基于半监督空间-通道选择性卷积核网络的极化SAR图像地物分类

王睿川 王岩飞

王睿川, 王岩飞. 基于半监督空间-通道选择性卷积核网络的极化SAR图像地物分类[J]. 雷达学报, 2021, 10(4): 516–530. doi: 10.12000/JR21080
引用本文: 王睿川, 王岩飞. 基于半监督空间-通道选择性卷积核网络的极化SAR图像地物分类[J]. 雷达学报, 2021, 10(4): 516–530. doi: 10.12000/JR21080
WANG Ruichuan and WANG Yanfei. Terrain classification of polarimetric SAR images using semi-supervised spatial-channel selective kernel network[J]. Journal of Radars, 2021, 10(4): 516–530. doi: 10.12000/JR21080
Citation: WANG Ruichuan and WANG Yanfei. Terrain classification of polarimetric SAR images using semi-supervised spatial-channel selective kernel network[J]. Journal of Radars, 2021, 10(4): 516–530. doi: 10.12000/JR21080

基于半监督空间-通道选择性卷积核网络的极化SAR图像地物分类

doi: 10.12000/JR21080
基金项目: 国家重点研发计划(2017YFB0503001)
详细信息
    作者简介:

    王睿川(1994–),男,四川绵阳人,中国科学院空天信息创新研究院博士研究生,研究方向为SAR和极化SAR图像分割和解译、目标检测和识别等

    王岩飞(1963–),男,辽宁沈阳人,中国科学院空天信息创新研究院研究员,博士生导师,主要研究方向为微波成像雷达理论方法及应用、数字信号处理等

    通讯作者:

    王岩飞 yfwang@mail.ie.ac.cn

  • 责任主编:邹焕新 Corresponding Editor: ZOU Huanxin
  • 中图分类号: TN958

Terrain Classification of Polarimetric SAR Images Using Semi-supervised Spatial-channel Selective Kernel Network

Funds: The National Key Research and Development Program (2017YFB0503001)
More Information
  • 摘要: 针对极化合成孔径雷达(极化SAR)图像地物分类中标注样本数量少的问题,该文提出一种基于空间-通道选择性卷积核全卷积网络(SCSKFCN)和预选-联合优化半监督学习(SPUO)的极化SAR图像地物分类方法。SCSKFCN通过使用空间和通道注意力机制,对不同感受野的特征进行自适应加权融合,有效提升了模型的分类性能。SPUO能够高效地利用标注样本,挖掘无标注样本中蕴含的信息。它采用K-Wishart距离进行样本预选并生成伪标签,然后在联合优化阶段使用真实标注样本和伪标注样本同时对模型进行优化。在模型优化过程中,SPUO对伪标注样本进行两步验证并筛选可靠的伪标注样本参与优化。实验结果表明,该方法能够在只使用少量标注样本的条件下实现高精度、高效率的极化SAR图像地物分类。

     

  • 图  1  SKNet模块与空间注意力模块

    Figure  1.  SKNet module and spatial attention module

    图  2  空间-通道选择性卷积核(SCSK)单元

    Figure  2.  Spatial-Channel Selective Kernel (SCSK) unit

    图  3  空间-通道选择性卷积核全卷积网络(SCSKFCN)的架构

    Figure  3.  Architecture of Spatial-Channel Selective Kernel Fully Convolutional Network (SCSKFCN)

    图  4  联合优化运行流程图

    Figure  4.  Flowchart of united optimization

    图  5  预选-联合优化半监督学习方法流程图

    Figure  5.  The framework of semi-supervised preselection and united optimization method

    图  6  Flevoland图像分类结果图

    Figure  6.  Classification results of Flevoland image with different methods

    图  7  Oberpfaffenhofen图像分类结果图

    Figure  7.  Classification results of Oberpfaffenhofen image with different methods

    图  8  预测概率验证阈值$\delta $对性能的影响

    Figure  8.  Impact of different values of $\delta $

    图  9  不同训练集大小的影响

    Figure  9.  Impact of different sizes of training set

    图  10  SCSK单元中卷积核尺寸组合的影响

    Figure  10.  Impact of different combinations of kernel sizes in SCSK unit

    图  11  不同结构的SCSK单元的组成部分

    Figure  11.  Building blocks of different architectures of SCSK unit

    图  12  不同结构的SCSK单元的影响

    Figure  12.  Impact of different architectures of SCSK unit

    图  13  SPUO中使用不同距离参数r的影响

    Figure  13.  Impact of different values of r in SPUO

    图  14  SPUO中判断准则使用Wishart距离和K-Wishart距离的影响

    Figure  14.  Impact of using Wishart distance and K-Wishart distance as criterion in SPUO

