-
摘要: 涡旋电磁波,因携带有轨道角动量(OAM),从而具有螺旋状的波前结构。相比于平面波,涡旋电磁波在进行雷达成像时,回波信号中将包含有目标的方位向信息,所以这种电磁波在雷达探测和成像领域中展现出了巨大的应用潜力,有望成为新体制雷达的发展方向。该文主要介绍近年来涡旋雷达成像技术的研究进展,首先介绍了涡旋电磁波的特征和使用均匀圆形阵列进行雷达成像的原理,然后按照涡旋雷达成像模型、涡旋雷达凝视成像算法和涡旋雷达运动成像3种研究方向综述了涡旋雷达成像技术的发展历程和研究现状。最后,对涡旋电磁波在雷达成像中的发展前景进行了展望,并指出未来涡旋雷达成像发展的一些关键的科学问题和趋势。Abstract: Vortex electromagnetic wave carries the Orbital Angular Momentum (OAM), and thus has a spiral wavefront structure, which contains the azimuthal information of the target in the echo signal when performing radar imaging compared with planar waves. Hence, this kind of electromagnetic wave shows great potential for various applications in the field of radar detection and imaging, and it is expected to become the development direction of new-system radars. This paper describes in detail the research progress in vortex radar imaging technology in recent years. First, the characteristics of the vortex electromagnetic wave and the principles of imaging using a uniform circular array are introduced. Then the paper reviews the developmental history and research status of vortex radar imaging technology, according to three research directions: vortex radar imaging model, vortex radar gaze imaging algorithm, and vortex radar motion imaging. Finally, the prospects for the development of vortex radar imaging have been presented, along with the key scientific issues and trends for the future developments of vortex radar imaging.
-
1. 引言
随着雷达性能的提升,其在区域防护中逐渐占据核心地位,被广泛应用于军事和民用等多个领域。其中海面微弱目标探测一直是雷达探测领域的重要难题之一,传统的研究手段通常是对大量观测到的海杂波进行幅度统计分析,进而确定虚警概率下的检测门限[1]。然而海杂波的统计特征并不稳定且通常情况下其能量远大于目标回波,给微弱目标检测带来极大的困难。
海面微弱目标受海浪影响,其运动表现出非匀速性,此时目标信号和海杂波都是非平稳信号,无论时域分析还是频域分析都不能完整地呈现海面回波的特性。为了研究这类信号,研究者相继引入微多普勒分析、Hough变换、分数阶傅利叶变换、极化检测、机器学习和时频分析等方法以检测海面微弱目标[2–8]。其中时频分析可以显示目标的瞬时运动特性,是检测海面微弱目标的有力工具[9]。文献[10,11]分析了高频雷达下海面机动目标的各种时频分布,指出在时频域进行目标检测的可能性。文献[12]应用从海面回波的Hilbert-Huang变换中提取的固有模态能量熵特征进行目标检测。文献[13]针对高频雷达下变速巡航目标,应用自适应chirplet分解和谱相减方法压缩海杂波。文献[14]根据维格纳-威尔分布(Wigner-Ville Distribution, WVD) 逆变换提出基于S-方法(S-Method, SM)的信号分解方法,并应用该方法检测海面目标。
本文根据海面目标回波的距离维相关性,提出一种基于空域联合时频分解的海面微弱目标检测方法。在相邻的距离单元内,目标信号的相关性明显强于海杂波。本文首先提出了互S-方法(Cross S-Method, CSM)计算得到两相邻距离单元的联合时频分布,近似等于两回波信号的目标分量的CSM和海杂波信号的CSM之和。利用互维格纳-威尔分布(Cross Wigner-Ville Distribution, CWVD)逆变换实现两距离单元信号的联合分解并从分解分量中通过特定特征找出目标信号实现目标检测。仿真和实测数据都验证了该方法的有效性。
2. 海面回波信号分析
海杂波主要来源于波浪运动。海面波浪根据能量和波长大致可以分为两类:一种是由海面不定向微风产生的能量较弱波长较短的张力波,另一类是能量很强波长较长的重力波。重力波可以进一步细分为较小波浪和很大波浪。较小波浪是一些由当地阵风产生的很陡的短峰波集合。很大波浪的形状近似为正弦信号,它包含一些由固定强风产生的波长很长的波浪[8]。图1为一段海面回波数据的时间-距离图,图中明亮的斜线表示波浪经过的路径。该数据由南非科学和工作研究委员会(Council for Scientific and Industrial Research, CSIR)通过一部X波段雷达测得,雷达具体参数见表1。
表 1 实测海面回波的参数Table 1. Parameters of measured sea surface echo参数 值 雷达波段 X 雷达工作带宽(MHz) 10 采样距离(m) 3000.3~3465.3 距离单元数目 31 每个距离单元的采样点 33001 有目标的距离单元 11 受目标影响的距离单元 9~14 距离分辨率 15 m, 15 m采样 雷达高度(m) 56 脉冲重复频率PRF(Hz) 2500 方位角(°N) 165.22 俯仰角(°) 1.187 风向(°N) 191.26 风速(m/s) 9 波浪方向(°N) 160 主要波浪高度(m) 2.88 在雷达照射区域中有一小型快艇,位于第11距离单元。目标尺寸较小,理论上位于一个距离单元内,但由于其阻挡了海浪的运动,使其在雷达回波中能够影响较大的区域,表现为在第9~14距离单元内都会出现目标回波。图2为第9~14距离单元回波的时频分布,从中可以直观地看到目标是在频率维聚集性非常好的曲线,且目标信号在时频域内与海杂波距离较远。利用滤波器将海面目标回波与海杂波分离,进而分别计算相邻距离单元内目标信号和海杂波的相关系数:目标信号的平均相关系数为0.9851,而海杂波的平均相关系数为0.6694,所以目标信号与海杂波的空间相关性是不同的。这是因为海杂波的相关距离较近,且内部变化复杂,故相关系数较小。
