Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

基于1比特量化的大规模MIMO雷达系统直接定位算法

张国鑫 易伟 孔令讲

夏德平, 张良, 吴涛, 等. 机载双基地极化敏感阵列多干扰抑制[J]. 雷达学报, 2022, 11(3): 399–407. doi: 10.12000/JR21212
引用本文: 张国鑫, 易伟, 孔令讲. 基于1比特量化的大规模MIMO雷达系统直接定位算法[J]. 雷达学报, 2021, 10(6): 970–981. doi: 10.12000/JR21062
XIA Deping, ZHANG Liang, WU Tao, et al. A multiple interference suppression algorithm based on airborne bistatic polarization radar[J]. Journal of Radars, 2022, 11(3): 399–407. doi: 10.12000/JR21212
Citation: ZHANG Guoxin, YI Wei, and KONG Lingjiang. Direct position determination for massive MIMO system with one-bit quantization[J]. Journal of Radars, 2021, 10(6): 970–981. doi: 10.12000/JR21062

基于1比特量化的大规模MIMO雷达系统直接定位算法

DOI: 10.12000/JR21062
基金项目: 国家自然科学基金(61771110),长江学者奖励计划(B17008),中央高校基本科研基金(ZYGX2016J031)
详细信息
    作者简介:

    张国鑫(1996–),男,山西大同人。现为电子科技大学信息与通信工程学院博士研究生。研究方向为雷达信号处理及目标定位

    易 伟(1983–),男,四川雅安人。现为电子科技大学教授,教育部青年长江学者。研究方向为雷达信号处理、微弱目标探测技术、目标跟踪、多传感器数据融合及资源智能管控

    孔令讲(1974–),男,河南南阳人。现为电子科技大学教授,博士生导师,长江学者特聘教授。研究方向为新体制雷达、统计信号处理、优化理论和算法、雷达信号处理、非合作信号处理技术和自适应阵列信号处理

    通讯作者:

    易伟 kusso@uestc.edu.cn

  • 责任主编:王鼎 Corresponding Editor: WANG Ding
  • 中图分类号: TN953

Direct Position Determination for Massive MIMO System with One-bit Quantization

Funds: The National Natural Science Foundation of China (61771110), The Chang Jiang Scholars Program (B17008), The Fundamental Research Funds of Central Universities (ZYGX2016J031)
More Information
  • 摘要: 1比特量化技术在大规模MIMO雷达系统中的应用使得系统成本、功耗及传输带宽显著降低。但这同时也对如何从1比特量化后的数据中提取目标高精度信息提出了严峻挑战。针对基于1比特量化的二次定位算法在低信噪比下定位精度低、鲁棒性差的问题,该文提出了一种基于1比特量化的大规模MIMO雷达系统目标直接定位算法。首先,通过将接收信号进行1比特量化,并推导基于1比特信号的概率分布,建立了关于目标位置的代价函数;其次,通过证明代价函数的凸性,利用梯度下降算法求解了回波中未知的信号参数;最后,根据最大似然估计实现了目标直接定位。仿真实验分析了所提算法的定位性能,结果表明,所提算法仅需传输相较于高精度采样(16比特为例)直接定位算法6.25%的通信带宽,同时其功耗仅为前者的0.1%。此外,与基于1比特量化的二次定位算法相比,所提算法在低信噪比下便可实现对目标位置的有效估计,并且其定位性能在低信噪比和低MIMO天线数量下均明显优于前者。同时,其性能会随着过采样技术的应用进一步提升。

     

  • 随着雷达极化理论研究不断深入以及新器件的高速发展,极化抗干扰技术[1,2]已进入工程应用,其本质是利用干扰与目标在极化域的差异,减弱或消除干扰对雷达检测性能的影响。针对主瓣干扰和欺骗性干扰,文献[3,4]提出了基于超复数的极化-空域级联滤波算法和空-时-极化联合滤波算法,用于机载雷达抑制干扰;文献[5]提出了一种基于重叠滑窗子阵合成的空-极化域联合自适应波束形成算法,用于机载雷达抑制欺骗式干扰;为了解决与目标同向的主瓣干扰抑制问题,文献[6,7]将极化信息引入独立成分分析(Independent Component Analysis, ICA),实现干扰抑制而不影响同向目标的检测。文献[8]提出空间极化域零解耦方法实现主副瓣多干扰抑制,但是该算法需要主波束范围内主瓣干扰与目标的极化特性不同,且主波束内只能有1个干扰,限制了该算法的应用。从上述文献来看,极化域增加了新的维度,有效提升抗主瓣干扰能力,但存在探测视角单一,所获目标信息有限等问题,制约了单基地极化敏感阵列抗干扰性能。

