一种极化-多普勒气象雷达的射频干扰滤波方法

殷加鹏 李健兵 庞晨 李永祯 王雪松

殷加鹏, 李健兵, 庞晨, 等. 一种极化-多普勒气象雷达的射频干扰滤波方法[J]. 雷达学报, 2021, 10(6): 905–918. doi: 10.12000/JR21102
引用本文: 殷加鹏, 李健兵, 庞晨, 等. 一种极化-多普勒气象雷达的射频干扰滤波方法[J]. 雷达学报, 2021, 10(6): 905–918. doi: 10.12000/JR21102
YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric Doppler weather radar[J]. Journal of Radars, 2021, 10(6): 905–918. doi: 10.12000/JR21102
Citation: YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric Doppler weather radar[J]. Journal of Radars, 2021, 10(6): 905–918. doi: 10.12000/JR21102

一种极化-多普勒气象雷达的射频干扰滤波方法

doi: 10.12000/JR21102
基金项目: 国家自然科学基金(61971429, 61771479),博士后国际交流计划引进项目(48132),湖南省科技创新人才计划优秀博士后创新人才项目(2020RC2042),国防科技大学科研计划项目(ZK21-25)
详细信息
    作者简介:

    殷加鹏(1990–),男,浙江人,国防科技大学副研究员,主要研究方向为极化雷达信号处理

    李健兵(1979–),男,湖南人,国防科技大学研究员、博导,主要研究方向为新体制雷达、空间信息获取与处理

    庞 晨(1986–),男,湖北人,国防科技大学副研究员,主要研究方向为极化信息处理、雷达目标分辨与识别技术

    李永祯(1977–),男,内蒙古人,国防科技大学研究员、博导,主要研究方向为雷达极化信息处理、空间电子对抗、目标检测与识别

    王雪松(1972–),男,内蒙古人,国防科技大学教授、博导,主要研究方向为新体制雷达技术、极化成像与识别、智能电子防御与电子对抗

    通讯作者:

    殷加鹏 yinjiapeng@nudt.edu.cn

  • 责任主编:李海 Corresponding Editor: LI Hai
  • 中图分类号: TN95

A Radio Frequency Interference Mitigation Method for Polarimetric Doppler Weather Radars

Funds: The National Natural Science Foundation of China (61971429, 61771479), Postdoctoral International Exchange Program (48132), Science and Technology Innovation Program of Hunan Province (2020RC2042), The Scientific Research Program of the National University of Defense Technology (ZK21-25)
More Information
  • 摘要: 为了滤除极化-多普勒气象雷达中的射频干扰,该文提出利用谱极化滤波器,适用于同时发射同时接收(STSR)和分时发射同时接收(ATSR)体制的极化气象雷达。首先利用C波段STSR气象雷达的实测数据研究射频干扰的时域、频域和极化域特性,建立射频干扰信号模型。然后,在X波段ATSR雷达的数据中仿真加入射频干扰,验证谱极化滤波器的有效性。总体看来,在ATSR雷达中利用谱极化滤波器可以有效保留降雨目标并且滤除射频干扰。最后,针对STSR雷达提出利用数据分集的方法,STSR雷达的实测数据可以模拟ATSR雷达数据,再利用谱极化滤波器实现射频干扰滤除,同样可以取得较好的滤波效果。

     

  • 图  1  极化气象雷达测量体制

    Figure  1.  Measurement schemes of polarimetric weather radar

    图  2  KNMI雷达测量结果

    Figure  2.  The measurements of KNMI radar

    图  3  KNMI雷达的谱极化参量

    Figure  3.  The spectral polarimetric variables of KNMI radar

    图  4  射频干扰时域模型

    Figure  4.  The signal model of radio frequency interference in time domain

    图  5  IDRA雷达测量结果

    Figure  5.  The measurements of IDRA radar

    图  6  不同INR条件下的IDRA雷达的谱极化分量

    Figure  6.  The spectral polarimetric variables of IDRA measurements in different INR conditions

    图  7  谱极化滤波器流程图

    Figure  7.  The flowchart of spectral polarimetric filters

    图  8  不同处理后的距离-多普勒谱图

    Figure  8.  The range-Doppler spectrogram after different processing

    图  9  不同处理后的性能指标与INR的关系

    Figure  9.  The relationships between the metrics after different processing and the INR

    图  10  不同处理后的IDRA雷达PPI图

    Figure  10.  The IDRA radar PPIs after different processing

    图  11  不同处理后的KNMI雷达PPI图

    Figure  11.  The KNMI radar PPIs after different processing

    表  1  KNMI雷达手册

    Table  1.   KNMI radar specifications

    雷达类型脉冲多普勒
    发射机类型磁控管
    极化类型STSR模式
    中心频率5.63 GHz
    发射功率500 kW
    脉冲宽度0.5~3.5 μs
    脉冲重复频率175~2400 Hz
    天线宽度
    扫描角 方位–2°~90°,俯仰0°~360°
    扫描周期16扫描模式/5 min
    下载: 导出CSV

    表  2  射频干扰极化参量与不同极化的辐射源的关系

    Table  2.   The relationship between polarization variables and RF source with different polarization