基于目标信号与海杂波在空间维相关性的不同,本文提出了一种基于空域联合时频分解的海面微弱目标检测方法。该方法同时利用两个相邻距离单元的回波进行联合时频分解,进而通过特征从分解分量中找出目标信号,实现目标检测。
3. 海面目标检测方法
本文提出了能够体现两个相邻距离单元回波数据相关性的CSM方法。两个信号的CSM通过合适的频率窗可以抑制两信号分量中支撑区域较远分量的交叉项,保留两信号中位于同一支撑区域中相应分量的CSM。在海面回波中,由于目标回波对于波浪运动的影响和海杂波的时空相关性,相邻或靠近的距离单元间的回波信号具有相似的时频结构,即两个距离单元回波中的目标信号位于相同的时频支撑区域,海杂波也位于同一时频支撑区域。由于目标信号通常是一条在时频面非常聚集的曲线,而海杂波分布在一小片时频区域内,所以两信号的CSM可以在聚集目标能量的同时抑制海杂波。
3.1 空域信号的联合时频表示
将接收到两个相邻距离单元内的回波信号标记为
x(n) 和y(n) ,长度为N 点。应用与回波信号长度相同的矩形窗实现的短时傅利叶变换(Short Time Fourier Transform, STFT)可以表示为STFTx(n,k)=N/2−1∑m=−N/2x(n+m)e−j2πNmk (1) STFTy(n,k)=N/2−1∑m=−N/2y(n+m)e−j2πNmk (2) 此时,可以利用两信号的STFT可以构造它们的CWVD,
CWVDx,y(n,k)=1NN/2−1∑l=−N/2STFTx(n,k+l)⋅STFT∗y(n,k−l) (3) 对两信号的CWVD中引入一频率窗
p(l) ,可以得到两信号的CSM,即CSMx,y(n,k)=1NN/2−1∑l=−N/2p(l)STFTx(n,k+l)⋅STFT∗y(n,k−l) (4) 其中,
p(l)={1,|l|≤L0,|l|>L,L<N/2 (5) 信号的CSM可以改写成另外一种形式,
CSMx,y(n,k)=1NL∑i=−LSTFTx(n,k+i)⋅STFT∗y(n,k−i) (6) 由于信号的SM近似等于信号的WVD[14],同理,两信号的CSM近似等于两信号的CWVD。基于式(6),两相邻距离单元回波信号CSM的实现方式可以通过式(7)表示
CSMx,y(n,k)=STFTx(n,k)STFT∗y(n,k)+L∑i=1[STFTx(n,k+i)⋅STFT∗y(n,k−i)+STFTx(n,k−i)⋅STFT∗y(n,k+i)] (7) 通常情况下,海面回波的成份非常复杂,包含很多分量。假设两相邻距离单元内的回波信号具有如下形式
x(n)=M∑i=1xi(n)y(n)=M∑i=1yi(n)} (8) 其中,
xi(n) 和yi(n) 拥有相同的时频支撑区域Di(n,k),i=1,2,···,M ,且支撑区域满足Di(n,k)∩ Dj(n,k)=ϕ,i≠j 。选择一个合适的窗函数p(l) ,x(n) 和y(n) 的CSM可近似为相应分量的CWVD,CWVDxi,yi(n,k),i=1,2,···,M 之和,即CSMx,y(n,k)≈M∑i=1CWVDxi,yi(n,k) (9) 图3为在
L=4,M=512 参数下相邻两个距离单元的回波信号的时频表示。图3(a)和图3(b)分别给出了两个信号的SM表示,从图中可以看到两信号中都包含大能量的海杂波和小能量的目标信号。两图具有相同的结构:目标信号与海杂波信号分别位于相同的时频支撑区域内。通过CSM计算两回波信号的联合时频分布,结果如图3(c)所示。从图中可以看出,相邻距离单元回波信号的CSM等于两信号中目标信号的CSM和海杂波信号的CSM之和,且目标回波依然表现出较高的时频聚集性。3.2 CWVD逆变换[15]
假设信号
x(n) 和y(n) 是单分量信号,将它们分别表示成列向量x=[x1···xn···xN]T 和y=[y1···yn ···yN]T 。两信号的CWVD为CWVDx,y(n,k)=2∑mFn(m)e−j2πN2mk (10) 其中,核函数
Fn(m) 表示Fn(m)=xn+my∗n−m (11) 其中,
(⋅)∗ 为共轭操作。令c=n+m, d=n−m ,可以得到1≤c≤N ,1≤d≤N 。当两个信号的CWVD已知,那么核函数
Fn(m) 的矩阵形式ˆFn(m) 可以通过1维逆离散傅利叶变换得到ˆFn(m)=12N∑kCWVD(n,k)ej2πN2mk (12) 考虑向量
x 和y 的互相关矩阵R ,它的元素为Ra,b=xay∗b ,其中1≤a≤N 和1≤b≤N 。可以轻易地发现ˆFn(m) 中的所有非零元素都包含在矩阵R 中,但位置不同。ˆFn(m) 的第n 维元素的下标和为2n ,而这些元素分布在矩阵R 的第2n−1 维辅对角线上。因此,可以将ˆFn(m) 的第n 维中所有非零元素放置在一个零矩阵的第2n−1 维辅对角线上,由此可得ˆR={R,a+b=2n0,a+b=2n−1 (13) 对构造矩阵
ˆR 进行奇异值分解可以得到ˆR=UΛVH=N∑i=1λiuivHi (14) 其中,
λi 表示奇异值,ui 和vi 分别表示酉矩阵U 和V 的列向量,(⋅)H 为厄米特转置符号。经过计算可以得到只有两个奇异值不为0,即
ˆR=λ1x1yH1+λ2x2yH2 (15) 其中,
λ1,λ2 为常数且满足λ1≈λ2 ,λ1+λ2=‖x‖2‖y‖2 (16) 最终可得合成信号
ˆx=x1+x2ˆy=y1+y2} (17) 合成信号满足
WVDˆx(n,k)≡WVDˉx(n,k)WVDˆy(n,k)≡WVDˉy(n,k)CWVDˆx,ˆy(n,k)≡CWVDˉx,ˉy(n,k)} (18) 其中,
ˉx=x/Ex ,ˉy=y/Ey ,Ex 和Ey 分别为信号x(n) 和y(n) 的能量。当信号
x(n) 和y(n) 是多分量信号,如式(8)所示。对式(9)所示的CSM进行CWVD逆变换可以得到ˆR=M∑i=1λ1,ix1,iyH1,i+λ2,ix2,iyH2,i (19) ˆxi=x1,i+x2,iˆyi=y1,i+y2,i} (20) 所以,将CWVD逆变换应用于海面回波的CSM,可以实现空域 (不同距离单元)信号联合时频分解。
3.3 海面目标检测方法
基于CSM方法和CWVD逆变换,提出一种海面目标检测方法,其实现过程如下:
步骤 1 计算两个相邻距离单元回波信号的CSM,其中L=4;