    表  1  Flevoland图像分类结果表(%)

    Table  1.   Classification accuracy comparison on Flevoland image (%)

    Method12345678910
    CNN99.3093.3692.2291.5993.5692.7995.7397.9397.5498.59
    PCN92.1195.7698.7196.4991.0796.2797.5296.8796.1392.23
    R5FCN99.8698.3299.3296.2793.0392.1296.0097.4598.1598.39
    SKFCN99.8997.3999.6098.5595.4297.2896.8198.8097.2898.98
    SCSKFCN99.9698.6099.7598.7496.4797.6097.7398.9997.8998.79
    Proposed99.9898.8799.9199.4498.9398.0799.0399.7897.4599.17
    Method1112131415OAKappaTraining (s)Test (s)
    CNN92.2596.6998.8496.7865.4295.1994.76247.73.1
    PCN96.6296.3299.0598.0681.2696.3696.04216.81.2
    R5FCN97.1297.6899.6199.0886.1297.4197.1889.30.9
    SKFCN99.1599.0899.6199.4683.7798.4698.32105.61.0
    SCSKFCN99.4799.4399.6499.7382.6598.8098.70112.41.1
    Proposed99.5699.6899.8999.5090.5199.2499.18(19.1)+132.81.1
    *注:Water(1); Stembeans(2); Forest(3); Potatoes(4); Grasses(5); Beet(6); Rapeseed(7); Peas(8); Lucerne(9); Bare soil(10); Wheat2(11); Wheat1(12); Wheat3(13); Barley(14); Building(15); Proposed表示SCSKFCN-SPUO方法
    下载: 导出CSV

    表  2  Oberpfaffenhofen图像分类结果表(%)

    Table  2.   Classification accuracy comparison on Oberpfaffenhofen image (%)

