Loading [MathJax]/jax/output/SVG/jax.js

联合Cameron分解和融合RKELM的全极化HRRP目标识别方法

王晶晶 刘峥 谢荣 冉磊

林玉川, 张剑云, 武拥军, 周青松. 双基星载HRWS-SAR系统方位向信号重构的矩阵求逆算法[J]. 雷达学报, 2017, 6(4): 388-396. doi: 10.12000/JR17060
引用本文: 王晶晶, 刘峥, 谢荣, 等. 联合Cameron分解和融合RKELM的全极化HRRP目标识别方法[J]. 雷达学报, 2021, 10(6): 944–955. doi: 10.12000/JR21099
Lin Yuchuan, Zhang Jianyun, Wu Yongjun, Zhou Qingsong. Matrix Inversion Method for Azimuth Reconstruction in Bistatic Spaceborne High-Resolution Wide-Swath SAR System[J]. Journal of Radars, 2017, 6(4): 388-396. doi: 10.12000/JR17060
Citation: WANG Jingjing, LIU Zheng, XIE Rong, et al. HRRP target recognition method for full polarimetric radars by combining Cameron decomposition and fusing RKELM[J]. Journal of Radars, 2021, 10(6): 944–955. doi: 10.12000/JR21099

联合Cameron分解和融合RKELM的全极化HRRP目标识别方法

DOI: 10.12000/JR21099
基金项目: 国家自然科学基金(62001346),中国博士后基金面上项目(2019M663632)
详细信息
    作者简介:

    王晶晶(1993–),女,河北邯郸人,西安电子科技大学在读博士生,主要研究方向为雷达目标识别、极化信息处理

    刘 峥(1964–),男,陕西兴平人,2000年在西安电子科技大学获得博士学位,现为西安电子科技大学电子工程学院教授。主要研究方向为雷达信号处理的理论与系统设计、雷达精确制导技术、多传感器信息融合等

    谢 荣(1982–),男,浙江温州人,2011年在西安电子科技大学获得博士学位,现为西安电子科技大学电子工程学院副教授。主要研究方向为雷达信号处理的理论与系统设计、雷达精确制导技术等

    冉 磊(1989–),男,山东泰安人,2018年在西安电子科技大学获得博士学位,现为西安电子科技大学电子工程学院讲师。主要研究方向为无人机/弹载雷达成像技术、SAR图像目标检测与识别、雷达信号实时处理系统等

    通讯作者:

    刘峥 lz@xidian.edu.cn

  • 责任主编:殷红成 Corresponding Editor: YIN Hongcheng
  • 中图分类号: TN95

HRRP Target Recognition Method for Full Polarimetric Radars by Combining Cameron Decomposition and Fusing RKELM

Funds: The National Natural Science Foundation of China (62001346), The China Postdoctoral Science Foundation (2019M663632)
More Information
  • 摘要: 该文针对传统全极化高分辨一维距离像(HRRP)雷达目标识别问题,提出了结合Cameron分解和融合简化核极限学习机(RKELM)的目标识别方法,旨在提高全极化HRRP目标识别性能。在特征提取阶段,所提方法利用Cameron分解定义了目标在各个标准散射体上的投影分量。通过分析,将目标在三面角、二面角和1/4波长器件这3个散射基上沿距离维的投影分量作为目标特征,实现对目标散射特性更加精细化的描述。在分类阶段,考虑到RKELM算法识别性能的不稳定性,提出了一种基于原型聚类预处理的RKELM方法,并在此基础上设计了特征级融合RKELM网络和决策级融合RKELM网络,以对投影特征进行融合分类。实验部分利用10类民用车辆的全极化HRRP数据将所提识别方法和现有方法进行了对比,结果表明:(1)所采用的Cameron分解投影特征表现出了较高的可分性和噪声稳健性;(2)当训练样本数较多时,特征级融合RKELM算法的泛化性能较好;当训练样本数较少时,决策级融合RKELM的泛化性能较好。

     

  • 双基星载合成孔径雷达(Synthetic Aperture Radar, SAR)利用信号收发平台的分置,能够同时获取不同视角的观测数据,在测绘、干涉测量、地面目标识别、自然灾害监测等领域[1,2]具有重要的应用价值。以Tandem-L为代表的新一代双基星载SAR系统应用多通道、数字波束形成(Digital Beam Forming, DBF)等技术,实现方位向高分辨率和距离向宽测绘带SAR(High Resolution Wide Swath SAR, HRWS-SAR)成像,系统的成像能力得到显著改善[3,4]

