涡旋电磁波轨道角动量模态抗干扰性能分析

林屹峰 单明明 孔旭东 冯强 李龙

林屹峰, 单明明, 孔旭东, 等. 涡旋电磁波轨道角动量模态抗干扰性能分析[J]. 雷达学报, 2021, 10(5): 773–784. doi: 10.12000/JR21096
引用本文: 林屹峰, 单明明, 孔旭东, 等. 涡旋电磁波轨道角动量模态抗干扰性能分析[J]. 雷达学报, 2021, 10(5): 773–784. doi: 10.12000/JR21096
LIN Yifeng, SHAN Mingming, KONG Xudong, et al. Orbital angular momentum anti-interference properties analysis of electromagnetic vortex wave[J]. Journal of Radars, 2021, 10(5): 773–784. doi: 10.12000/JR21096
Citation: LIN Yifeng, SHAN Mingming, KONG Xudong, et al. Orbital angular momentum anti-interference properties analysis of electromagnetic vortex wave[J]. Journal of Radars, 2021, 10(5): 773–784. doi: 10.12000/JR21096

涡旋电磁波轨道角动量模态抗干扰性能分析

doi: 10.12000/JR21096
基金项目: 国家重点研发计划(2018YFA**263)
详细信息
    作者简介:

    林屹峰(1996–),男,广西人,西安电子科技大学电子工程学院在读硕士研究生。研究方向为阵列天线设计,电磁超表面理论与应用以及轨道角动量在无线通信中的应用

    单明明(1997–),女,江苏人,西安电子科技大学电子工程学院在读硕士研究生。研究方向为电磁超表面理论与设计,以及轨道角动量在无线通信中的应用

    孔旭东(1997–),男,甘肃人,西安电子科技大学电子工程学院在读硕士研究生。研究方向为有源反射超表面设计以及全息超表面设计

    冯 强(1992–),男,陕西人,博士,西安电子科技大学电子工程学院讲师。研究方向为电磁超材料理论与应用,阵列天线理论与设计,阵列信号处理,以及轨道角动量在无线通信中的应用

    李 龙(1977–),男,贵州人,博士,西安电子科技大学教授,博士生导师,教育部长江学者特聘教授,新世纪优秀人才,陕西省杰出青年基金、陕西青年科技奖获得者。主要研究方向为智能超材料、超材料天线与微波器件、无线能量传输与收集

    通讯作者:

    李龙 lilong@mail.xidian.edu.cn

  • 责任主编:沙威 Corresponding Editor: SHA Wei
  • 中图分类号: TN95

Orbital Angular Momentum Anti-interference Properties Analysis of Electromagnetic Vortex Wave

Funds: National Key R&D Program of China (2018YFA**263)
More Information
  • 摘要: 鉴于涡旋电磁波所体现出的独特空间电磁场分布特征,以及其携带的轨道角动量(OAM)在理论上所具有的无穷维度模态正交特性,涡旋电磁波在无线通信领域和雷达探测与成像领域均表现出重要的研究价值和应用潜力。该文主要从涡旋电磁波空间电磁场分布的角度以及OAM模态正交性保持的角度,重点对涡旋电磁波射频收发链路中OAM模态的抗干扰性能进行分析。在C波段分别设计了不同的平面阵列天线用来产生和接收携带有OAM模态为$\ell = + 1$$\ell = - 2$的涡旋电磁波束,并建立起涡旋电磁波的射频收发链路。通过引入一个喇叭天线作为干扰源,以相应涡旋电磁波束的OAM模态谱分布以及OAM模态正交性作为主要的分析依据,在不同干扰场景下抗干扰性对涡旋电磁波的收发射频链路的OAM模态性能进行仿真和分析。该文对设计的天线模型进行加工和测试,对涡旋电磁波射频收发链路中OAM模态抗干扰性能的分析,可以为涡旋电磁波在无线通信及雷达探测与成像等有关研究领域提供一些前瞻性的探索和设计上的指导。

     

  • 图  1  右旋圆极化天线单元结构图

    Figure  1.  Right-handed circularly polarized antenna unit structure diagram

    图  2  涡旋电磁波发射天线阵列,用于产生OAM模态值$\ell = + 1$

    Figure  2.  Designed antenna array for generating electromagnetic vortex beam with OAM mode $\ell = + 1$

    图  3  涡旋电磁波发射天线阵列,用于产生OAM模态值$\ell = - 2$

    Figure  3.  Designed antenna array for generating electromagnetic vortex beam with OAM mode $\ell = - 2$

