联合脉压与Radon傅里叶变换的长时间相参积累方法

裴家正 黄勇 陈宝欣 关键 蔡咪 陈小龙

裴家正, 黄勇, 陈宝欣, 等. 联合脉压与Radon傅里叶变换的长时间相参积累方法[J]. 雷达学报, 2021, 10(6): 956–969. doi: 10.12000/JR21068
引用本文: 裴家正, 黄勇, 陈宝欣, 等. 联合脉压与Radon傅里叶变换的长时间相参积累方法[J]. 雷达学报, 2021, 10(6): 956–969. doi: 10.12000/JR21068
PEI Jiazheng, HUANG Yong, CHEN Baoxin, et al. Long time coherent integration method based on combining pulse compression and Radon-Fourier transform[J]. Journal of Radars, 2021, 10(6): 956–969. doi: 10.12000/JR21068
Citation: PEI Jiazheng, HUANG Yong, CHEN Baoxin, et al. Long time coherent integration method based on combining pulse compression and Radon-Fourier transform[J]. Journal of Radars, 2021, 10(6): 956–969. doi: 10.12000/JR21068

联合脉压与Radon傅里叶变换的长时间相参积累方法

doi: 10.12000/JR21068
基金项目: 国家自然科学基金(61871391, U1933135),国防科技基金(2019-JCJQ-JJ-058),山东省高等学校青创科技支持计划(2019KJN026),山东省自然科学基金(ZR202102190211)
详细信息
    作者简介:

    裴家正(1994–),男,河南郑州人,海军航空大学博士研究生,主要研究方向为雷达弱小目标检测、多维信号联合处理

    黄 勇(1979–),男,湖南汨罗人,海军航空大学副教授,主要研究方向为MIMO雷达目标检测算法等

    陈宝欣(1990–),男,山东烟台人,博士,工程师,主要研究方向为阵列信号处理、雷达多维信号处理

    关 键(1968–),男,辽宁锦州人,教授,博士生导师,主要研究方向为海上目标探测、雷达海杂波特性和弱目标检测。新世纪百千万人才工程国家级人选,曾获国家科技进步奖二等奖一项、省部级一等奖4项

    蔡 咪(1994–),女,江西丰城人,硕士,助理工程师,主要研究方向计算机视觉

    陈小龙(1985–),男,山东烟台人,海军航空大学副教授,主要研究方向为雷达动目标检测、海杂波抑制、雷达信号精细化处理等。

    通讯作者:

    黄勇 huangyong_2003@163.com

    关键 guanjian_68@163.com

  • 责任主编:罗丰 Corresponding Editor: LUO Feng
  • 中图分类号: TN958.2

Long Time Coherent Integration Method Based on Combining Pulse Compression and Radon-Fourier Transform

Funds: The National Natural Science Foundation of China (61871391, U1933135), The National Defense Science Foundation under Grant (2019-JCJQ-JJ-058), Shandong Province Higher Education Youth Innovation Science and Technology Support Program (2019KJN026), Shandong Provincial Natural Science Foundation, grant number (ZR202102190211)
More Information
  • 摘要: 传统相干雷达信号处理流程中先脉冲压缩再相参处理的级联处理在理论上无法实现对高速目标回波能量的最大化积累,级联处理的输出结果中目标峰值位置存在偏差,甚至还伴随主瓣展宽、增益下降、旁瓣增高的问题。为此该文提出一种联合脉压与Radon傅里叶变换(PC-RFT)的长时间相参积累方法,利用信号之间的相关关系将匹配滤波与Radon傅里叶变换相结合,在快时间(脉内时间)与慢时间(脉间时间)维度上同时补偿脉内和脉间的多普勒频移,从而实现目标增益的最大化。实验表明二维联合处理的性能明显优于级联处理。

     