    HRWS-SAR系统在方位向采用多通道采样降低系统的脉冲重复频率(Pulse Recurrence Frequency, PRF),在不降低方位分辨率的前提下实现系统的宽测绘带成像。HRWS-SAR系统进行成像处理时,若方位向信号为均匀采样可直接采用传统SAR成像处理方法,而受载星平台轨迹约束及应用场景的限制,方位向的非均匀采样更为普遍[5],因而对方位向信号进行重构以获得其均匀采样信号或多普勒谱是HRWS-SAR系统成像处理的一项关键技术。单基星载HRWS-SAR系统的方位向信号重构得到了广泛而深入的研究[617]。重排算法[6]和插值算法[7]是两种典型的时域重构算法。重排算法依据接收信号的方位向位置将各通道信号重新排列,只能在特定的PRF得到方位向信号的均匀采样。插值算法则依据文献[7]所提出的周期性非均匀采样信号重构公式通过时域插值得到方位向信号的均匀采样,该算法运算复杂度高且精度依赖于插值核的长度。Krieger等依据广义采样定理提出矩阵求逆算法[8,9],该算法通过线性方程求解从混叠的多通道信号中重构出无模糊的多普勒谱。该算法不需要协方差矩阵等先验信息且易于实现,但在重叠采样时该算法无法进行信号重构,接近重叠采样时重构性能也较差。文献[1013]则采用不同的方法对矩阵求逆算法进行改进,实现重叠采样附近的高性能信号重构。文献[14,15]基于统一的信号模型,选取不同代价函数进行优化,提出了多种自适应波束形成(DBF)算法:正交投影算法、信号最大化算法、最大化信号模糊噪声比算法、最小均方误差算法等。与矩阵求逆算法相比,DBF类算法运算复杂度较高,并假定各通道的噪声为高斯白噪声且相互独立。文献[16]则对方位向信号重构算法的性能进行了仿真对比分析。文献[17]采用NUFFT直接重构方位向非均匀采样信号的多普勒频谱。

    上述方位向信号重构方法理论上均能推广到双基星载HRWS-SAR系统。考虑到矩阵求逆算法易于实现且研究较为广泛,本文研究该算法在双基HRWS-SAR系统中的实现。本文首先将方位照射时间内时变的发射接收距离比近似为一个常数,推导了双基星载HRWS-SAR系统与某个单基系统在方位向多信道间传递函数上的等效性,从而构建了双基星载HRWS-SAR系统的方位向信号模型。而后,提出了适用于一般双基构型星载HRWS-SAR系统方位向信号重构的矩阵求逆算法,并给出了信噪比缩放因子及方位模糊比这两个重构性能指标的计算公式。最后,通过对几种典型双基构型的星载HRWS-SAR系统进行方位向信号重构仿真,验证了矩阵求逆算法在一般双基构型星载HRWS-SAR系统中的适用性。

    为保持双基星载HRWS-SAR系统对地面的持续观测,收发平台应置于同一轨道(顺飞模式)或高度相同的平行轨道(平飞模式)。图1给出了一般构型双基星载HRWS-SAR系统的信号收发几何。发射天线和接收天线的最短距离分别为rT0, rR0,接收天线共有M个通道,RXequ为方位向信号重构后的等效接收通道,通道i到等效接收通道RXequ的方位向距离为 Δxi , tfd为发射天线和接收天线的零多普勒时间差。

    图  1  双基星载HRWS-SAR系统的双基构型
    Figure  1.  Bistatic configuration of bistatic spaceborne HRWS-SAR

    不失一般性,假定点目标Pt=0时刻位于接收天线的零多普勒面,容易得到t时刻点P在接收通道i的收发距离和 R(t) 计算公式为:

    R(t)=r2T0+(vtvtfd)2+r2R0+(vtΔxi)2 (1)

    忽略天线方向图的影响,接收通道i的冲激响应函数可表示为:

    hi(t)=exp(j2πλR(t))=exp(j2πλ(r2T0+(vtvtfd)2+r2R0+(vtΔxi)2)) (2)

    单基星载HRWS-SAR系统可视为rT0=rR0=r0, tfd=0,发射天线为等效接收通道的特殊情况。由式(2)可得此时接收通道i的冲激响应为:

    ˜hi(t)=exp(j2πλ(r20+(vt)2+r20+(vtΔxi)2)) (3)

    令此时单基单通道SAR的冲激响应函数为 ˜hmono(t) , ˜hmono(t) 可由式(4)表示。

    ˜hmono(t)=exp(j4πλr20+(vt)2) (4)