    图  4  天线阵列产生涡旋电磁波的3D及2D方向图

    Figure  4.  Generated vortex beams’ 3D radiation pattern and 2D radiation pattern through the designed antenna array

    图  5  在观察面上由天线阵列仿真得到的涡旋电场幅度分布图与相位分布图

    Figure  5.  Simulated vortex electric field intensity distributions and phase distributions of OAM mode +1 and OAM mode –2 in the observation plane through the design antenna array

    图  6  OAM模态纯度随采样接收半径变化曲线图以及在固定采样接收半径为300 mm处的OAM模态纯度分布图

    Figure  6.  Curves of the OAM mode purity versus the sampling reception radius, and the OAM mode purity spectrum at the fixed sampling reception radius of 300 mm

    图  7  轨道角动量涡旋电磁波束抗干扰分析仿真模型示意图

    Figure  7.  Simulation model for electromagnetic vortex waves’ OAM mode ant-interference analysis

    图  8  干扰源位于不同偏转角度时仿真得到的涡旋电场幅度与相位分布变化图

    Figure  8.  Simulated vortex electric field distributions when the interference source is set at different deflection angles

    9  外部干扰源位于不同照射角度时OAM模态纯度随着采样接收半径变化的关系曲线图及在固定采样接收半径为300 mm处的OAM模态纯度谱分布图

    9.  Curves of the OAM mode purity versus the sampling reception radius when the interference source is located at different illumination angles, and the OAM mode purity spectrum at the fixed sampling reception radius of 300 mm

    图  10  不同OAM模态接收天线阵列模型

    Figure  10.  Reception antenna array model for different OAM modes

    图  11  天线阵列实物及测试场景

    Figure  11.  Antenna array prototype and the corresponding measurement environment

    图  12  不同OAM模态传输系数测试结果曲线图

    Figure  12.  Measured transmission coefficients of different OAM modes

    表  1  4.25 GHz右旋圆极化天线单元尺寸参数(单位:mm)

    Table  1.   Size parameters 4.25 GHz of the designed right-handed circularly polarized antenna unit (Unit: mm)

    ParameterValueParameterValue
    wp18.2Lur7.2
    Lp18.2Lf4.7
    wu7ws1.1
    Lul9
    下载: 导出CSV

    表  2  不同OAM模态涡旋波束收发射频链路的传输系数仿真结果(单位:dB)

    Table  2.   Simulated transmission coefficients of vortex beams RF transceiver link under different OAM modes (Unit: dB)

    Tilted angleOAM mode $\ell $ = +1OAM mode $\ell $ = –2
    MatchInterferenceMatchInterference
    15°–19.07–29.4–31.44–45.25
    30°–18.79–31.7–28.37–48.32
    45°–18.55–36.4–31.41–42.69
    下载: 导出CSV
  • [1] YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161
    [2] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185
    [3] WILLNER A E, WANG Jian, and HUANG Hao. A different angle on light communications[J]. Science, 2012, 337(6095): 655–656. doi: 10.1126/science.1225460
    [4] YUE Yang, HUANG Hao, AHMED N, et al. Reconfigurable switching of orbital-angular-momentum-based free-space data channels[J]. Optics Letters, 2013, 38(23): 5118–5121. doi: 10.1364/OL.38.005118
    [5] YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    [6] REN Yongxiong, LI Long, XIE Guodong, et al. Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 3151–3161. doi: 10.1109/TWC.2017.2675885
    [7] WILLNER A E and LIU Cong. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links[J]. Nanophotonics, 2020, 10(1): 225–233. doi: 10.1515/nanoph-2020-0435
    [8] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013
    [9] LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 711–714.
    [10] LIU Kang, CHENG Yongqiang, LI Xiang, et al. Microwave-sensing technology using orbital angular momentum: Overview of its advantages[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 112–118. doi: 10.1109/MVT.2018.2890673
    [11] JACKSON J D. Classical Electrodynamics[M]. New York: John Wiley & Sons, 1999.
    [12] THIDÉ B, TAMBURINI F, THEN H, et al. Angular momentum radio[C]. Proceedings of SPIE 8999, Complex Light and Optical Forces VIII, San Francisco, USA, 2014. doi: 10.1117/12.2041797.
    [13] ALLEN L. Orbital angular momentum: A personal memoir[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2087): 20160280. doi: 10.1098/rsta.2016.0280
    [14] PADGETT M J. Orbital angular momentum 25 years on [Invited][J]. Optics Express, 2017, 25(10): 11265–11274. doi: 10.1364/OE.25.011265
    [15] FRANKE-ARNOLD S, ALLEN L, and PADGETT M. Advances in optical angular momentum[J]. Laser & Photonics Reviews, 2008, 2(4): 299–313.
    [16] THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701
    [17] MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701
    [18] TRICHILI A, PARK K H, ZGHAL M, et al. Communicating using spatial mode multiplexing: Potentials, challenges, and perspectives[J]. IEEE Communications Surveys & Tutorials, 2019, 21(4): 3175–3203.
    [19] 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091

    GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091
    [20] ZHANG Kuang, WANG Yuxiang, YUAN Yueyi, et al. A review of orbital angular momentum vortex beams generation: From traditional methods to metasurfaces[J]. Applied Sciences, 2020, 10(3): 1015. doi: 10.3390/app10031015
    [21] TAMBURINI F, MARI E, SPONSELLI A, et al. Encoding many channels on the same frequency through radio vorticity: First experimental test[J]. New Journal of Physics, 2012, 14(3): 033001. doi: 10.1088/1367-2630/14/3/033001
    [22] TAMBURINI F, THIDÉ B, BOAGA V, et al. Experimental demonstration of free-space information transfer using phase modulated orbital angular momentum radio[J/OL]. https://arxiv.org/abs/1302.2990v2, 2013.
    [23] CHEN Rui, DU Hanyu, and LI Jiandong. Indoor communications with OAM array[C]. 2020 IEEE International Conference on Communications Workshops, Dublin, Ireland, 2020: 1–5.
    [24] ZHOU Jiatong, CHENG Wenchi, and LIANG Liping. OAM transmission in sparse multipath environments with fading[C]. The ICC 2020 - 2020 IEEE International Conference on Communications, Dublin, Ireland, 2020: 1–6.
    [25] LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006
    [26] LIANG Liping, CHENG Wenchi, ZHANG Wei, et al. Joint OAM multiplexing and OFDM in sparse multipath environments[J]. IEEE Transactions on Vehicular Technology, 2020, 69(4): 3864–3878. doi: 10.1109/TVT.2020.2966787
    [27] SHU Jingyue, DENG Li, LI Shufang, et al. Use OFDM in OAM communication to redcuce multi-path effects[C]. The 3rd International Conference on Electronic Information and Communication Technology, Shenzhen, China, 2020: 54–56.
    [28] FENG Qiang, LIANG Jun, and LI Long. Variable scale aperture sampling reception method for multiple orbital angular momentum modes vortex wave[J]. IEEE Access, 2019, 7: 158847–158857. doi: 10.1109/ACCESS.2019.2950112
    [29] FENG Qiang, XUE Hao, LIU Yongjie, et al. Multiple orbital angular momentum vortex electromagnetic waves multiplex transmission and demultiplex reception analysis[C]. 2018 IEEE International Conference on Computational Electromagnetics, Chengdu, China, 2018: 1–3.
    [30] KAN H K and WATERHOUSE R B. Low cross-polarised patch antenna with single feed[J]. Electronics Letters, 2007, 43(5): 261–262. doi: 10.1049/el:20070224
    [31] TONG K F and WONG T P. Circularly polarized U-slot antenna[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(8): 2382–2385. doi: 10.1109/TAP.2007.901930
    [32] LI Long and ZHOU Xiaoxiao. Mechanically reconfigurable single-arm spiral antenna array for generation of broadband circularly polarized orbital angular momentum vortex waves[J]. Scientific Reports, 2018, 8(1): 5128. doi: 10.1038/s41598-018-23415-1
    [33] LIANG Jun, JING Zhongliang, FENG Qiang, et al. Synthesis and measurement of a circular-polarized deflection OAM vortex beam with sidelobe suppression array[J]. IEEE Access, 2020, 8: 89143–89151. doi: 10.1109/ACCESS.2020.2993877
    [34] HU Yiping, ZHENG Shilie, ZHANG Zhuofan, et al. Simulation of orbital angular momentum radio communication systems based on partial aperture sampling receiving scheme[J]. IET Microwaves, Antennas & Propagation, 2016, 10(10): 1043–1047.
    [35] ZHENG Shilie, HUI Xiaonan, ZHU Jiangbo, et al. Orbital angular momentum mode-demultiplexing scheme with partial angular receiving aperture[J]. Optics Express, 2015, 23(9): 12251–12257. doi: 10.1364/OE.23.012251
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  2131
  • HTML全文浏览量:  1080
  • PDF下载量:  228
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 修回日期:  2021-08-28
  • 网络出版日期:  2021-09-28
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回