    ClassCNNARCNR5FCNSKFCNSCSKFCNProposed
    Wood land95.0296.1394.9796.2596.6897.18
    Open areas97.1797.3297.5197.7697.9998.80
    Built-up areas86.4293.9290.4794.2794.6494.86
    OA94.0996.2595.2796.6096.9097.51
    Kappa89.8893.6491.9594.2394.7495.76
    Training (s)225.9189.6120.1137.2159.2(50.3)+173.6
    Test (s)4.61.61.51.71.91.9
    *注:Proposed表示SCSKFCN-SPUO方法
    下载: 导出CSV
  • [1] LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton, USA, CRC Press, 2017: 1–10.
    [2] LEE J S, GRUNES M R, AINSWORTH T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5): 2249–2258. doi: 10.1109/36.789621
    [3] WANG Haipeng, XU Feng and JIN Yaqiu. A review of polsar image classification: From polarimetry to deep learning[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3189–3192. doi: 10.1109/IGARSS.2019.8899902.
    [4] CLOUDE S R and POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68–78. doi: 10.1109/36.551935
    [5] FREEMAN A and DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 963–973. doi: 10.1109/36.673687
    [6] DEMPSTER A P, LAIRD N M, and RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological) , 1977, 39(1): 1–38. doi: 10.1111/j.2517-6161.1977.tb01600.x
    [7] FUKUDA S and HIROSAWA H. Support vector machine classification of land cover: Application to polarimetric SAR data[C]. IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium, Sydney, Australia, 2001: 187–189. doi: 10.1109/IGARSS.2001.976097.
    [8] ZHANG Lamei, SUN Liangjie, and MOON W M. Polarimetric SAR image classification based on contextual sparse representation[C]. IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 1837–1840. doi: 10.1109/IGARSS.2015.7326149.
    [9] ERSAHIN K, CUMMING I G, and WARD R K. Segmentation and classification of polarimetric SAR data using spectral graph partitioning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1): 164–174. doi: 10.1109/TGRS.2009.2024303
    [10] DU Peijun, SAMAT A, WASKE B, et al. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 38–53. doi: 10.1016/j.isprsjprs.2015.03.002
    [11] LEE J S, GRUNES M R, POTTIER E, et al. Unsupervised terrain classification preserving polarimetric scattering characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722–731. doi: 10.1109/TGRS.2003.819883
    [12] LEE J S, SCHULER D L, LANG R H, et al. K-distribution for multi-look processed polarimetric SAR imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 1994: 2179–2181. doi: 10.1109/IGARSS.1994.399685.
    [13] DOULGERIS A P, ANFINSEN S N, and ELTOFT T. Classification with a non-Gaussian model for PolSAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 2999–3009. doi: 10.1109/TGRS.2008.923025
    [14] DOULGERIS A P. An automatic U-distribution and Markov random field segmentation algorithm for PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1819–1827. doi: 10.1109/TGRS.2014.2349575
    [15] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791
    [16] SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [17] ZHOU Yu, WANG Haipeng, XU Feng, et al. Polarimetric SAR image classification using deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1935–1939. doi: 10.1109/LGRS.2016.2618840
    [18] CHEN Siwei and TAO Chensong. PolSAR image classification using polarimetric-feature-driven deep convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(4): 627–631. doi: 10.1109/LGRS.2018.2799877
    [19] CHEN Siwei, LI Yongzhen, DAI Dahai, et al. Uniform polarimetric matrix rotation theory[C]. IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013: 4166–4169. doi: 10.1109/IGARSS.2013.6723751.
    [20] MOHAMMADIMANESH F, SALEHI B, MAHDIANPARI M, et al. A new fully convolutional neural network for semantic segmentation of polarimetric SAR imagery in complex land cover ecosystem[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 151: 223–236. doi: 10.1016/j.isprsjprs.2019.03.015
    [21] LIU Xu, JIAO Licheng, TANG Xu, et al. Polarimetric convolutional network for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3040–3054. doi: 10.1109/TGRS.2018.2879984
    [22] LI Yangyang, CHEN Yanqiao, LIU Guangyuan, et al. A novel deep fully convolutional network for PolSAR image classification[J]. Remote Sensing, 2018, 10(12): 1984. doi: 10.3390/rs10121984
    [23] CHEN Yanqiao, LI Yangyang, JIAO Licheng, et al. Adversarial reconstruction-classification networks for PolSAR image classification[J]. Remote Sensing, 2019, 11(4): 415. doi: 10.3390/rs11040415
    [24] GENG Jie, MA Xiaorui, FAN Jianchao, et al. Semisupervised classification of polarimetric SAR image via superpixel restrained deep neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 122–126. doi: 10.1109/LGRS.2017.2777450
    [25] BI Haixia, SUN Jian, and XU Zongben. A graph-based semisupervised deep learning model for PolSAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2116–2132. doi: 10.1109/TGRS.2018.2871504
    [26] XIE Wen, MA Gaini, ZHAO Feng, et al. PolSAR image classification via a novel semi-supervised recurrent complex-valued convolution neural network[J]. Neurocomputing, 2020, 388: 255–268. doi: 10.1016/j.neucom.2020.01.020
    [27] HUA Wenqiang, WANG Shuang, XIE Wen, et al. Dual-channel convolutional neural network for polarimetric SAR images classification[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 3201–3204. doi: 10.1109/IGARSS.2019.8899103.
    [28] LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, USA, 2019: 510–519. doi: 10.1109/CVPR.2019.00060.
    [29] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]. 15th European Conference on Computer Vision-ECCV 2018, Munich, Germany, 2018: 3–19. doi: 10.1007/978-3-030-01234-2_1.
    [30] PARK J, WOO S, LEE J Y, et al. BAM: Bottleneck attention module[J]. arXiv preprint arXiv: 1807.06514, 2018.
    [31] XU Bing, WANG Naiyan, CHEN Tianqi, et al. Empirical evaluation of rectified activations in convolutional network[J]. arXiv preprint arXiv: 1505.00853, 2015.
    [32] MAAS A L, HANNUN A Y, and NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]. The 30th International Conference on Machine Learning, Atlanta, USA, 2013.
    [33] YU F and KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv: 1511.07122, 2015.
    [34] HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372
    [35] LI Mu. Efficient mini-batch training for stochastic optimization[C]. The 20th ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, 2014: 661–670.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  1445
  • HTML全文浏览量:  661
  • PDF下载量:  155
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-06-22
  • 网络出版日期:  2021-08-28

目录

    /

    返回文章
    返回