联合Cameron分解和融合RKELM的全极化HRRP目标识别方法

王晶晶 刘峥 谢荣 冉磊

王晶晶, 刘峥, 谢荣, 等. 联合Cameron分解和融合RKELM的全极化HRRP目标识别方法[J]. 雷达学报, 2021, 10(6): 944–955. doi: 10.12000/JR21099
引用本文: 王晶晶, 刘峥, 谢荣, 等. 联合Cameron分解和融合RKELM的全极化HRRP目标识别方法[J]. 雷达学报, 2021, 10(6): 944–955. doi: 10.12000/JR21099
WANG Jingjing, LIU Zheng, XIE Rong, et al. HRRP target recognition method for full polarimetric radars by combining Cameron decomposition and fusing RKELM[J]. Journal of Radars, 2021, 10(6): 944–955. doi: 10.12000/JR21099
Citation: WANG Jingjing, LIU Zheng, XIE Rong, et al. HRRP target recognition method for full polarimetric radars by combining Cameron decomposition and fusing RKELM[J]. Journal of Radars, 2021, 10(6): 944–955. doi: 10.12000/JR21099

联合Cameron分解和融合RKELM的全极化HRRP目标识别方法

DOI: 10.12000/JR21099
基金项目: 国家自然科学基金(62001346),中国博士后基金面上项目(2019M663632)
详细信息
    作者简介:

    王晶晶(1993–),女,河北邯郸人,西安电子科技大学在读博士生,主要研究方向为雷达目标识别、极化信息处理

    刘 峥(1964–),男,陕西兴平人,2000年在西安电子科技大学获得博士学位,现为西安电子科技大学电子工程学院教授。主要研究方向为雷达信号处理的理论与系统设计、雷达精确制导技术、多传感器信息融合等

    谢 荣(1982–),男,浙江温州人,2011年在西安电子科技大学获得博士学位,现为西安电子科技大学电子工程学院副教授。主要研究方向为雷达信号处理的理论与系统设计、雷达精确制导技术等

    冉 磊(1989–),男,山东泰安人,2018年在西安电子科技大学获得博士学位,现为西安电子科技大学电子工程学院讲师。主要研究方向为无人机/弹载雷达成像技术、SAR图像目标检测与识别、雷达信号实时处理系统等

    通讯作者:

    刘峥 lz@xidian.edu.cn

  • 责任主编:殷红成 Corresponding Editor: YIN Hongcheng
  • 中图分类号: TN95

HRRP Target Recognition Method for Full Polarimetric Radars by Combining Cameron Decomposition and Fusing RKELM

Funds: The National Natural Science Foundation of China (62001346), The China Postdoctoral Science Foundation (2019M663632)
More Information
  • 摘要: 该文针对传统全极化高分辨一维距离像(HRRP)雷达目标识别问题,提出了结合Cameron分解和融合简化核极限学习机(RKELM)的目标识别方法,旨在提高全极化HRRP目标识别性能。在特征提取阶段,所提方法利用Cameron分解定义了目标在各个标准散射体上的投影分量。通过分析,将目标在三面角、二面角和1/4波长器件这3个散射基上沿距离维的投影分量作为目标特征,实现对目标散射特性更加精细化的描述。在分类阶段,考虑到RKELM算法识别性能的不稳定性,提出了一种基于原型聚类预处理的RKELM方法,并在此基础上设计了特征级融合RKELM网络和决策级融合RKELM网络,以对投影特征进行融合分类。实验部分利用10类民用车辆的全极化HRRP数据将所提识别方法和现有方法进行了对比,结果表明:(1)所采用的Cameron分解投影特征表现出了较高的可分性和噪声稳健性;(2)当训练样本数较多时,特征级融合RKELM算法的泛化性能较好;当训练样本数较少时,决策级融合RKELM的泛化性能较好。

     

  • 图  1  对称散射体所对应的$z$值的单位圆盘表示

    Figure  1.  Unit disc representation of $z$ values and the corresponding symmetric scatterers

    图  2  基于原型聚类预处理的特征级融合RKELM网络结构

    Figure  2.  Feature level fusing RKELM network based on prototype clustering preprocessing

    图  3  基于原型聚类预处理的决策级融合RKELM网络结构

    Figure  3.  Decision level fusing RKELM network based on prototype clustering preprocessing

    图  4  民用车辆回波仿真示意图

    Figure  4.  Diagram of simulated echo from civilian vehicles

    图  5  10类民用车辆的Cameron投影特征RGB图

    Figure  5.  RGB images of the Cameron projection features from 10 civilian vehicles

    图  6  平均识别率随训练样本数的变化

    Figure  6.  Average recognition rates versus size of training data

    图  7  平均识别率随信噪比的变化

    Figure  7.  Average recognition rates versus SNR

    表  1  z值与对应的对称散射体

    Table  1.   z values and the corresponding symmetric scatterers

    对称散射体类型z对称散射体类型z
    三面角1.0圆柱体0.5
    二面角–1.0窄二面角–0.5
    偶极子01/4波长器件$\pm \rm i$
    下载: 导出CSV