  • 图  1  LFM信号,NLFM信号,P4和P3编码信号的模糊函数

    Figure  1.  Ambiguity figure of LFM, NLFM, P4 and P3 code

    图  2  目标横跨距离单元的走动

    Figure  2.  The ARU walk of a target

    图  3  0.2 s时间内的脉压结果

    Figure  3.  The pulse compression result in 0.2 s

    图  4  MTD与PC-FT的输出结果

    Figure  4.  The output of MTD and PC-FT

    图  5  脉冲压缩与RFT级联处理输出结果

    Figure  5.  The output of cascaded processing

    图  6  线性调频信号回波的匹配滤波脉压输出

    Figure  6.  Matched filter output of LFM

    图  7  两种方法对LFM信号回波的处理结果

    Figure  7.  The result of the two methods (LFM)

    图  8  目标速度切片(LFM)

    Figure  8.  The slice of target’s speed (LFM)

    图  9  非线性调频信号回波的匹配滤波脉压输出

    Figure  9.  Matched filter output (NLFM)

    图  10  两种方法对NLFM信号回波的处理结果

    Figure  10.  The result of the two methods (NLFM)

    图  11  目标速度切片(NLFM)

    Figure  11.  The slice of target’s speed (NLFM)

    图  12  P4码信号回波的匹配滤波脉压输出

    Figure  12.  Matched filter output (P4)

    图  13  两种方法对P4码信号回波的处理结果

    Figure  13.  The result of the two methods (P4)

    图  14  目标速度切片(P4)

    Figure  14.  The slice of target’s speed (P4)

    图  15  P3码信号回波的匹配滤波脉压输出

    Figure  15.  Matched filter output (P3)

    图  16  两种方法对P3码信号回波的处理结果

    Figure  16.  The result of the two methods (P3)

    图  17  目标速度切片(P3)

    Figure  17.  The slice of target’s speed (P3)

    图  18  PC-FT输出

    Figure  18.  The output of PC-FT

    图  19  PC与RFT的级联输出

    Figure  19.  The output of cascaded processing (PC and RFT)

    图  20  PC-RFT的输出

    Figure  20.  The output of PC-RFT processing

  • [1] RICHARDS M A. Fundamentals of Radar Signal Processing[M]. McGraw-Hill Education and Publishing House of Electronics Industry, 2014: 180–225.
    [2] TAO Ran, ZHANG Ning, and WANG Yunchu. Analysing and compensating the effects of range and Doppler frequency migrations in linear frequency modulation pulse compression radar[J]. IET Radar, Sonar & Navigation, 2011, 5(1): 12–22. doi: 10.1049/iet-rsn.2009.0265
    [3] SUO Pangcun, TAO Shan, TAO Ran, et al. Detection of high-speed and accelerated target based on the linear frequency modulation radar[J]. IET Radar, Sonar & Navigation, 2014, 8(1): 37–47. doi: 10.1049/iet-rsn.2013.0001
    [4] CHEN Xiaolong, GUAN Jian, LIU Ningbo, et al. Maneuvering target detection via Radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transaction on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682
    [5] CHEN Xiaolong, GUAN Jian, CHEN Weishi, et al. Sparse long-time coherent integration-based detection method for radar low-observable maneuvering target[J]. IET Radar, Sonar and Navigation, 2020, 14(4): 538–546. doi: 10.1049/iet-Isn.2019.0313
    [6] 陈小龙, 黄勇, 关键, 等. MIMO雷达微弱目标长时积累技术综述[J]. 信号处理, 2020, 36(12): 1947–1964. doi: 1016798/j.issn.1003-0530.2020.12.001

    CHEN Xiaolong, HUANG Yong, GUAN Jian, et al. Summary of long-time integration techniques for weak targets of MIMO radar[J]. Journal of Signal Processing, 2020, 36(12): 1947–1964. doi: 1016798/j.issn.1003-0530.2020.12.001
    [7] 关键, 陈小龙, 于晓涵. 雷达高速高机动目标长时间相参积累检测方法[J]. 信号处理, 2017, 33(3A): 1–8. doi: 10.16798/j.issn.1003-0530.2017.3A.001