步骤 2 利用CWVD逆变换实现两个距离单元回波信号的联合时频分解得到[15]:
x(n)=M′∑i=1ˆxi(n) (21) y(n)=M′∑i=1ˆyi(n) (22) 其中,
ˆxi(n) 与ˆyi(n) 具有相同的时频支撑区域。ˆxi(n) 可能与式(8)中的xi(n) 相等,也可能是xi(n) 的一部分,与窗长的选择有关。步骤 3 对分解得到的分量进行联合特征提取,并以此作为检测统计量进行目标检测。
海面目标回波通常是一个调频信号,所以其时频聚集程度远大于海杂波。将两距离单元对应分解分量最大值的平方与它们均值之比定义为检测统计量,即
Ci=N(maxn,k(CSMˆxi,ˆyi(n,k)))2∑n∑kCSMˆxi,ˆyi(n,k) (23) 该检测统计量能够表示信号的联合时频聚集性。分解所得的信号分量可以通过式(24)判断
{H1:Ci≥P,目标分量H0:Ci<P,海杂波分量 (24) 其中,
P 为时频聚集性门限,通过蒙特卡罗方法得到。具体算法流程图如图4所示。4. 实验结果与分析
构造一些含微弱目标的海面回波信号:将实测数据中不受目标影响的距离单元内的海杂波数据分成若干个长为512点的小数据块,应用蒙特卡罗方法对各小段海杂波应用本文方法进行分解和检测,进而根据虚警率6.6×10–4设定检测门限,然后在每个小数据块中加入一个微弱目标信号。为了使信号能够代表匀速运动目标和加速运动目标,将信号设为幅度是高斯函数的线性调频信号
S(n)=b⋅e−π((n−200)/400)2⋅ej2π(0.00005n2) (25) 其中,
b 是一个幅度参数用来调整信杂比(SCR),0≤n≤511 。目标回波信号的频率为0~125 Hz的扫频信号,且目标的初始径向速度为0.13m/s ,加速度为3.14m/s2 。因而在时频域内,目标信号与海杂波非常靠近或部分重叠。图5(a)为基于CSIR数据在SCR=–7 dB时的目标检测ROC(Receiver Operating Curves)曲线。从中可以看出所提方法比基于S-方法分解[14]和自适应归一化匹配滤波器(Adaptive Normalized Matched Filter, ANMF)[16]的目标检测方法效果更好。图5(b)为基于IPIX数据[17]的检测结果。从中可以看出所提方法性能优于传统的基于海杂波统计特性的目标检测方法。另外,对比于基于1个距离单元回波SM的方法,本方法的检测性能也有一定程度的提高,这是因为两个距离单元回波的联合处理降低了海杂波的相关性。
利用实测数据验证所提的海面目标检测方法。对图3中的回波信号进行联合时频分解并利用检测统计量从分解分量中找出目标信号。其CSM分布显示在图6中。从中可以看出目标信号以3.56 m/s的速度远离雷达。
5. 结束语
海面目标的存在会影响多个雷达距离单元,相邻雷达距离单元回波的联合时频分布表现出与单个距离单元回波信号的时频分布相似的特征。本文提出一种两距离单元信号的联合时频分布方法——互SM,可以近似为两信号中相关分量的CWVD之和。利用CWVD逆变换实现两个距离单元回波信号的联合时频分解,最后利用分解分量的联合时频聚集性从分解分量的挑选出目标信号。本文提出的基于空域联合时频分解的海面微弱目标检测方法不仅可以快速的实现目标检测,还能够提出目标信号的运动特征。对包含仿真目标与实际目标的海面回波数据的检测结果表明,本文方法可以从海面回波中检测出微弱目标,并且能够得到目标的运动特性。
针对编队目标,即波束照射区间会出现多个目标的情况,通常情况下目标都是以相同的速度运动,此时目标检测算法同样适用。当目标间相对速度较大时,可以将两个目标通过信号分解方法分解出来,实现目标检测的同时进行目标数目估计;当目标相对速度较小时,在相对较短的时间内(约0.2 s),目标不大可能出现明显机动,所以将回波信号建模成谐波信号是合理的。通过调整步长L,同样可以实现信号分离而不产生交叉项,所以该方法同样适用于多目标情况。
对于高速运动目标,如巡航导弹等,由于目标的高速运动,有可以会造成距离徙动现象,给目标检测带来困难,一方面可以通过减小积累时间、提高采样频率的方法来减小距离徙动造成的影响,另一方面也可以利用距离走动校正方法来消除距离徙动,实现目标信号长时间积累。本方法的下一步研究工作将集中在会产生距离徙动的高速运动目标检测方面。
-
表 1 已报道的涡旋雷达成像模型的性能
Table 1. Performance of reported vortex radar imaging models
文献 成像模型 时间(年) 电磁波的发送形式 电磁波的接收形式 达到最大分辨率需要
发送电磁波的次数方位向分辨
率ρφ (rad)文献[60] MIMO 2013 UCA发送整数阶的OAM态为
α的涡旋电磁波UCA使用α整数阶OAM接收 N π/N 文献[64] 2020 UCA发送整数阶的OAM态为
α的涡旋电磁波UCA使用β整数阶OAM接收 N 文献[32] MISO 2014 UCA发送整数阶的OAM态为
α的涡旋电磁波单个天线接收 N 2π/N 文献[33] 2020 UCA发送整数阶的OAM态为
±α的涡旋电磁波单个天线接收 (N+1)/2 文献[35] 2021 UCA发送间隔为Δα分数阶的
涡旋电磁波单个天线接收 N/Δα 文献[34] SIMO 2018 单个天线发送平面波 UCA使用α整数阶OAM接收 1 2π/N -
[1] AUSHERMAN D A, KOZMA A, WALKER J L, et al. Developments in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, AES-20(4): 363–400. doi: 10.1109/TAES.1984.4502060 [2] 江涛, 李敏慧, 刘瑾. 高分辨率SAR综合电子设备技术研究[J]. 现代雷达, 2017, 39(11): 7–10. doi: 10.16592/j.cnki.1004-7859.2017.11.002JIANG Tao, LI Minhui, and LIU Jin. A study on synthetic electronic instrument of high resolution SAR[J]. Modern Radar, 2017, 39(11): 7–10. doi: 10.16592/j.cnki.1004-7859.2017.11.002 [3] 朱晓秀, 胡文华, 郭宝锋. 基于压缩感知理论的稀疏孔径ISAR成像[J]. 