    双/多基雷达系统主要利用空间分置的两部或多部雷达来实现,当干扰信号和目标信号同时进入雷达主瓣时,可利用干扰信号与目标信号在不同平台间的特征差异,有效抑制主瓣干扰[9-12]。文献[13-17]利用同一干扰信号在不同平台相关而目标非相关特性,通过平台间相消处理来实现主瓣干扰抑制;为了实现目标空间独立性条件,需要不同平台的基线长度满足一定要求[18],从而限制了算法应用场景。文献[19]利用一种基于极化滤波的多基雷达协同主瓣干扰抑制方法,可实现主瓣干扰对消,但该算法没有充分利用空域自由度,当存在强副瓣干扰,尤其是主瓣和副瓣干扰同时存在情况,该算法已无法有效应对。在现代复杂电子对抗场景下,机载雷达将面临多个主副瓣干扰压制,雷达探测能力大幅下降,这就需要综合空域、时域以及极化域等多维信息,来提升机载雷达对抗主副瓣干扰能力。本文基于这个考虑,综合双基地和极化抗干扰优势,构建了一种机载双基地雷达极化敏感阵列,利用双基地-极化来分级抑制主副瓣干扰,首先,对机载双基地主辅两个雷达分别处理,在遮蔽主瓣干扰的基础上利用自适应处理抑制副瓣干扰;然后,再利用双基地极化信息对主瓣干扰进行抑制,为了提升主瓣干扰抑制效果,在对消前优先修正干扰空域导向矢量,最后,通过构建干扰对抗场景来对该方法仿真验证。

    机载双基地极化敏感阵列是在机载双基地雷达基础上通过增加能够敏感极化信息的正交偶极子对来实现的,如图1所示。该雷达包括主雷达和辅雷达两部分,每部分都由一部极化敏感阵列组成,每个阵列包括1×M个正交偶极子对,沿飞机正侧面布置。假设以主雷达地面投影点O为中心建立空间直角坐标系O-XYZ,假定平台的基线长度为L且到Y轴投影为D,主辅雷达的高度分别为HpHa,速度分别为VpVa,主辅雷达平台与基线的夹角分别为βpβa,为便于描述,假定主辅雷达平台均沿Y轴飞行,夹角为零。极化敏感阵列M个阵元沿Y轴,按照半波长均匀排列,每个偶极子对由两个相互正交的水平极化通道H(沿X轴方向)和垂直极化通道V(沿Z轴方向)组成,极化间隔离度相对较高,忽略互耦问题。该雷达系统采用单发双收模式,主雷达正交极化通道采用正交波形同时发射,主辅雷达正交极化通道同时接收工作。

    图  1  机载双基地极化敏感阵列信号模型
    Figure  1.  Signal model of airborne bistatic polarization-sensitive array

    假设1个目标和n个干扰信号从远场入射分别进入主辅雷达,如图1所示,其中,标志T代表目标,标志I代表干扰,目标回波信号和干扰信号的空间到达角为(θ,φ)θ, φ分别为方位角和俯仰角;目标回波信号和干扰信号的极化域参数为(γ,η)γ, η为完全极化波相位描述子,γ为极化辅角,η为极化相位角,其极化矢量可表示为

    s(θ,φ,γ,η)=[sinθcosφcosθcosθcosφsinθ][cosγsinγejη] (1)

    目标回波信号或干扰信号到达第m个阵元的相位延迟为

    ϕm(θ,φ)=2π(m1)sinθcosφ/λ (2)