    GUAN Jian, CHEN Xiao-long, and YU Xiao-han. Long-time coherent integration-based detection method forhigh-apeedand highly maneuvering radar target[J]. Journal of Signal Proceasing, 2017, 33(3A): 1–8. doi: 10.16798/j.issn.1003-0530.2017.3A.001
    [8] 陈小龙, 陈唯实, 饶云华, 等. 飞鸟与无人机目标雷达探测与识别技术进展与展望[J]. 雷达学报, 2020, 9(5): 803–827. doi: 10.12000/JR20068

    CHEN Xiaolong, CHEN Weiehi, RAO Yunhua, et al. Progrecs and proapecte of radar target detection and recognition technology for flying birda and unmanned aerial vehicles[J]. Journal of Radars, 2020, 9(5): 803–827. doi: 10.12000/JR20068
    [9] LI Yang, ZENG Tao, LONG Teng, et al. Range migration compensation and Doppler ambiguity resolution by Keystone transform[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4.
    [10] REED I S, GAGLIARDI R M, and STOTTS L B. Optical moving target detection with 3-D matched filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 1988, 24(4): 327–336. doi: 10.1109/7.7174
    [11] XU Jia, YU Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186–1202. doi: 10.1109/TAES.2011.5751251
    [12] XU Jia, YU Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473–2489. doi: 10.1109/TAES.2011.6034645
    [13] YU Ji, XU Jia, PENG Yingning, et al. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044
    [14] QIAN Lichang, XU Jia, XIA Xianggen, et al. Fast implementation of generalised Radon-Fourier transform for manoeuvring radar target detection[J]. Electronics Letters, 2012, 48(22): 1427–1428. doi: 10.1049/el.2012.2255
    [15] LIN Lanjin, SUN Guohao, CHENG Ziyang, et al. Long-time coherent integration for maneuvering target detection based on ITRT-MRFT[J]. IEEE Sensors Journal, 2020, 20(7): 3718–3731. doi: 10.1109/JSEN.2019.2960323
    [16] LI Xiaolong, CUI Guolong, YI Wei, et al. Sequence-reversing transform-based coherent integration for high-speed target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1573–1580. doi: 10.1109/TAES.2017.2668018
    [17] CHEN Shuailin, LUO Feng, ZHANG Linrang, et al. Coherent integration detection method for maneuvering target based on dynamic programming[J]. AEU - International Journal of Electronics and Communications, 2017, 73: 46–49. doi: 10.1016/j.aeue.2016.12.021
    [18] ZHOU Gongjian, XU Zeyu, and YANG Yuchao. Coherent integration for targets with constant Cartesian velocities based on accurate range model[J]. Digital Signal Processing, 2021, 116: 103092. doi: 10.1016/j.dsp.2021.103092
    [19] 丁鹭飞, 耿富录, 陈建春. 雷达原理. 第5版[M]. 电子工业出版社, 2014: 381–385.

    DING Lufei, GENG Fulu, and CHEN Jianchun. Radar Principles[M]. 5th ed. Beijing: Publishing House of Electronics Industry, 2014: 381–385.
    [20] 段毅, 商哲然, 谭贤四, 等. 面向雷达高速目标检测的RFT快速实现方法[J]. 系统工程与电子技术, 2018, 40(6): 1233–1240. doi: 10.3969/j.issn.1001-506X.2018.06.07

    DUAN Yi, SHANG Zheran, TAN Xiansi, et al. Fast implementation of RFT for radar hypersonic targets detection[J]. Systems Engineering and Electronics, 2018, 40(6): 1233–1240. doi: 10.3969/j.issn.1001-506X.2018.06.07
    [21] 钱李昌, 许稼, 孙文峰, 等. 基于雷达脉冲重复间隔设计的Radon-Fourier变换盲速旁瓣抑制[J]. 电子与信息学报, 2012, 34(11): 2608–2614. doi: 10.3724/SP.J.1146.2012.00724