现代雷达, 2018, 40(10): 18–22. doi: 10.16592/j.cnki.1004-7859.2018.10.005ZHU Xiaoxiu, HU Wenhua, and GUO Baofeng. ISAR imaging by exploiting sparse apertures based on compressive sensing[J]. Modern Radar, 2018, 40(10): 18–22. doi: 10.16592/j.cnki.1004-7859.2018.10.005 [4] MOHAMMADI S M, DALDORFF L K S, BERGMAN J E S, et al. Orbital angular momentum in radio—A system study[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(2): 565–572. doi: 10.1109/TAP.2009.2037701 [5] WILLNER A E, HUANG H, YAN Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66–106. doi: 10.1364/AOP.7.000066 [6] ALLEN L, BEIJERSBERGEN M W, SPREEUW R, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian Laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185 [7] GUO Zhongyi, QU Shiliang, and LIU Shutian. Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses[J]. Optics Communications, 2007, 273(1): 286–289. doi: 10.1016/j.optcom.2006.12.023 [8] CHENG Mingjian, GUO Lixin, LI Jiangting, et al. Propagation properties of an optical vortex carried by a Bessel-Gaussian beam in anisotropic turbulence[J]. Journal of the Optical Society of America A, 2016, 33(8): 1442–1450. doi: 10.1364/JOSAA.33.001442 [9] VAZIRI A, WEIHS G, and ZEILINGER A. Superpositions of the orbital angular momentum for applications in quantum experiments[J]. Journal of Optics B: Quantum and Semiclassical Optics, 2002, 4(2): S47–S51. doi: 10.1088/1464-4266/4/2/367 [10] 郭忠义, 龚超凡, 刘洪郡, 等. OAM光通信技术研究进展[J]. 光电工程, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593GUO Zhongyi, GONG Chaofan, LIU Hongjun, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electronic Engineering, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593 [11] DEDO M I, WANG Zikun, GUO Kai, et al. OAM mode recognition based on joint scheme of combining the Gerchberg-Saxton (GS) algorithm and convolutional neural network (CNN)[J]. Optics Communications, 2020, 456: 124696. doi: 10.1016/j.optcom.2019.124696 [12] 郭忠义, 潘珍珍, 龚超凡, 等. OAM光通信路由器件研究[J]. 通信学报, 2020, 41(11): 185–197. doi: 10.11959/j.issn.1000-436x.2020184GUO Zhongyi, PAN Zhenzhen, GONG Chaofan, et al. Research on router device of OAM optical communication[J]. Journal on Communications, 2020, 41(11): 185–197. doi: 10.11959/j.issn.1000-436x.2020184 [13] 郭忠义, 刘洪郡, 李晶晶, 等. 声涡旋信息应用研究进展[J]. 物理学报, 2020, 69(24): 244301. doi: 10.7498/aps.69.20200826GUO Zhongyi, LIU Hongjun, LI Jingjing, et al. Research progress of applications of acoustic-vortex information[J]. Acta Physica Sinica, 2020, 69(24): 244301. doi: 10.7498/aps.69.20200826 [14] GONG Chaofan, LI Jingjing, GUO Kai, et al. Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction[J]. Chinese Physics B, 2020, 29(10): 104301. doi: 10.1088/1674-1056/ab9c11 [15] GUO Zhongyi, LIU Hongjun, ZHOU Hong, et al. High-order acoustic vortex field generation based on a metasurface[J]. Physical Review E, 2019, 100(5): 053315. doi: 10.1103/PhysRevE.100.053315 [16] TRINDER J R. Parabolic reflector[P]. WO2005069443A1, 2005. [17] THIDÉ B, THEN H, SJÖHOLM J, et al. Utilization of photon orbital angular momentum in the