    文献[9]对 ˜hmono(t) ˜hi(t) 的泰勒级数展开进行2阶相位近似处理,可得

    {˜hmono(t)exp(j4πλr0)exp(j2πv2t2λr0)˜hi(t)exp(j4πλr0)exp(jπΔx2i2λr0) exp(j2πv2(tΔxi2v)2λr0) (5)

    因而 ˜hmono(t) ˜hi(t) 间存在式(6)所示的关系,其中 为卷积运算。

    ˜hi(t)=exp(jπΔx2i2λr0)δ(tΔxi2v)˜hmono(t) (6)

    将式(6)进行Fourier变换,可得单基单通道SAR与接收通道i的系统函数关系:

    ˜Hi(f)=exp(jπΔx2i2λr0)exp(j2πΔxi2vf)˜Hmono(f) (7)

    单基单通道SAR到接收通道i的传递函数 ˜Gi(f) 为:

    ˜Gi(f)=exp(jπΔx2i2λr0)exp(j2πΔxi2vf) (8)

    基于上述分析,单基星载HRWS-SAR系统的方位向信号生成模型可由图2进行描述。方位向各通道信号在时域为单基单通道SAR信号经对应的相位偏移和时间延迟的结果,而在多普勒域为单基单通道SAR信号与对应的常数相位因子和线性相位因子相乘后的结果。PRF小于多普勒带宽时,方位向各通道信号为时域上的欠采样,将导致多普勒域的频谱混叠。

    图  2  单基星载HRWS-SAR系统的方位向信号生成模型
    Figure  2.  Azimuth signal generating model in monostatic spaceborne HRWS-SAR

    一般双基构型的星载HRWS-SAR系统中rT0rR0, tfd≠0,不能通过对hmonohi的泰勒级数展开进行2阶相位近似处理得到与式(6)、式(7)相似的表达式。本节将对式(2)进一步处理,推导一般双基构型星载HRWS-SAR系统中 hmono(t) hi(t) 的关系,进而构建其方位向信号生成模型。

    引入点目标P的收发距离比函数 C(t)= r2T0+(vtvtfd)2r2R0+(vt)2 ,式(2)等价于:

    hi(t)=exp(j2πλ(C(t)r2R0+(vt)2+r2R0+(vtΔxi)2)) (9)

    等效接收通道RXequ的冲激响应函数为:

    hmono(t)=exp(j2πλ((C(t)+1)r2R0+(vt)2))  (10)

    对式(9)、式(10)的泰勒级数展开进行2阶相位近似处理,可得:

    {hi(t)exp(j2πλ(C(t)+1)rR0) exp(jπλrR0C(t)Δx2iC(t)+1) exp(jπλrR0(C(t)+1) v2(tΔxi(C(t)+1)v)2)hmono(t)exp(j2πλ(C(t)+1)rR0) exp(jπλrR0(C(t)+1)v2t2) (11)

    在目标照射时间Ta内, C(t) 的变化极小,用波束中心穿越时刻的取值C0予以近似。容易得到接收通道i与等效接收通道RXequ的冲激响应关系为:

    hi(t)=exp(jπλrR0C0Δx2iC0+1) δ(tΔxi(C0+1)v)hmono(t) (12)

    式(12)进行Fourier变换,可得等效接收通道RXequ与接收通道i的系统函数关系:

    Hi(f)=exp(jπλrR0C0Δx2iC0+1)exp(j2πΔxi(C0+1)vf)Hmono(f) (13)

    等效接收通道RXequ到接收通道i的传递函数为:

    Gi(f)=exp(jπλrR0C0Δx2iC0+1)exp(j2πΔxi(C0+1)vf) (14)

    考察式(8)、式(14),传递函数 Gi(f) ˜Gi(f) 可视为f Δxi 的二元函数,并存在如下关系:

    Gi(f,Δxi)=˜Gi(f,2(C0+1)Δxi) (15)

    式(15)表明双基星载HRWS-SAR系统的方位向信号的生成模型可等效为一单基系统模型,只需将图2中的 Δxi 替换为 2/(C0+1)Δxi 即可予以描述,C0=1时,双基系统退化为单基系统。

