基于反射型超表面的太赫兹偏折涡旋波束生成

施宏宇 李国强 刘康 李博林 衣建甲 张安学 徐卓

施宏宇, 李国强, 刘康, 等. 基于反射型超表面的太赫兹偏折涡旋波束生成[J]. 雷达学报, 2021, 10(5): 785–793. doi: 10.12000/JR21070
引用本文: 施宏宇, 李国强, 刘康, 等. 基于反射型超表面的太赫兹偏折涡旋波束生成[J]. 雷达学报, 2021, 10(5): 785–793. doi: 10.12000/JR21070
SHI Hongyu, LI Guoqiang, LIU Kang, et al. Deflective vortex beams generation based on metasurfaces in the terahertz band[J]. Journal of Radars, 2021, 10(5): 785–793. doi: 10.12000/JR21070
Citation: SHI Hongyu, LI Guoqiang, LIU Kang, et al. Deflective vortex beams generation based on metasurfaces in the terahertz band[J]. Journal of Radars, 2021, 10(5): 785–793. doi: 10.12000/JR21070

基于反射型超表面的太赫兹偏折涡旋波束生成

DOI: 10.12000/JR21070
基金项目: 国家自然科学基金(61871315)
详细信息
    作者简介:

    施宏宇(1987–),男,陕西人,西安交通大学电信学部副教授。主要研究方向为电磁超材料理论与应用、人工智能在超材料电磁波调控中的应用、携带轨道角动量电磁波的产生与应用、新型可重构天线理论与设计、新型功能材料在电磁波调控中的应用等

    李国强(1996–),男,山东人,西安交通大学电信学部信息与通信工程学院硕士研究生。主要研究方向为电磁波综合调控等

    刘 康(1990–),男,江苏泗阳人,国防科技大学电子科学学院副教授。主要研究方向为雷达前视成像及电磁涡旋技术

    李博林(1996–),男,陕西人,西安交通大学电信学部信息与通信工程学院硕士研究生。主要研究方向为新型太赫兹和毫米波器件等

    衣建甲(1986–),男,吉林人,西安交通大学电信学部研究员。主要研究方向为智能电磁波器件、声学人工材料、可调控太赫兹器件等

    张安学(1972–),男,河南安阳人,西安交通大学电信学部教授,博士生导师。主要研究方向为新型天线与分集技术、移动通信微波射频技术、智能雷达信号处理、多天线通信系统与阵列信号处理、微波测试理论与系统设计等

    徐 卓(1960–),男,四川人,西安交通大学电信学部教授。主要研究方向为弛豫型铁电单晶、电场诱导和压力诱导的铁电体、反铁电体和低相变压力铁电陶瓷材料及微结构等

    通讯作者:

    施宏宇 honyo.shi1987@gmail.com

  • 责任主编:李龙 Corresponding Editor: LI Long
  • 中图分类号: TN82

Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band

Funds: The National Natural Science Foundation of China (61871315)
More Information
  • 摘要: 太赫兹涡旋波束可以提高雷达通信系统通信容量及成像系统的分辨率,如何有效地产生这种波束成为近期研究热点之一。为了克服传统方式的缺点,该文设计加工了5个工作在太赫兹频段的反射型超表面,它们可以产生±1、±2和3共5个不同模态的涡旋波束。为了避免馈源对涡旋波束的遮挡,通过平面反射阵原理控制了波束的偏转方向。超表面单元为3层结构,其中,上层为金属结构,控制上层结构中8个枝节的长度,可以在基本不改变超表面单元反射系数的情况下,调整它的反射相位。中间层为介质层,为了使超表面单元有较高的反射系数,介质层下方为一金属地。超表面单元仿真显示,其同极化反射率在90%以上,相位分布也满足超表面设计需求。超表面的仿真及测试结果表明,在340 GHz附近,不同超表面在设计的方向上产生了对应模态的涡旋波束,并且涡旋波束中的主模态能量占比最高。