low-frequency radio domain[J]. Physical Review Letters, 2007, 99(8): 087701. doi: 10.1103/PhysRevLett.99.087701 [18] YANG Yang, LIU Gao, SHEN Fei, et al. Generating and detecting broad-band underwater multiple OAMs based on water-immersed array[J]. IEEE Access, 2020, 8: 149586–149594. doi: 10.1109/ACCESS.2020.3016389 [19] YANG Yang, GONG Yubin, GUO Kai, et al. Broad-band multiple OAMs’ generation with eight-arm archimedean spiral antenna (ASA)[J]. IEEE Access, 2020, 8: 53232–53239. doi: 10.1109/ACCESS.2020.2980751 [20] GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914 [21] YANG Yang, GUO Kai, SHEN Fei, et al. Generating multiple OAM based on a nested dual-arm spiral antenna[J]. IEEE Access, 2019, 7: 138541–138547. doi: 10.1109/ACCESS.2019.2942601 [22] SHEN Fei, MU Jiangnan, GUO Kai, et al. Generating circularly polarized vortex electromagnetic waves by the conical conformal patch antenna[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(9): 5763–5771. doi: 10.1109/TAP.2019.2922545 [23] WANG Lulu, CHEN Huiyong, GUO Kai, et al. An inner- and outer-fed dual-arm archimedean spiral antenna for generating multiple orbital angular momentum modes[J]. Electronics, 2019, 8(2): 251. doi: 10.3390/electronics8020251 [24] SHEN Fei, YIN Chaoyi, GUO Kai, et al. Low-cost dual-band multipolarization aperture-shared antenna with single-layer substrate[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(7): 1337–1341. doi: 10.1109/LAWP.2019.2916321 [25] 郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091GUO Zhongyi, WANG Yanzhe, ZHENG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091 [26] TURNBULL G A, ROBERTSON D A, SMITH G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4/6): 183–188. [27] LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960 [28] CHEN Rui, ZHOU Hong, LONG Wenxuan, et al. Spectral and energy efficiency of line-of-sight OAM-MIMO communication systems[J]. China Communications, 2020, 17(9): 119–127. doi: 10.23919/JCC.2020.09.010 [29] LEI Yi, YANG Yang, WANG Yanzhe, et al. Throughput performance of wireless multiple-input multiple-output systems using OAM antennas[J]. IEEE Wireless Communications Letters, 2021, 10(2): 261–265. doi: 10.1109/LWC.2020.3027006 [30] ZHOU Zhenglong, CHENG Yongqiang, LIU Kang, et al. Rotational Doppler resolution of spinning target detection based on OAM beams[J]. IEEE Sensors Letters, 2019, 3(3): 5500404. doi: 10.1109/LSENS.2019.2900227 [31] ZHENG Jiayu, ZHENG Shilie, SHAO Zhenlei, et al. Analysis of rotational Doppler effect based on radio waves carrying orbital angular momentum[J]. Journal of Applied Physics, 2018, 124(16): 164907. doi: 10.1063/1.5050448 [32] LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 14: 711–714. doi: 10.1109/LAWP.2014.2376970 [33] LIU Hongyan, LIU Kang, CHENG Yongqiang, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806–815. doi: 10.1109/JSEN.2019.2943698 [34] LIU Kang, CHENG Yongqiang, LI Xiang, et