    其中,λ为载频信号波长。线阵的空域导向矢量可表示为

    a(θ,φ)=[ejϕ0(θ,φ),ejϕ1(θ,φ),,ejϕM(θ,φ)] (3)

    式(1)—式(3)适用于主辅雷达,没有利用下标来区分。

    在目标和干扰信号同时存在的情况下,主雷达在t时刻的接收信号由目标回波信号Xt(t)、干扰信号Xj(t)以及噪声信号Np(t)组成,可表示为

    Xp(t)=Xt(t)+Xj(t)+Np(t) (4)

    其中,目标回波信号Xt(t)

    Xt(t)=GpQprApSeptr(tτp) (5)

    式(5)中,Gp为目标回波幅度,并假定水平和垂直极化通道一致,Qpr=[epr1,epr2,,eprM]T, QprM个通道接收矩阵,epr=[ErpH,ErpV]T, epr为水平和垂直两个极化通道接收矢量,表示Hadamard积,Ap=[ap(θ,φ),ap(θ,φ)]Ap为两个极化通道空域导向矩阵,S为目标极化散射矩阵(Polarization Scattering Matrix, PSM),ept=[EtpH,EtpV]T, ept为发射极化矢量,r(tτp)为信号复包络,τp为目标回波时延,Np(t)为零均值方差的高斯白噪声。

    干扰信号Xj(t)表示为

    Xj(t)=Pp(θ1,φ1)QprApejjp(tτjp)+nk=2Pk(θk,φk)RprApejkjp(tτjk) (6)

    其中,Pp(θ1,φ1), Pk(θk,φk)分别为主副瓣干扰幅度,ej=[EjH,EjV]T为主瓣干扰极化矢量,ejk=[EjkH,EjkV]T为副瓣干扰极化矢量,j(tτjp), j(tτjk)分别为主副瓣干扰时延。

    类似地,辅雷达接收极化导向矢量ear=[EraH,EraV],辅雷达在t 时刻的接收信号可表示为

    Xa(t)=GaQarAaSeptr(tτa)+Pa(θ1,φ1)QarAaejja(tτja)+nk=2Pk(θk,φk)QarAaejja(tτja)+Na(t) (7)

    式(7)中定义同式(5)和式(6),只需把下标由p更换为a

    在窄带工作条件下,远场目标可视为点目标,距离主雷达Rp处的雷达目标散射回波分别被H极化通道和V极化通道所接收,则输出信号可以表示为

    Xp(t)=[XH(t)XV(t)]=GpQprApSeptr(tτp)+Np(t) (8)

    在忽略接收机噪声等影响情况下,输出信号可近似表示为

    Xp(t)=[XH(t)XV(t)]=[Gpap(θ,φ)SHHEtpH(t)+Gpap(θ,φ)SVHEtpV(t)Gpap(θ,φ)SHVEtpH(t)+Gpap(θ,φ)SVVEtpV(t)] (9)

    其中,SHH, SHV, SVHSVV为目标PSM的元素,具体定义为

    S=[SHHSHVSVHSVV] (10)

    类似地,辅雷达接收目标回波信号可近似表示为

    Xa(t)=[XH(t)XV(t)]=[Gaaa(θ,φ)SHHEtpH(t)+Gaaa(θ,φ)SVHEtpV(t)Gaaa(θ,φ)SHVEtpH(t)+Gaaa(θ,φ)SVVEtpV(t)] (11)

    有源噪声干扰条件下,主雷达接收的噪声干扰信号近似表示为

    Xjp(t)=[XH(t)XV(t)]=[Gpap(θ,φ)EjH(t)Gpap(θ,φ)EjV(t)] (12)

    同样,辅雷达接收的噪声干扰信号近似为

    Xja(t)=[XH(t)XV(t)]=[Gaaa(θ,φ)EjH(t)Gaaa(θ,φ)EjV(t)] (13)

    从上述分析来看,由于雷达系统采用单发双收模式,主雷达发射,主辅雷达分别接收,目标回波信号在主辅雷达间存在差异,而有源干扰信号在主辅雷达间近似相同,因此,可通过双基地协同对消有源干扰信号而基本不影响目标信号。