    式(12)、式(13)、式(14)是在 C(t) 近似为C0的基础上推导的结果,显然存在近似误差。上述近似误差进行理论上的严格定量分析非常复杂,然而可以从上述表达式中得到简单的定性结果。以式(14)为例,由于在双基星载HRWS-SAR系统中 Δx2irR0 ,从而 exp(jπλrR0C(t)Δx2iC(t)+1) 可视为常数1。指数项 exp(j2πΔxi(C0+1)vf) 的相位近似误差约为 Δφ2π|C(t)C0C0+1||Δxi(C(t)+1)vf| ,在多普勒带宽Bfd范围内,令接收通道的长度为LR, maxi=1,2,,M|Δxi|=αLR ,则 |Δxi(C(t)+1)vf|< |αLa(C(t)+1)vBfd|0.886α 。受天线最小尺寸的限制,LR不能过小即 α 不会太大,可合理假定 α 在101数量级。记 ε(t)=|C(t)C0C0+1| ,仿真分析表明 maxt(Ta2,Ta2)(ε(t)) 一般不超过10–3量级,因而 Δφ 2π102 量级,为一极小相位。上述分析表明可以忽略式(14)的近似误差,即C0 C(t) 的合理近似。

    文献[8]给出了单基HRWS-SAR系统方位向信号重构的矩阵求逆算法,由于双基HRWS-SAR系统在方位向信号模型上与单基系统的等效性,矩阵求逆算法在双基系统同样适用。

    矩阵求逆算法的理论依据是广义采样定理。在双基HRWS-SAR系统中,通过发射到接收通道i的传递函数,能够得到单基单通道SAR的信号 S(f)=U(f)H(f) 在接收通道i的表达式 Si(f)= Gi(f)S(f) 。对于方位向有M个通道的系统,在无重叠采样的情况下,可以得到 S(f) M种独立表达,且采样率均为PRF。根据广义采样定理,能够恢复带宽最高为 MPRF 的信号 S(f)

    矩阵求逆算法主要包括3个步骤:

    首先,构造系统的传递函数矩阵 G(f) 及响应矩阵 ˜S(f)

    G(f)=(G1(f)G1(f+PRF)···G1(f+(M1)PRF)G2(f)G2(f+PRF)···G2(f+(M1)PRF)GM(f)GM(f+PRF)···GM(f+(M1)PRF)) (16)
    ˜S(f)=(S1(f),S2(f),,SM(f))T (17)

    然后,对 G(f) 进行求逆运算,得到信号重构矩阵 P(f)

    P(f)=(P1(f)P2(f)···PM(f)P1(f+PRF)P2(f+PRF)···PM(f+PRF)P1(f+(M1)PRF)P2(f+(M1)PRF)···PM(f+(M1)PRF)) (18)

    最后,利用公式 {{P}}\left( f \right) \cdot {{S}}\left( f \right) = {\big( {S\left( f \right),S\left( {f + } \right. PRF),···,S(f+(M1)PRF))T 即可重构出方位向信号的多普勒频谱。矩阵求逆算法进行方位向重构的原理框图及物理实现原理可参看文献[8]。

    星载HRWS-SAR系统的单通道信号带宽为PRF,采用矩阵求逆算法重构后的方位向信号带宽为 MPRF ,因而方位向信号重构必然影响到信噪比和方位模糊比这两个重要的SAR系统性能指标。

     

    3.2.1 信噪比缩放因子 文献[8]定义信噪比缩放因子表征方位向重构对信噪比的影响,其定义式及计算公式为:

    Φbf=SNRin/SNRout(SNRin/SNRout)|PRFuni=Mj=1E(|Pj(f)|2)N

    (19)

    其中,SNRin, SNRout为方位向信号重构前后的信噪比,PRFuni表示方位向均匀采样时的PRF, Pj(f) 对应于式(18)中的第j行,为作用于接收通道j的重构函数, E() 为求期望运算。 Φbf 表征了SNRin与SNRout的比值随PRF的变化规律。由式(19)可知,越小的 Φbf 意味着更多的信噪比改善。

    Φbf 还可以通过式(20)进行计算:

    Φbf=Mj=1λj(f)N (20)

    其中, λj(f) 为矩阵 P(f)PH(f) 的特征值, PH(f) P(f) 的共轭转置。

     

    3.2.2 方位模糊比 文献[8]详细推导了单基HRWS-SAR系统的方位模糊比(AASR)计算公式,与之类似可推导出双基HRWS-SAR系统的AASR计算公式,可概括为如下4个计算式:

    ek(f)=Ak(f)mMj=1Gj(f+kPRF) Pj(f+mPRF) (21)
    eΣ(f)=k=,k0ek(f)=k=,k0(Ak(f)mMj=1Gj(f+kPRF) Pj(f+mPRF)) (22)
    ps=E(|A(f)rect(f/I)|2)  (23)
    AASR=E(|eΣ(f)|2)ps  (24)