al. Passive OAM-based radar imaging with Single-In-Multiple-Out mode[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 840–842. doi: 10.1109/LMWC.2018.2852146 [35] LIU Hongyan, WANG Yu, WANG Jianqiu, et al. Electromagnetic vortex enhanced imaging using fractional OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 948–952. doi: 10.1109/LAWP.2021.3067914 [36] CHEN Yiling, ZHENG Shilie, JIN Xiaofeng, et al. Single-frequency computational imaging using OAM-carrying electromagnetic wave[J]. Journal of Applied Physics, 2017, 121(18): 184506. doi: 10.1063/1.4983358 [37] LIU Kang, CHENG Yongqiang, LI Xiang, et al. Study on the theory and method of vortex-electromagnetic-wave-based radar imaging[J]. IET Microwaves, Antennas & Propagation, 2016, 10(9): 961–968. doi: 10.1049/iet-map.2015.0842 [38] LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253 [39] ZENG Yanzhi, WANG Yang, CHEN Zhihui, et al. Two-dimensional OAM radar imaging using uniform circular antenna arrays[C]. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 2020: 1–4. doi: 10.23919/EuCAP48036.2020.9135917. [40] 孙丽华, 闫晓鹏, 刘强, 等. 基于PM算法的涡旋电磁波引信超分辨测向方法[J]. 北京航空航天大学学报, in press, 2021. doi: 10.13700/j.bh.1001-5965.2021.0020.SUN Lihua, YAN Xiaopeng, LIU Qiang, et al. PM based super_resolution method of azimuth detection for electromagnetic vortex wave fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, in press, 2021. doi: 10.13700/j.bh.1001-5965.2021.0020. [41] YUAN Tiezhu, LIU Hongyan, CHENG Yongqiang, et al. Orbital-angular-momentum-based electromagnetic vortex imaging by least-squares method[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 6645–6648. doi: 10.1109/IGARSS.2016.7730735. [42] LIU Kang, LI Xiang, GAO Yue, et al. High-resolution electromagnetic vortex imaging based on sparse Bayesian learning[J]. IEEE Sensors Journal, 2017, 17(21): 6918–6927. doi: 10.1109/JSEN.2017.2754554 [43] ZHAO Hao and WANG Kaizhi. Orbital-angular-momentum-based radar imaging by dice regularized orthogonal matching pursuit[C]. 2020 IEEE 5th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 2020: 446–450. doi: 10.1109/ICSIP49896.2020.9339258. [44] JIANG Yanwen, LIU Kang, WANG Hongqiang, et al. Orbital-angular-momentum-based ISAR imaging at terahertz frequencies[J]. IEEE Sensors Journal, 2018, 18(22): 9230–9235. doi: 10.1109/JSEN.2018.2869047 [45] WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814 [46] WANG Lin, TAO Lujing, LI Zhongyu, et al. Three dimensional electromagnetic vortex radar imaging based on the modified RD algorithm[C]. 