    表  2  任意散射体与标准对称散射体之间的相似性计算方式

    Table  2.   Calculation of similarity between arbitrary scatterers and standard symmetric scatterers

    散射体${z_0}$$\varphi \left( {z,{z_0}} \right)$散射体${z_0}$$\varphi \left( {z,{z_0}} \right)$
    三面角1.0$\sqrt {\dfrac{1}{2} + \dfrac{{{z_{\rm{r}}}}}{{1 + {{\left| z \right|}^2}}}} $圆柱体0.5$\sqrt {\dfrac{1}{5} + \dfrac{{3 + 4{z_{\rm{r}}}}}{{5\left( {1 + {{\left| z \right|}^2}} \right)}}} $
    二面角–1.0$\sqrt {\dfrac{1}{2} - \dfrac{{{z_{\rm{r}}}}}{{1 + {{\left| z \right|}^2}}}} $窄二面角–0.5$\sqrt {\dfrac{1}{5} + \dfrac{{3 - 4{z_{\rm{r}}}}}{{5\left( {1 + {{\left| z \right|}^2}} \right)}}} $
    偶极子0$\sqrt {\dfrac{1}{{1 + {{\left| z \right|}^2}}}} $1/4波长器件$\pm \rm i$$\sqrt {\dfrac{1}{2} + \dfrac{{\left| {{z_{\rm{i}}}} \right|}}{{\left( {1 + {{\left| z \right|}^2}} \right)}}} $
    下载: 导出CSV

    表  3  标准散射体的Cameron分解参数和相似性参数

    Table  3.   Cameron decomposition parameters of the standard scatterers and their similairity parameters

    散射体类型最小对称分量能量最大对称分量能量与标准散射体之间的相似性
    三面角二面角偶极子圆柱体窄二面角1/4波长器件
    三面角01.01.00000.7070.9490.3160.707
    二面角01.001.0000.7070.3160.9490.707
    偶极子01.00.7070.7071.0000.8940.8940.707
    圆柱体01.00.9490.3160.8941.0000.6000.707
    窄二面角01.00.3160.9490.8940.6001.0000.707
    1/4波长器件01.00.7070.7070.7070.7070.7071.000
    左螺旋0.50.501.0000.7070.3160.9490.707
    右螺旋0.50.501.0000.7070.3160.9490.707
    下载: 导出CSV

    表  4  特征改进的ReliefF可分性值

    Table  4.   Seperability measure of features by the modified ReliefF

    特征可分性
    Cameron分解2.766
    全极化幅度2.594
    Cloude分解1.780
    Krogager分解2.600
    HH2.084
    VV2.455
    HV1.978
    下载: 导出CSV

    表  5  所提方法和对比方法在不同隐层节点数下的识别性能(%)

    Table  5.   Recognition performance of the proposed methods and comparative methods with different number of hidden layer nodes (%)

    隐层节点数Cameron+特征级RKELM幅度+特征级RKELMCameron+特征级RKELM(随机)Cloude+特征级RKELMKrogager+特征级RKELMCameron+决策级RKELM幅度+决策级RKELM
    5077.373.475.766.773.566.764.5
    10087.384.686.376.384.479.977.7
    15091.489.890.181.089.385.684.2
    20093.692.693.183.992.088.988.0
    25094.994.294.585.993.591.190.2
    30095.795.195.487.394.592.691.7
    35096.395.796.188.595.293.692.9
    40096.796.196.589.395.794.393.7
    45097.096.596.890.096.194.994.3
    50097.296.797.190.696.395.394.8
    隐层节点数Cameron+决策级RKELM(随机)Cloude+决策级RKELMKrogager+决策级RKELMHH+聚类-RKELMVV+聚类-RKELMHV+聚类-RKELM
    5066.059.265.351.352.243.0
    10079.068.877.962.065.152.2
    15084.774.384.169.272.756.3
    20088.477.887.074.477.858.8
    25090.780.489.678.181.260.5
    30092.282.291.080.883.861.8
    35093.383.792.282.985.862.9
    40094.084.892.684.587.363.8
    45094.785.893.785.888.664.5
    50095.086.694.286.989.665.1
    下载: 导出CSV
  • [1] DU Lan, LIU Hongwei, WANG Penghui, et al. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3546–3559. doi: 10.1109/TSP.2012.2191965
    [2] WANG Jingjing, LIU Zheng, XIE Rong, et al. Radar HRRP target recognition based on dynamic learning with limited training data[J]. Remote Sensing, 2021, 13(4): 750. doi: 10.3390/RS13040750
    [3] NOVAK L M, HALVERSEN S D, OWIRKA G, et al. Effects of polarization and resolution on SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 102–116. doi: 10.1109/7.570713
    [4] GIUSTI E, MARTORELLA M, and CAPRIA A. Polarimetrically-persistent-scatterer-based automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4588–4599. doi: 10.1109/TGRS.2011.2164804
    [5] 张玉玺, 王晓丹, 姚旭, 等. 基于H/A/α分解的全极化HRRP目标识别方法[J]. 系统工程与电子技术, 2013, 35(12): 2501–2506. doi: 10.3969/j.issn.1001-506X.2013.12.10

    ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. Target recognition of fully polarimetric HRRP based on H/A/α decomposition[J]. Systems Engineering and Electronics, 2013, 35(12): 2501–2506. doi: 10.3969/j.issn.1001-506X.2013.12.10
    [6] 张玉玺, 王晓丹, 姚旭, 等. 一种融合多极化特征的雷达目标识别方法[J]. 计算机科学, 2012, 39(9): 208–210, 234. doi: 10.3969/j.issn.1002-137X.2012.09.047

    ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. Approach of radar target recognition based on multiple polarization features fusion[J]. Computer Science, 2012, 39(9): 208–210, 234. doi: 10.3969/j.issn.1002-137X.2012.09.047
    [7] 王福友, 罗钉, 刘宏伟. 基于极化不变量特征的雷达目标识别技术[J]. 雷达科学与技术, 2013, 11(2): 165–172. doi: 10.3969/j.issn.1672-2337.2013.02.011

    WANG Fuyou, LUO Ding, and LIU Hongwei. Radar target classification based on some invariant properties of the polarization[J]. Radar Science and Technology, 2013, 11(2): 165–172. doi: 10.3969/j.issn.1672-2337.2013.02.011
    [8] 吴佳妮, 陈永光, 代大海, 等. 基于快速密度搜索聚类算法的极化HRRP分类方法[J]. 电子与信息学报, 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457

    WU Jiani, CHEN Yongguang, DAI Dahai, et al. Target recognition for polarimetric HRRP based on fast density search clustering method[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457
    [9] LIU Shengqi, ZHAN Ronghui, WANG Wei, et al. Full-polarization HRRP recognition based on joint sparse representation[C]. 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 333–338. doi: 10.1109/RadarConf.2015.7411903.
    [10] 刘盛启, 占荣辉, 翟庆林, 等. 基于联合稀疏性的多视全极化HRRP目标识别方法[J]. 电子与信息学报, 2016, 38(7): 1724–1730. doi: 10.11999/JEIT151019

    LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, et al. Multi-view polarization HRRP target recognition based on joint sparsity[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1724–1730. doi: 10.11999/JEIT151019
    [11] 翟庆林, 刘盛启, 胡杰民, 等. 全极化雷达的多任务压缩感知目标识别方法[J]. 国防科技大学学报, 2017, 39(3): 144–150. doi: 10.11887/j.cn.201703022

    ZHAI Qinglin, LIU Shengqi, HU Jiemin, et al. Full-polarization radar target recognition of multitask compressive sensing[J]. Journal of National University of Defense Technology, 2017, 39(3): 144–150. doi: 10.11887/j.cn.201703022
    [12] 段佳, 邢孟道, 张磊, 等. 联合属性散射中心的极化目标重构新方法[J]. 西安电子科技大学学报: 自然科学版, 2014, 41(6): 18–24. doi: 10.3969/j.issn.1001-2400.2014.06.004

    DUAN Jia, XING Mengdao, ZHANG Lei, et al. Novel polarimetric target signal reconstruction method jointed with attributed scattering centers[J]. Journal of Xidian University, 2014, 41(6): 18–24. doi: 10.3969/j.issn.1001-2400.2014.06.004
    [13] DUAN Jia, ZHANG Lei, XING Mengdao, et al. Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2095–2099. doi: 10.1109/LGRS.2014.2320053
    [14] CAMERON W L, YOUSSEF N N, and LEUNG L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 793–803. doi: 10.1109/36.499784
    [15] DENG Wanyu, ONG Y S, and ZHENG Qinghua. A fast reduced kernel extreme learning machine[J]. Neural Networks, 2016, 76: 29–38. doi: 10.1016/j.neunet.2015.10.006
    [16] ARTHUR D and VASSILVITSKII S. K-means++: The advantages of careful seeding[C]. The Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007: 1027–1035.
    [17] DUNGAN K E, AUSTIN C, NEHRBASS J, et al. Civilian vehicle radar data domes[C]. SPIE 7699, Algorithms for Synthetic Aperture Radar Imagery XVII, Orlando, USA, 2010: 76990P. doi: 10.1117/12.850151.
    [18] KROGAGER E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525–1527. doi: 10.1049/el:19900979
    [19] ROBNIK-ŠIKONJA M and KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1): 23–69. doi: 10.1023/A:1025667309714
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  1731
  • HTML全文浏览量:  755
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2021-08-14
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回