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. Blind speed side lobe suppression in Radon-Fourier transform based on radar pulse recurrence interval design[J]. Journal of Electronics &Information Technology, 2012, 34(11): 2608–2614. doi: 10.3724/SP.J.1146.2012.00724
    [22] 钱李昌, 许稼, 孙文峰, 等. 基于宽带时空Radon-Fourier变换的高速微弱目标检测方法[J]. 电子与信息学报, 2013, 35(1): 15–23. doi: 10.3724/SP.J.1146.2012.01094

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. Wideband time-space Radon-Fourier transform for high-speed and weak target detection[J]. Journal of Electronics &Information Technology, 2013, 35(1): 15–23. doi: 10.3724/SP.J.1146.2012.01094
    [23] 陈潜, 付朝伟, 刘俊豪, 等. 基于随机脉冲重复间隔Radon-Fourier变换的相参积累[J]. 电子与信息学报, 2015, 37(5): 1085–1090. doi: 10.11999/JEIT140818

    CHEN Qian, FU Chaowei, LIU Junhao, et al. Coherent integration based on random pulse repetition interval Radon-Fourier transform[J]. Journal of Electronics &Information Technology, 2015, 37(5): 1085–1090. doi: 10.11999/JEIT140818
    [24] 吴兆平, 符渭波, 苏涛, 等. 基于快速Radon-Fourier变换的雷达高速目标检测[J]. 电子与信息学报, 2012, 34(8): 1866–1871. doi: 10.3724/SP.J.1146.2011.01180

    WU Zhaoping, FU Weibo, SU Tao, et al. High speed radar target detection based on fast Radon-Fourier transform[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1866–1871. doi: 10.3724/SP.J.1146.2011.01180
    [25] 钱李昌, 许稼, 孙文峰, 等. 基于多载频MIMO雷达的Radon-Fourier变换盲速旁瓣抑制[J]. 航空学报, 2013, 34(5): 1181–1190. doi: 10.7527/S1000-6893.2013.0073

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. Blind speed side lobe suppression in Radon-Fourier transform based on MIMO radar with multi-carrier frequency[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1181–1190. doi: 10.7527/S1000-6893.2013.0073
    [26] 林春风, 黄春琳, 粟毅. 双基地雷达Radon-Fourier变换弱目标积累检测[J]. 雷达学报, 2016, 5(5): 526–530. doi: 10.12000/JR16049

    LIN Chunfeng, HUANG Chunlin, and SU Yi. Target integration and detection with the Radon-Fourier transform for bistatic radar[J]. Journal of Radars, 2016, 5(5): 526–530. doi: 10.12000/JR16049
    [27] 钱李昌, 许稼, 胡国旭. 非合作无源双基地雷达弱目标长时间积累技术[J]. 雷达学报, 2017, 6(3): 259–266. doi: 10.12000/JR16137

    QIAN Lichang, XU Jia, and HU Guoxu. Long-time integration of a multi-waveform for weak target detection in non-cooperative passive bistatic radar[J]. Journal of Radars, 2017, 6(3): 259–266. doi: 10.12000/JR16137
    [28] 钱李昌, 许稼, 孙文峰, 等. 宽带Radon-Fourier变换及基于CZT快速实现方法研究[J]. 现代雷达, 2013, 35(4): 39–44. doi: 10.3969/j.issn.1004-7859.2013.04.009

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. A study on wideband Radon-Fourier transform and its fast implementation based on CZT[J]. Modern Radar, 2013, 35(4): 39–44. doi: 10.3969/j.issn.1004-7859.2013.04.009
    [29] RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005: 230–231.
    [30] COLLINS T and ATKINS P. Nonlinear frequency modulation chirps for active sonar[J]. IEE Proceedings-Radar, Sonar and Navigation, 1999, 146(6): 312–316. doi: 10.1049/ip-rsn:19990754
  • 加载中
图(20)
计量
  • 文章访问数:  1695
  • HTML全文浏览量:  932
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-28
  • 修回日期:  2021-08-17
  • 网络出版日期:  2021-09-23
  • 刊出日期:  2021-12-28

目录

    /

    返回文章
    返回