2020 IEEE Radar Conference (RadarConf20), Florence, Italy, 2020: 1–5. doi: 10.1109/RadarConf2043947.2020.9266329. [47] GHALEH S R, AHMADI-KANDJANI S, KHERADMAND R, et al. Improved edge detection in computational ghost imaging by introducing orbital angular momentum[J]. Applied Optics, 2018, 57(32): 9609–9614. doi: 10.1364/AO.57.009609 [48] COCHENOUR B, RODGERS L, LAUX A, et al. The detection of objects in a turbid underwater medium using orbital angular momentum (OAM)[C]. Proceedings of SPIE 10186 Ocean Sensing and Monitoring IX, Anaheim, USA, 2017: 1018603. doi: 10.1117/12.2264626. [49] PAVONE S C, SORBELLO G and DONATO L D. On the orbital angular momentum incident fields in linearized microwave imaging[J]. Sensors, 2020, 20(7): 1905. doi: 10.3390/s20071905 [50] JACKSON J D. Classical Electrodynamics[M]. 3th ed. New York: Wiley, 1998. [51] 刘康, 黎湘, 王宏强, 等. 涡旋电磁波及其在雷达中应用研究进展[J]. 电子学报, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034LIU Kang, LI Xiang, WANG Hongqiang, et al. The advances of vortex electromagnetic wave in radar applications[J]. Acta Electronica Sinica, 2018, 46(9): 2283–2290. doi: 10.3969/j.issn.0372-2112.2018.09.034 [52] ZHANG Zongtang, XIAO Shaoqiu, LI Yan, et al. A circularly polarized multimode patch antenna for the generation of multiple orbital angular momentum modes[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 521–524. doi: 10.1109/LAWP.2016.2586975 [53] ZHENG Shilie, HUI Xiaonan, JIN Xiaofeng, et al. Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(4): 1530–1536. doi: 10.1109/TAP.2015.2393885 [54] HAN Jiaqi, LI Long, YI Hao, et al. 1-bit digital orbital angular momentum vortex beam generator based on a coding reflective metasurface[J]. Optical Materials Express, 2018, 8(11): 3470–3478. doi: 10.1364/OME.8.003470 [55] HAN Jiaqi, LI Long, YI Hao, et al. Versatile orbital angular momentum vortex beam generator based on reconfigurable reflective metasurface[J]. Japanese Journal of Applied Physics, 2018, 57(12): 120303. doi: 10.7567/JJAP.57.120303 [56] ZHANG Lei, LIU Shuo, LI Lianlin, et al. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36447–36455. doi: 10.1021/acsami.7b12468 [57] WU Ruiyuan, ZHANG Lei, BAO Lei, et al. Digital metasurface with phase code and reflection-transmission amplitude code for flexible full-space electromagnetic manipulations[J]. Advanced Optical Materials, 2019, 7(8): 1801429. doi: 10.1002/adom.201801429 [58] YIN Zhiping, ZHENG Qun, GUO Kai, et al. Tunable beam steering, focusing and generating of orbital angular momentum vortex beams using high-order patch array[J]. Applied Sciences, 2019, 9(15): 2949. doi: 10.3390/app9152949 [59] 刘康. 电磁涡旋成像理论与方法研究[D]. [博士论文], 国防科技大学, 2017: 28–29.LIU Kang. Study on the theory and method of electromagnetic vortex imaging[D]. [Ph. D. dissertation], National University of Defense Technology, 2017: 28–29. [60] 郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013 [61] YUAN Tiezhu, WANG Hongqiang, QIN Yuliang, et al. Electromagnetic vortex imaging using uniform concentric circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 15: 1024–1027. doi: 10.1109/LAWP.2015.2490169 [62] QIN Yuliang, LIU Kang, CHENG Yongqiang, et al. Sidelobe suppression and beam collimation in the generation of vortex electromagnetic waves for radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 