    机载双基地极化敏感阵列同时对抗主、副瓣干扰方法的流程如图2所示,从图中可看出,该方法首先通过对主辅雷达的两个极化通道的协方差矩阵进行重构来遮蔽主瓣干扰,降低自适应处理对主波束的影响,然后对主辅雷达两个极化通道各自进行副瓣干扰抑制,最后再利用双基地极化通道对主瓣干扰进行对消,从而达到同时有效抑制主副瓣干扰的目的,在极化对消主瓣干扰之前,优先对主辅雷达的主瓣干扰空间导向矢量进行了修正,用来提升主瓣干扰抑制效果。

    图  2  主副瓣干扰同时抑制流程
    Figure  2.  The main-lobe and side-lobe interference suppressed simultaneously

    对主辅雷达H极化和V极化通道内副瓣干扰进行自适应抑制,不失一般性,以主雷达的H极化通道为例进行相应算法介绍。主雷达H极化通道信号加权求和为

    Y = WHX (14)

    其中,W为波束形成权矢量,()H为共轭转置。在信号回波无失真同时最小化输出通道条件下求取最优矢量

    minWWHRW;s.t.WHa0=1 (15)

    根据拉格朗日乘子法求取最优权

    Wopt = μR1a0 (16)

    其中,μ = 1/(aH0R1a0)为归一化复常数,R为接收协方差矩阵

    R= E{XXH}=Rs+R1+Rj+Rn=σ20a0aH0+σ21a1aH1+nk=2σ2kakaHk+σ2nI (17)

    其中,E{}为数学期望,Rs为信号协方差矩阵,R1为主瓣干扰协方差矩阵,Rj为副瓣干扰协方差矩阵,Rn为噪声协方差矩阵;σ20, σ21, σ2k, σ2n分别代表信号功率、主瓣干扰功率、副瓣干扰功率和噪声功率,a0, a1, ak分别为信号、主瓣干扰和第k个干扰的空域导向矢量,I代表单位矩阵。实际中,常利用样本协方差矩阵ˆR来代替R

    ˆR = 1LLl=1X(l)XH(l) (18)

    其中,L为样本数。在主副瓣干扰同时存在情况下,直接对干扰进行抑制会导致主波束畸变[15]。为了在主波束保形条件下实现副瓣干扰抑制,需对接收协方差矩阵进行重构。本文通过构建特征投影矩阵来遮蔽主瓣干扰和目标回波,假设Θ为3 dB主瓣宽度对应的角度区域,主瓣干扰和目标回波均落在该角度区域内,通过构建一个特征投影矩阵B来消除主瓣干扰和目标回波[20]B可以表示为

    B=IUUH+ΔI (19)

    其中,U=[a(θ0κδ),a(θ0(κ1)δ),,a(θ0+κδ)]U为导向矢量矩阵,由2κ + 1个导向矢量构成,δκ分别为角度展宽间隔和角度展宽个数,预设的δκ应确保[a(θ0κδ),a(θ0+κδ)]覆盖ΘΔ为加载量。对接收到的数据用投影矩阵B来消除主瓣干扰和目标回波信号成分

    ˆX=BH(X(l))=BH(Xt(l)+X1(l)+Xj(l)+Xn(l))BH(Xj(l)+Xn(l)) (20)

    将投影后的数据代入式(18),其协方差矩阵表示为

    ˜R=1LLl=1ˆX(l)ˆXH(l)=BH1KLl=1ˆX(l)ˆXH(l)B=BHˆRB (21)

    修正后的最优权矢量应为

    Wopt = μ˜R1a0 (22)

    采用式(22)权矢量可实现主辅雷达两个极化通道副瓣干扰抑制;然后将辅雷达两个极化通道数据送主雷达,形成了主辅雷达两个极化4通道数据,本文假设通道间数据在时域上已对齐,输出的主辅雷达4通道数据可表示为

    Ypa = [YpH,YpV,YaH,YaV]T (23)