    A(f) 为发射天线和接收通道合成的天线方向图,双基系统中tc≠0时 A(f)A(f) ,这是导致双基系统AASR计算公式不同于单基系统的根本原因。 Ak(f) 为区间 [PRF/2, PRF/2]+kPRF 上的 A(f) , ek(f) 为区间 [PRF/2, PRF/2]+kPRF 内的信号产生的方位模糊信号,I为区间 [M PRF/2,MPRF/2] , ps为信号能量。上式中m的取值规则为:k>0时, max(Mk+1,1)mN ; k<0时, 1mk

    本节对几种典型的双基构型星载HRWS-SAR系统进行方位向信号重构进行仿真,验证矩阵求逆算法的正确性,并分析算法的重构性能。表1列出了系统的方位向系统参数,对于单基系统容易计算出多普勒带宽Bfd=5.61 kHz,照射时间Ta=1.05 s。

    表  1  双基星载HRWS-SAR系统的方位向系统参数
    Table  1.  Azimuth parameters in bistatic spaceborne HRWS-SAR
    参数 数值
    发射天线方位尺寸(m) 2.4
    接收通道方位尺寸(m) 2.4
    接收通道数目 5
    轨道高度(km) 600
    接收天线最短距离(km) 700
    方位向速度(m/s) 7600
    载波波长(cm) 3.1
    下载: 导出CSV 
    | 显示表格

    表2列出了7种典型的双基构型。表2中采用发射天线和接收天线的零多普勒时间差tfd与轨道距离L对双基构型进行表征:tfd=0时系统工作在平飞模式,L=0时系统工作在顺飞模式,L<0时发射天线位于测绘带近端,反之L>0时接收天线位于测绘带近端,构型Ⅰ中tfd=0且L=0退化为单基系统。

    表  2  双基星载HRWS-SAR系统的7种双基构型
    Table  2.  Seven configurations for bistatic spaceborne HRWS-SAR
    构型编号 tfd (s) L (km)
    0 0
    1 0
    10 0
    0 10
    0 100
    0 –10
    0 –100
    下载: 导出CSV 
    | 显示表格

    C(t) 近似为C0是构建双基星载HRWS-SAR系统方位向信号模型及建立矩阵求逆算法的关键步骤,该近似的合理性直接影响到模型及算法的正确性,第3.3小节定性分析了该近似的合理性,本节结合具体的仿真条件予以验证。图3给出了各双基构型下在照射时间范围内的 C(t) ε(t) 的变化曲线,图3中对近似误差相对较大的构型Ⅱ、构型Ⅲ采用蓝色线标注,其他构型使用红色线。图3(a)中各双基构型下 C(t) 曲线近似为直线,直观地的反映出 C(t) 近似为常数;而图3(b)图3(c)表明 ε(t) 在各双基构型下均小于10–3,验证了C0 C(t) 的合理近似。图3也表明出目标照射时间Ta及收发天线的零多普勒时间差tfd是影响 ε(t) 的主要因素, maxt(ε(t)) 的取值与Tatfd的取值呈正相关性。

    图  3  照射时间Ta范围内的 C(t) ε(t) 变化曲线
    Figure  3.  C(t) and ε(t) variation curve in irradiation time Ta

    各接收通道的信噪比设置为20 dB,取PRF=2.0 kHz,对图1所示的点目标P方位向信号重构过程进行仿真,其结果如图4图5所示。

    图  4  构型Ⅰ方位向信号重构前后的成像结果
    Figure  4.  Unreconstructed and reconstructed azimuth signal Doppler spectrum for bistatic configuration Ⅰ
    图  5  方位向信号重构后的成像结果
    Figure  5.  Imaging for reconstructed azimuth signal Doppler spectrum

    图4(a)图4(b)中,由于PRF小于多普勒带宽Bfd,单个接收通道的多普勒频谱有严重的混叠现象,图4(c)则表明采用矩阵求逆算法进行方位向信号重构消除了多普勒频谱中的混叠现象。图4(c)图5给出了各双基构型下的方位向信号重构后的成像结果,验证了矩阵求逆算法对一般双基构型的适用性,同时也表明重构性能受双基构型的影响,尤其是构型Ⅴ、Ⅶ与其他构型性能差异较为明显。

    将PRF设置在区间1.4 kHz≤PRF≤2.8 kHz,采用表1的系统参数和表2的双基构型,利用式(20)、式(24)可以得到方位向信号的重构性能曲线,如图6所示。为了便于图6的分析,首先计算各双基构型下的C0及典型PRF值,计算结果为表3,其中PRFuni为均匀采样时的PRF值,PRFrep1及PRFrep2为PRF范围内出现重叠采样的两个PRF值。构型Ⅰ的PRFuni, PRFrep1和PRFrep2图6中予以标注。