1289–1292. doi: 10.1109/LAWP.2016.2633008 [63] YUAN Tiezhu, CHENG Yongqiang, WANG Hongqiang, et al. Beam steering for electromagnetic vortex imaging using uniform circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 704–707. doi: 10.1109/LAWP.2016.2600404 [64] GUO Shaoqing, HE Zi, FAN Zhenhong, et al. CUCA based equivalent fractional order OAM mode for electromagnetic vortex imaging[J]. IEEE Access, 2020, 8: 91070–91075. doi: 10.1109/ACCESS.2020.2995149 [65] OPENNHEIM A V, WILLSKY A S, and NAWAB S H. Signal and System[M]. 2nd ed. Prentice-Hall, 1997. [66] POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058–1067. doi: 10.1109/8.467641 [67] LAVERY M P J, SPEIRITS F C, BARNETT S M, et al. Detection of a spinning object using light’s orbital angular momentum[J]. Science, 2013, 341(6145): 537–540. doi: 10.1126/science.1239936 [68] LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655 [69] BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980 [70] 杜永兴, 仝宗俊, 秦岭, 等. 基于改进BP算法的电磁涡旋成像方法[J]. 雷达科学与技术, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012DU Yongxing, TONG Zongjun, QIN Ling, et al. Electromagnetic vortex imaging method based on improved BP algorithm[J]. Radar Science and Technology, 2020, 18(5): 539–545. doi: 10.3969/j.issn.1672-2337.2020.05.012 [71] WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Vortex SAR imaging method based on OAM beams design[J]. IEEE Sensors Journal, 2019, 19(24): 11873–11879. doi: 10.1109/JSEN.2019.2937976 [72] SHEN Yizhu, YANG Jiawei, MENG Hongfu, et al. Generating millimeter-wave Bessel beam with orbital angular momentum using reflective-type metasurface inherently integrated with source[J]. Applied Physics Letters, 2018, 112(14): 141901. doi: 10.1063/1.5023327 [73] 张倬钒. 平面螺旋轨道角动量电磁波及其应用研究[D]. [硕士论文], 浙江大学, 2017: 14–15.ZHANG Zhuofan. Plane spiral orbital angular momentum waves and its applications[D]. [Master dissertation], Zhejiang University, 2017: 14–15. [74] CHEN Menglin, JIANG Lijun, and SHA W E I. Orbital angular momentum generation and detection by geometric-phase based metasurfaces[J]. Applied Sciences, 2018, 8(3): 362. doi: 10.3390/app8030362 [75] CHEN Menglin, JIANG Lijun, and SHA W E I. Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(1): 396–400. doi: 10.1109/TAP.2016.2626722 期刊类型引用(8)
1. 周利,胡杰民,付连庆,凌三力. 基于MDCFT与水平集的高海情弹载雷达成像检测方法. 系统工程与电子技术. 2024(04): 1247-1254 . 百度学术
2. 汪翔,汪育苗,陈星宇,臧传飞,崔国龙. 基于深度学习的多特征融合海面目标检测方法. 雷达学报. 2024(03): 554-564 . 本站查看
3. 邓稼麒,李正周,党楚佳,陈文豪,秦天奇. 基于海面场景感知的雷达目标检测方法. 中国电子科学研究院学报. 2023(02): 129-137 . 百度学术
4. 薛安克,毛克成,张乐. 多分类器联合虚警可控的海上小目标检测方法. 电子与信息学报. 2023(07): 2528-2536 . 百度学术
5. 王金峰,顾庆远,刘仍莉. 一种基于谱认知的海杂波中运动目标检测方法. 火控雷达技术. 2021(01): 32-36+47 . 百度学术
6. 刘珊,丛培杰,吴杰,肖百惠,曲德宇,杨淼. 基于时频域转换的变压器油纸绝缘介质响应检测研究. 自动化技术与应用. 2021(06): 112-116 . 百度学术
7. 郭子薰,水鹏朗,白晓惠,许述文,李东宸. 海杂波中基于可控虚警K近邻的海面小目标检测. 雷达学报. 2020(04): 654-663 . 本站查看
8. 陈世超,高鹤婷,罗丰. 基于极化联合特征的海面目标检测方法. 雷达学报. 2020(04): 664-673 . 本站查看
其他类型引用(8)
-