3.  Nonperiodic PSS phase modulation waveform

    图  4  非周期PSS波形频谱特性

    Figure  4.  Spectrum characteristics of nonperiodic PSS waveform

    图  5  非周期PSS调制的匹配滤波输出

    Figure  5.  Nonperiodic PSS modulated matched filter output

    图  6  基于非周期PSS调制的SAR成像效果图

    Figure  6.  SAR imaging effect based on aperiodic PSS modulation

  • [1] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: Phenomenon, model, and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2–21. doi: 10.1109/TAES.2006.1603402
    [2] 庄钊文, 刘永祥, 黎湘. 目标微动特性研究进展[J]. 电子学报, 2007, 35(3): 520–525. doi: 10.3321/j.issn:0372-2112.2007.03.028

    ZHUANG Zhaowen, LIU Yongxiang, and LI Xiang. The achievements of target characteristic with micro-motion[J]. Acta Electronica Sinica, 2007, 35(3): 520–525. doi: 10.3321/j.issn:0372-2112.2007.03.028
    [3] 吴晓芳, 刘阳, 王雪松, 等. 旋转微动目标的SAR成像特性分析[J]. 宇航学报, 2010, 31(4): 1181–1189. doi: 10.3873/j.issn.1000-1328.2010.04.039

    WU Xiaofang, LIU Yang, WANG Xuesong, et al. Analysis of SAR imaging characteristics of targets with rotational micro-motion[J]. Journal of Astronautics, 2010, 31(4): 1181–1189. doi: 10.3873/j.issn.1000-1328.2010.04.039
    [4] 白雪茹, 孙光才, 周峰, 等. 基于旋转角反射器的ISAR干扰新方法[J]. 电波科学学报, 2008, 23(5): 867–872. doi: 10.13443/j.cjors.2008.05.019

    BAI Xueru, SUN Guangcai, ZHOU Feng, et al. A novel ISAR jamming method based on rotating angular reflectors[J]. Chinese Journal of Radio Science, 2008, 23(5): 867–872. doi: 10.13443/j.cjors.2008.05.019
    [5] PENDRY J B. Focus issue: Negative refraction and metamaterials[J]. Optics Express, 2003, 11(7): 639. doi: 10.1364/OE.11.000639
    [6] YEN T J, PADILLA W J, FANG N, et al. Terahertz magnetic response from artificial materials[J]. Science, 2004, 303(5663): 1494–1496. doi: 10.1126/science.1094025
    [7] PADILLA W J. Group theoretical description of artificial electromagnetic metamaterials[J]. Optics Express, 2007, 15(4): 1639–1646. doi: 10.1364/OE.15.001639
    [8] TENNANT A and CHAMBERS B. Adaptive radar absorbing structure with PIN diode controlled active frequency selective surface[J]. Smart materials and Structures, 2004, 13(1): 122–125. doi: 10.1088/0964-1726/13/1/013
    [9] HUANG Cheng, ZHAO Bo, SONG Jiakun, et al. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3593–3598. doi: 10.1109/TAP.2020.3037813
    [10] CHAMBERS B and TENNANT A. The phase-switched screen[J]. IEEE Antennas and Propagation Magazine, 2004, 46(6): 23–27. doi: 10.1109/MAP.2004.1396733
    [11] RAMACCIA D, SOUNAS D L, ALÙ A, et al. Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1607–1617. doi: 10.1109/TAP.2019.2952469
    [12] SAIKIA M, SRIVASTAVA K V, and RAMAKRISHNA A S. Frequency-shifted reflection of electromagnetic waves using a time-modulated active tunable frequency-selective surface[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 2937–2944. doi: 10.1109/TAP.2019.2951494
    [13] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [14] JIA Yongtao, LIU Ying, GUO Y J, et al. A dual-patch polarization rotation reflective surface and its application to ultra-wideband RCS reduction[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3291–3295. doi: 10.1109/TAP.2017.2694879
    [15] ZAKER R and SADEGHZADEH A. A low-profile design of polarization rotation reflective surface for wideband RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1794–1798. doi: 10.1109/LAWP.2019.2930130
    [16] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [17] ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
    [18] 杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137

    YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137
    [19] LUO Yong, KIKUTA K, HAN Zhengli, et al. An active metamaterial antenna with mems-modulated scanning radiation beams[J]. IEEE Electron Device Letters, 2016, 37(7): 920–923. doi: 10.1109/LED.2016.2565559
    [20] BRYANT A T, LU Liqing, SANTI E, et al. Physical modeling of fast p-i-n diodes with carrier lifetime zoning, Part I: Device model[J]. IEEE Transactions on Power Electrons, 2008, 23(1): 189–197. doi: 10.1109/TPEL.2007.911823
    [21] XU Letao, FENG Dejun, and WANG Xuesong. Matched-filter properties of linear-frequency-modulation radar signal reflected from a phase-switched screen[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 318–324. doi: 10.1049/iet-rsn.2015.0182
    [22] XU Letao, FENG Dejun, and WANG Xuesong. High-resolution range profile deception method based on phase-switched screen[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1665–1668. doi: 10.1109/LAWP.2016.2521778
    [23] WANG Junjie, FENG Dejun, XU Zhiming, et al. Time-domain digital-coding active frequency selective surface absorber/reflector and its imaging characteristics[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(6): 3322–3331. doi: 10.1109/TAP.2020.3037757
    [24] 保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005: 123–134.

    BAO Zheng, XING Mengdao, WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005: 123–134.
    [25] YASIR S, 杨国敏, 徐丰. 四叶草形超宽带漫散射编码超表面[J]. 雷达学报, 2021, 10(3): 382–390. doi: 10.12000/JR21061

    YASIR S, YANG Guomin, and XU Feng. A four-leaf clover-shaped coding metasurface for ultra-wideband diffusion-like scattering[J]. Journal of Radars, 2021, 10(3): 382–390. doi: 10.12000/JR21061
    [26] 张然, 冯德军, 徐乐涛. 基于Salisbury屏的二面角设计及其极化特性分析[J]. 雷达学报, 2016, 5(6): 658–665. doi: 10.12000/JR16055

    ZHANG Ran, FENG Dejun, and XU Letao. Design and polarization characteristics analysis of dihedral based on Salisbury screen[J]. Journal of Radars, 2016, 5(6): 658–665. doi: 10.12000/JR16055
    [27] WEI Yue, SHEN Gangxiang, and BOSE S K. Span-restorable elastic optical networks under different spectrum conversion capabilities[J]. IEEE Transactions on Reliability, 2014, 63(2): 401–411. doi: 10.1109/TR.2014.2313806
    [28] TENNANT A. Reflection properties of a phase modulating planar screen[J]. Electronics Letters, 1997, 33(21): 1768–1769. doi: 10.1049/el:19971160
    [29] CHAMBERS B and TENNANT A. Reflection of radar signals from multiple phase-modulated surfaces[J]. IET Radar, Sonar & Navigation, 2007, 1(2): 142–148. doi: 10.1049/iet-rsn:20060078
    [30] SHULMAN N and FEDER M. Random coding techniques for nonrandom codes[J]. IEEE Transactions on Information Theory, 1999, 45(6): 2101–2104. doi: 10.1109/18.782147
    [31] TAI Ning, CUI Kaibo, WANG Chao, et al. The design of a novel coherent noise jammer against LFM radar[J]. IEICE Electronics Express, 2016, 13(21): 1–12. doi: 10.1587/elex.13.20160924
    [32] WU Qihua, LIU Xiaobin, LIU Jin, et al. A radar imaging method using nonperiodic interrupted sampling linear frequency modulation signal[J]. IEEE Sensors Journal, 2018, 18(20): 8294–8302. doi: 10.1109/JSEN.2018.2865531
  • 加载中
图(6)
计量
  • 文章访问数:  1470
  • HTML全文浏览量:  1080
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-10-14
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回