    图  6  方位向信号重构性能曲线
    Figure  6.  Azimuth signal reconstruction performance curve
    表  3  C0及典型PRF值
    Table  3.  C0 and typical PRF
    构型编号 C0 PRFuni (kHz) PRFrep1 (kHz) PRFrep2 (kHz)
    1.0000 2.533 1.583 2.111
    1.0001 2.533 1.583 2.111
    1.0059 2.540 1.588 2.117
    0.9927 2.524 1.577 2.103
    0.9345 2.450 1.531 2.041
    1.0074 2.542 1.589 2.118
    1.0805 2.635 1.647 2.196
    下载: 导出CSV 
    | 显示表格

    对比图6表3,可得到如下结论:

    (1) 均匀采样时PRF=PRFuni,方位向信号的重构性能达到局部最优;重叠采样时PRF=PRFrep,信噪比缩放因子趋向于无穷大,矩阵求逆算法将不能实现信号重构;PRF位于PRFrep附近时,矩阵求逆算法的性能急剧下降。从矩阵理论的观点分析,PRF=PRFrep时,传递函数 G(f) 为非满秩矩阵,因而 G(f) 及重构矩阵 P(f) 的条件数为无穷大,此时信噪比缩放因子 Φbf 也为无穷大,从而无法完成方位向信号的重构。PRF趋于PRFrep时,重构矩阵 P(f) 的条件数急剧增大,方位向信号的重构性能也急剧下降。

    (2) C0值的差异直接导致同一PRF时方位向信号重构性能差异。与其他构型相比构型Ⅴ、Ⅶ的C0值差异较大因而构性能差异也大,与图5的结论相一致。根本原因在于与双基HRWS-SAR系统等效的单基系统,通道间的方位向距离为 2/(C0+1) Δxi , C0的取值直接影响到方位向采样的均匀性,进而影响到矩阵求逆算法的重构性能。

    本文通过分析单基与双基星载HRWS-SAR系统的方位向信号模型,给出了适用于一般双基构型星载HRWS-SAR系统方位向信号重构的矩阵求逆算法,并使用信噪比缩放因子及方位模糊比两个指标分析了该算法的重构性能。本文的分析方法对其他方位向信号重构算法推广到双基星载HRWS-SAR系统具有借鉴意义。双基星载HRWS-SAR系统方位向信号重构的工程应用中,需改进矩阵求逆算法以改善重叠采样附近的重构性能。

  • 图  1  对称散射体所对应的z值的单位圆盘表示

    Figure  1.  Unit disc representation of z values and the corresponding symmetric scatterers

    图  2  基于原型聚类预处理的特征级融合RKELM网络结构

    Figure  2.  Feature level fusing RKELM network based on prototype clustering preprocessing

    图  3  基于原型聚类预处理的决策级融合RKELM网络结构

    Figure  3.  Decision level fusing RKELM network based on prototype clustering preprocessing

    图  4  民用车辆回波仿真示意图

    Figure  4.  Diagram of simulated echo from civilian vehicles

    图  5  10类民用车辆的Cameron投影特征RGB图

    Figure  5.  RGB images of the Cameron projection features from 10 civilian vehicles

    图  6  平均识别率随训练样本数的变化

    Figure  6.  Average recognition rates versus size of training data

    图  7  平均识别率随信噪比的变化

    Figure  7.  Average recognition rates versus SNR

    表  1  z值与对应的对称散射体

    Table  1.   z values and the corresponding symmetric scatterers

    对称散射体类型z对称散射体类型z
    三面角1.0圆柱体0.5
    二面角–1.0窄二面角–0.5
    偶极子01/4波长器件±i
    下载: 导出CSV

    表  2  任意散射体与标准对称散射体之间的相似性计算方式

    Table  2.   Calculation of similarity between arbitrary scatterers and standard symmetric scatterers

    散射体z0φ(z,z0)散射体z0φ(z,z0)
    三面角1.012+zr1+|z|2圆柱体0.515+3+4zr5(1+|z|2)
    二面角–1.012zr1+|z|2窄二面角–0.515+34zr5(1+|z|2)
    偶极子011+|z|21/4波长器件±i12+|zi|(1+|z|2)
    下载: 导出CSV

    表  3  标准散射体的Cameron分解参数和相似性参数

    Table  3.   Cameron decomposition parameters of the standard scatterers and their similairity parameters