     

  • 图  1  单元上层结构图

    Figure  1.  Schematics of top layer

    图  2  不同r0的同极化反射波的反射幅度及相位

    Figure  2.  The reflection coefficient and phase of co-polarized reflected wave versus r0

    图  3  超表面相位分布

    Figure  3.  The phase distribution scheme of a metasurface

    图  4  超表面仿真模型

    Figure  4.  The simulation model of a metasurface

    图  5  超表面仿真的涡旋波束远场分布图

    Figure  5.  The simulated far-field vortex beam distributions

    图  6  涡旋波束远场仿真结果的幅度与相位

    Figure  6.  The amplitudes and phases of simulated far-field vortex beams

    图  7  仿真结果的频谱分析

    Figure  7.  OAM spectrum weight for the simulated results

    图  8  加工的超表面

    Figure  8.  Photograph of the fabricated metasurface

    图  9  测试中的超表面

    Figure  9.  Metasurface under test

    图  10  近场测试结果的幅度与相位

    Figure  10.  The amplitudes and phases of measured near-field

    图  11  近场测试结果的频谱分析

    Figure  11.  OAM spectrum weight for the measured near-field results

  • [1] LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253
    [2] JIANG Zhihao, KANG Lei, HONG Wei, et al. Highly efficient broadband multiplexed millimeter-wave vortices from metasurface-enabled transmit-arrays of subwavelength thickness[J]. Physical Review Applied, 2018, 9(6): 064009. doi: 10.1103/PhysRevApplied.9.064009
    [3] LI Lianlin and LI Fang. Beating the Rayleigh limit: Orbital-angular-momentum-based super-resolution diffraction tomography[J]. Physical Review E, 2013, 88(3): 033205. doi: 10.1103/PhysRevE.88.033205
    [4] LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655
    [5] YAN Yan, XIE Guodong, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    [6] WANG Jian, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138
    [7] ZHANG Zhuofan, ZHENG Shilie, CHEN Yiling, et al. The capacity gain of orbital angular momentum based multiple-input-multiple-output system[J]. Scientific Reports, 2016, 6: 25418. doi: 10.1038/srep25418
    [8] GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448
    [9] GOMPF B, GEBERT N, HEER H, et al. Polarization contrast terahertz-near-field imaging of anisotropic conductors[J]. Applied Physics Letters, 2007, 90(8): 082104. doi: 10.1063/1.2680016
    [10] CHEN Zefeng, CHEN Xuequan, TAO Li, et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation[J]. Nature Communications, 2018, 9(1): 4909. doi: 10.1038/s41467-018-07367-8
    [11] 刘峻峰, 刘硕, 傅晓建, 等. 太赫兹信息超材料与超表面[J]. 雷达学报, 2018, 7(1): 46–55. doi: 10.12000/JR17100

    LIU Junfeng, LIU Shuo, FU Xiaojian, et al. Terahertz information metamaterials and metasurfaces[J]. Journal of Radars, 2018, 7(1): 46–55. doi: 10.12000/JR17100
    [12] 李龙, 薛皓, 冯强. 涡旋电磁波的理论与应用研究进展[J]. 微波学报, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001

    LI Long, XUE Hao, and FENG Qiang. Research progresses in theory and applications of vortex electromagnetic waves[J]. Journal of Microwaves, 2018, 34(2): 1–12. doi: 10.14183/j.cnki.1005-6122.201802001
    [13] LIU Kang, LIU Hongyan, QIN Yuliang, et al. Generation of OAM beams using phased array in the microwave band[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 3850–3857. doi: 10.1109/TAP.2016.2589960
    [14] MENG Zankui, SHI Yan, WEI Wenyue, et al. Multifunctional scattering antenna array design for orbital angular momentum vortex wave and RCS reduction[J]. IEEE Access, 2020, 8: 109289–109296. doi: 10.1109/ACCESS.2020.3001576
    [15] SHEN Yong, CAMPBELL G T, HAGE B, et al. Generation and interferometric analysis of high charge optical vortices[J]. Journal of Optics, 2013, 15(4): 044005. doi: 10.1088/2040-8978/15/4/044005
    [16] YU Shixing, LI Long, SHI Guangming, et al. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain[J]. Applied Physics Letters, 2016, 108(12): 121903. doi: 10.1063/1.4944789
    [17] 杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137

    YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137
    [18] LV Huanhuan, HUANG Qiulin, YI Xiangjie, et al. Low-profile transmitting metasurface using single dielectric substrate for OAM generation[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(5): 881–885. doi: 10.1109/LAWP.2020.2983400
    [19] SHI Hongyu, WANG Luyi, PENG Gantao, et al. Generation of multiple modes microwave vortex beams using active metasurface[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(1): 59–63. doi: 10.1109/LAWP.2018.2880732
    [20] GUO Kai, ZHENG Qun, YIN Zhiping, et al. Generation of mode-reconfigurable and frequency-adjustable OAM beams using dynamic reflective metasurface[J]. IEEE Access, 2020, 8: 75523–75529. doi: 10.1109/ACCESS.2020.2988914
    [21] YU Shixing, LI Long, SHI Guangming, et al. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain[J]. Applied Physics Letters, 2016, 108(24): 241901. doi: 10.1063/1.4953786
    [22] YU Shixing, LI Long, and SHI Guangming. Dual-polarization and dual-mode orbital angular momentum radio vortex beam generated by using reflective metasurface[J]. Applied Physics Express, 2016, 9(8): 082202. doi: 10.7567/APEX.9.082202
    [23] SHI Yan and ZHANG Ying. Generation of wideband tunable orbital angular momentum vortex waves using graphene metamaterial reflectarray[J]. IEEE Access, 2018, 6: 5341–5347. doi: 10.1109/ACCESS.2017.2740323
    [24] MENG Zankui, SHI Yan, WEI Wenyue, et al. Graphene-based metamaterial transmitarray antenna design for the generation of tunable orbital angular momentum vortex electromagnetic waves[J]. Optical Materials Express, 2019, 9(9): 3709–3716. doi: 10.1364/OME.9.003709
    [25] WANG Ling, YANG Yang, LI Shufang, et al. Terahertz reconfigurable metasurface for dynamic non-diffractive orbital angular momentum beams using vanadium dioxide[J]. IEEE Photonics Journal, 2020, 12(3): 4600712. doi: 10.1109/JPHOT.2020.3000779
    [26] LI Jiusheng and ZHANG Lina. Simple terahertz vortex beam generator based on reflective metasurfaces[J]. Optics Express, 2020, 28(24): 36403–36412. doi: 10.1364/OE.410681
    [27] FAN Junpeng, CHENG Yongzhi, and HE Bin. High-efficiency ultrathin terahertz geometric metasurface for full-space wavefront manipulation at two frequencies[J]. Journal of Physics D: Applied Physics, 2021, 54(11): 115101. doi: 10.1088/1361-6463/abcdd0
    [28] LIU Haixia, XUE Hao, LIU Yongjie, et al. Generation of multiple pseudo bessel beams with accurately controllable propagation directions and high efficiency using a reflective metasurface[J]. Applied Sciences, 2020, 10(20): 7219. doi: 10.3390/app10207219
    [29] NAYERI P, YANG Fan, and ELSHERBENI A Z. Reflectarray Antennas: Theory, Designs, and Applications[M]. Hoboken: John Wiley & Sons, 2018: 9–13.
  • 加载中
图(11)
计量
  • 文章访问数:  2141
  • HTML全文浏览量:  866
  • PDF下载量:  255
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-30
  • 修回日期:  2021-07-27
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2021-10-28

目录

    /

    返回文章
    返回