    RF极化参量
    H极化45°线极化V极化
    ${Z_{{\rm{dr}}} }$ (dB)无限大0无限小
    STSR的$ {\rho _{{\text{co}}}} $
    ATSR的$ {\rho _{{\text{co}}}} $
    下载: 导出CSV

    表  3  IDRA雷达参数

    Table  3.   IDRA radar specifications

    雷达类型线性FMCW
    发射机类型 固态
    极化类型ATSR模式
    中心频率9.475 GHz
    发射功率20 W
    扫描时间409.6 μs
    带宽5 MHz
    天线宽度 1.8°
    扫描角俯仰 0.5°,方位0°~360°
    扫描周期1圈/min
    下载: 导出CSV
  • [1] DOVIAK R J and ZRNIĆ D S. Doppler Radar and Weather Observations[M]. Mineola: Dover Publications, 2006.
    [2] BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2001.
    [3] YIN Jiapeng. Advanced techniques in clutter mitigation and calibration for weather radars[D]. [Ph. D. dissertation], Delft University of Technology, 2019.
    [4] PALMER R, WHELAN D, BODINE D, et al. The need for spectrum and the impact on weather observations[J]. Bulletin of the American Meteorological Society, 2021, 102(7): E1402–E1407. doi: 10.1175/BAMS-D-21-0009.1
    [5] SALTIKOFF E, CHO J Y N, TRISTANT P, et al. The threat to weather radars by wireless technology[J]. Bulletin of the American Meteorological Society, 2016, 97(7): 1159–1167. doi: 10.1175/BAMS-D-15-00048.1
    [6] CHO J Y N. A new radio frequency interference filter for weather radars[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(7): 1393–1406. doi: 10.1175/JTECH-D-17-0028.1
    [7] CARROLL J E, SANDERS F H, SOLE R L, et al. Case study: Investigation of interference into 5 GHz weather radars from unlicensed national information infrastructure devices[R]. NTIA Technical Report TR-11-473, 2010.
    [8] VACCARONO M, CHANDRASEKAR C V, BECHINI R, et al. Survey on electromagnetic interference in weather radars in northwestern Italy[J]. Environments, 2019, 6(12): 126. doi: 10.3390/environments6120126
    [9] LAKE J L, YEARY M, and CURTIS C D. Adaptive radio frequency interference mitigation techniques at the national weather radar testbed: First results[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 840–845.
    [10] ROJAS L C, MOISSEEV D N, CHANDRASEKAR V, et al. Dual-polarization spectral filter for radio frequency interference suppression[C]. The 7th European Conference on Radar in Meteorology and Hydrology, Toulouse, France, 2012.
    [11] YANOVSKY F J, RUSSCHENBERG H W J, and UNAL C M H. Retrieval of information about turbulence in rain by using Doppler-polarimetric Radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(2): 444–450. doi: 10.1109/TMTT.2004.840772
    [12] YIN Jiapeng, UNAL C M H, and RUSSCHENBERG H W J. Narrow-band clutter mitigation in spectral polarimetric weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4655–4667. doi: 10.1109/TGRS.2017.2696263
    [13] YIN Jiapeng, UNAL C, and RUSSCHENBERG H. Object-orientated filter design in spectral domain for polarimetric weather radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 2725–2740. doi: 10.1109/TGRS.2018.2876632
    [14] MELNIKOV V M and ZRNIĆ D S. On the alternate transmission mode for polarimetric phased array weather radar[J]. Journal of Atmospheric and Oceanic Technology, 2015, 32(2): 220–233. doi: 10.1175/JTECH-D-13-00176.1
    [15] HURTADO M and NEHORAI A. Polarimetric detection of targets in heavy inhomogeneous clutter[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1349–1361. doi: 10.1109/TSP.2007.909046
    [16] FIGUERAS I VENTURA J. Design of a high resolution X-band Doppler polarimetric weather radar[D]. [Ph. D. dissertation], Delft University of Technology, 2009.
    [17] FULTON C, HERD J, KARIMKASHI S, et al. Dual-polarization challenges in weather radar requirements for multifunction phased array radar[C]. 2013 IEEE International Symposium on Phased Array Systems and Technology, Waltham, USA, 2013: 494–501.
    [18] ZRNIĆ D S, ZHANG Guifu, and DOVIAK R J. Bias correction and Doppler measurement for polarimetric phased-array radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 843–853. doi: 10.1109/TGRS.2010.2057436
    [19] IVIĆ I R, CURTIS C, and TORRES S M. Radial-based noise power estimation for weather radars[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(12): 2737–2753. doi: 10.1175/JTECH-D-13-00008.1
    [20] BACHMANN S and ZRNIĆ D. Spectral density of polarimetric variables separating biological scatterers in the VAD display[J]. Journal of Atmospheric and Oceanic Technology, 2007, 24(7): 1186–1198. doi: 10.1175/JTECH2043.1
    [21] MOISSEEV D N and CHANDRASEKAR V. Polarimetric spectral filter for adaptive clutter and noise suppression[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(2): 215–228. doi: 10.1175/2008JTECHA1119.1
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  1838
  • HTML全文浏览量:  1198
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-22
  • 修回日期:  2021-11-22
  • 网络出版日期:  2021-12-28
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回