    散射体类型最小对称分量能量最大对称分量能量与标准散射体之间的相似性
    三面角二面角偶极子圆柱体窄二面角1/4波长器件
    三面角01.01.00000.7070.9490.3160.707
    二面角01.001.0000.7070.3160.9490.707
    偶极子01.00.7070.7071.0000.8940.8940.707
    圆柱体01.00.9490.3160.8941.0000.6000.707
    窄二面角01.00.3160.9490.8940.6001.0000.707
    1/4波长器件01.00.7070.7070.7070.7070.7071.000
    左螺旋0.50.501.0000.7070.3160.9490.707
    右螺旋0.50.501.0000.7070.3160.9490.707
    下载: 导出CSV

    表  4  特征改进的ReliefF可分性值

    Table  4.   Seperability measure of features by the modified ReliefF

    特征可分性
    Cameron分解2.766
    全极化幅度2.594
    Cloude分解1.780
    Krogager分解2.600
    HH2.084
    VV2.455
    HV1.978
    下载: 导出CSV

    表  5  所提方法和对比方法在不同隐层节点数下的识别性能(%)

    Table  5.   Recognition performance of the proposed methods and comparative methods with different number of hidden layer nodes (%)

    隐层节点数Cameron+特征级RKELM幅度+特征级RKELMCameron+特征级RKELM(随机)Cloude+特征级RKELMKrogager+特征级RKELMCameron+决策级RKELM幅度+决策级RKELM
    5077.373.475.766.773.566.764.5
    10087.384.686.376.384.479.977.7
    15091.489.890.181.089.385.684.2
    20093.692.693.183.992.088.988.0
    25094.994.294.585.993.591.190.2
    30095.795.195.487.394.592.691.7
    35096.395.796.188.595.293.692.9
    40096.796.196.589.395.794.393.7
    45097.096.596.890.096.194.994.3
    50097.296.797.190.696.395.394.8
    隐层节点数Cameron+决策级RKELM(随机)Cloude+决策级RKELMKrogager+决策级RKELMHH+聚类-RKELMVV+聚类-RKELMHV+聚类-RKELM
    5066.059.265.351.352.243.0
    10079.068.877.962.065.152.2
    15084.774.384.169.272.756.3
    20088.477.887.074.477.858.8
    25090.780.489.678.181.260.5
    30092.282.291.080.883.861.8
    35093.383.792.282.985.862.9
    40094.084.892.684.587.363.8
    45094.785.893.785.888.664.5
    50095.086.694.286.989.665.1
    下载: 导出CSV
  • [1] DU Lan, LIU Hongwei, WANG Penghui, et al. Noise robust radar HRRP target recognition based on multitask factor analysis with small training data size[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3546–3559. doi: 10.1109/TSP.2012.2191965
    [2] WANG Jingjing, LIU Zheng, XIE Rong, et al. Radar HRRP target recognition based on dynamic learning with limited training data[J]. Remote Sensing, 2021, 13(4): 750. doi: 10.3390/RS13040750
    [3] NOVAK L M, HALVERSEN S D, OWIRKA G, et al. Effects of polarization and resolution on SAR ATR[J]. IEEE Transactions on Aerospace and Electronic Systems, 1997, 33(1): 102–116. doi: 10.1109/7.570713
    [4] GIUSTI E, MARTORELLA M, and CAPRIA A. Polarimetrically-persistent-scatterer-based automatic target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(11): 4588–4599. doi: 10.1109/TGRS.2011.2164804
    [5] 张玉玺, 王晓丹, 姚旭, 等. 基于H/A/α分解的全极化HRRP目标识别方法[J]. 系统工程与电子技术, 2013, 35(12): 2501–2506. doi: 10.3969/j.issn.1001-506X.2013.12.10

    ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. Target recognition of fully polarimetric HRRP based on H/A/α decomposition[J]. Systems Engineering and Electronics, 2013, 35(12): 2501–2506. doi: 10.3969/j.issn.1001-506X.2013.12.10
    [6] 张玉玺, 王晓丹, 姚旭, 等. 一种融合多极化特征的雷达目标识别方法[J]. 计算机科学, 2012, 39(9): 208–210, 234. doi: 10.3969/j.issn.1002-137X.2012.09.047

    ZHANG Yuxi, WANG Xiaodan, YAO Xu, et al. Approach of radar target recognition based on multiple polarization features fusion[J]. Computer Science, 2012, 39(9): 208–210, 234. doi: 10.3969/j.issn.1002-137X.2012.09.047
    [7] 王福友, 罗钉, 刘宏伟. 基于极化不变量特征的雷达目标识别技术[J]. 雷达科学与技术, 2013, 11(2): 165–172. doi: 10.3969/j.issn.1672-2337.2013.02.011

    WANG Fuyou, LUO Ding, and LIU Hongwei. Radar target classification based on some invariant properties of the polarization[J]. Radar Science and Technology, 2013, 11(2): 165–172. doi: 10.3969/j.issn.1672-2337.2013.02.011
    [8] 吴佳妮, 陈永光, 代大海, 等. 基于快速密度搜索聚类算法的极化HRRP分类方法[J]. 电子与信息学报, 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457

    WU Jiani, CHEN Yongguang, DAI Dahai, et al. Target recognition for polarimetric HRRP based on fast density search clustering method[J]. Journal of Electronics &Information Technology, 2016, 38(10): 2461–2467. doi: 10.11999/JEIT151457
    [9] LIU Shengqi, ZHAN Ronghui, WANG Wei, et al. Full-polarization HRRP recognition based on joint sparse representation[C]. 2015 IEEE Radar Conference, Johannesburg, South Africa, 2015: 333–338. doi: 10.1109/RadarConf.2015.7411903.
    [10] 刘盛启, 占荣辉, 翟庆林, 等. 基于联合稀疏性的多视全极化HRRP目标识别方法[J]. 电子与信息学报, 2016, 38(7): 1724–1730. doi: 10.11999/JEIT151019

    LIU Shengqi, ZHAN Ronghui, ZHAI Qinglin, et al. Multi-view polarization HRRP target recognition based on joint sparsity[J]. Journal of Electronics &Information Technology, 2016, 38(7): 1724–1730. doi: 10.11999/JEIT151019
    [11] 翟庆林, 刘盛启, 胡杰民, 等. 全极化雷达的多任务压缩感知目标识别方法[J]. 国防科技大学学报, 2017, 39(3): 144–150. doi: 10.11887/j.cn.201703022

    ZHAI Qinglin, LIU Shengqi, HU Jiemin, et al. Full-polarization radar target recognition of multitask compressive sensing[J]. Journal of National University of Defense Technology, 2017, 39(3): 144–150. doi: 10.11887/j.cn.201703022
    [12] 段佳, 邢孟道, 张磊, 等. 联合属性散射中心的极化目标重构新方法[J]. 西安电子科技大学学报: 自然科学版, 2014, 41(6): 18–24. doi: 10.3969/j.issn.1001-2400.2014.06.004

    DUAN Jia, XING Mengdao, ZHANG Lei, et al. Novel polarimetric target signal reconstruction method jointed with attributed scattering centers[J]. Journal of Xidian University, 2014, 41(6): 18–24. doi: 10.3969/j.issn.1001-2400.2014.06.004
    [13] DUAN Jia, ZHANG Lei, XING Mengdao, et al. Polarimetric target decomposition based on attributed scattering center model for synthetic aperture radar targets[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(12): 2095–2099. doi: 10.1109/LGRS.2014.2320053
    [14] CAMERON W L, YOUSSEF N N, and LEUNG L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 793–803. doi: 10.1109/36.499784
    [15] DENG Wanyu, ONG Y S, and ZHENG Qinghua. A fast reduced kernel extreme learning machine[J]. Neural Networks, 2016, 76: 29–38. doi: 10.1016/j.neunet.2015.10.006
    [16] ARTHUR D and VASSILVITSKII S. K-means++: The advantages of careful seeding[C]. The Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, USA, 2007: 1027–1035.
    [17] DUNGAN K E, AUSTIN C, NEHRBASS J, et al. Civilian vehicle radar data domes[C]. SPIE 7699, Algorithms for Synthetic Aperture Radar Imagery XVII, Orlando, USA, 2010: 76990P. doi: 10.1117/12.850151.
    [18] KROGAGER E. New decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525–1527. doi: 10.1049/el:19900979
    [19] ROBNIK-ŠIKONJA M and KONONENKO I. Theoretical and empirical analysis of ReliefF and RReliefF[J]. Machine Learning, 2003, 53(1): 23–69. doi: 10.1023/A:1025667309714
  • 期刊类型引用(1)

    1. 叶恺,禹卫东,王伟. 基于矩阵束方法的星载MEB SAR俯仰向DBF处理方法. 电子与信息学报. 2018(11): 2659-2666 . 百度学术

    其他类型引用(3)

  • 加载中
图(7) / 表(5)
计量
  • 文章访问数: 1550
  • HTML全文浏览量: 702
  • PDF下载量: 164
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-07-09
  • 修回日期:  2021-08-14
  • 网络出版日期:  2021-09-06
  • 刊出日期:  2021-12-28

目录

/

返回文章
返回