    其中,Ym=WHoptXm为副瓣干扰对消后数据,下标m代表主辅雷达不同极化通道pH, pV, aH以及aV

    考虑干扰信号的入射角度与主辅雷达的波束指向存在角度偏差且存在方向误差,导致主辅雷达的干扰信号极化导向矢量与理想导向矢量存在误差,从而在一定程度上影响干扰对消结果;为了消除该影响,拟通过约束条件对估计的干扰信号极化导向矢量sp进行优化[21],约束条件如下:

    min sHpR1ysp;s.t.sp˜spi2=δ (24)

    其中,δ为常数,用来代表极化导向矢量偏差大小,˜sp=[spH,spV,saH,saV]为理想极化导向矢量,Ry为无源侦收条件下双基地极化通道协方差矩阵。

    Ry= E{YpaYHpa}=Rin=Ry1+Ryn=σ21a1aH1+σ2nI (25)

    通过拉格朗日乘子法求解式(24),求解式为

    J(sp) = sHpR1ysp+ζ(sp˜spi2δ) (26)

    其中,ζ为拉格朗日乘数,通过对sp求梯度运算,并令其为零,最终可以解得

    ζ=1s1pR1ysp (27)

    从而求得最优加权矢量Wpa

    Wpa=R1ysps1pR1ysp (28)

    从而获得的主瓣干扰对消后输出为

    Z=WHpaYpa (29)

    通过构建干扰对抗场景对本文算法的有效性进行计算仿真。主要参数如下:双基地雷达平台飞行高度为8000 m,飞行速度150 m/s,同向飞行,天线阵面构型为1×48,载频1250 MHz,重复频率8000 Hz,采样带宽5 MHz。假设主辅雷达两个平台距离相隔50 km,干扰1极化参数(γ,η)=(30,60),干扰2极化参数(γ,η)=(20,50),干扰3极化参数(γ,η)=(45,45),目标极化参数(γ,η)=(10,70)δ为0.2°,Δ为1e-4,干扰和目标的相对主辅雷达的距离和入射角度等其他参数如表1所示。文中为简化说明,假设将辅雷达的干扰数据传输到主雷达来对消,仅考虑主雷达的目标检测,辅雷达的目标暂不考虑,其与主雷达的目标融合算法另文论述。

    表  1  干扰与目标参数
    Table  1.  Interference and target parameters
    类型距主雷达距离(km)入射角度(º)距辅雷达距离(km)入射角度(º)干噪比/信噪比(dB)
    干扰1350.0(85.9, –1)350.0(94.1, –1)40
    干扰2300.0(50.0, –1)270.5(58.2, –1)40
    干扰3150.0(80.4, –2)150.0(99.6, –2)15
    目标1148.0(80.3, –2)148.0(99.7, –2)25
    下载: 导出CSV 
    | 显示表格

    在天线坐标系下进行主辅雷达主瓣区域构建凹口遮蔽主瓣干扰和目标回波仿真。假定波束指向角(90.0°, 0°)为阵面法向,根据主雷达波束排布,当(80.0°, 0°)为波束指向时,转换为天线坐标系下为(–10.0°, 0°)。在此波束指向下,分别构建波束指向角、3 dB波束宽度以及主波束宽度3种情况凹口。其中,波束指向角对应δ = 0, κ = 1,3 dB波束宽度对应δ = 0.05, κ = 80,主波束宽度对应δ = 0.05, κ = 120;从图3(a)可看出,在此3种情况下均能有效形成凹口;同样,在辅助雷达波束指向(10°, 0°)时,此3种情况均能形成有效凹口,如图3(b)所示。

    图  3  主辅雷达凹口构建仿真
    Figure  3.  Simulation of the primary and auxiliary radar notch construction

    在天线坐标系下进行干扰抑制响应分析,3个干扰在天线坐标系下对应角度分别为干扰1(–4.1°, –1°)、干扰2 (–40°, –1°)、干扰3 (–9.6°, –2°),目标为(–9.7°, –2°),其中,干扰1、干扰2为副瓣干扰,干扰3为主瓣干扰。图4(a)给出了协方差矩阵未重构情况下的空间自适应响应图,从图中可看出,因同时存在主副瓣干扰,主波束出现畸变,影响目标检测。图4(b)为主波束遮蔽后空间自适应响应图, 从图中可看出,主波束内干扰方向没有形成零点,主波束没有畸变,而副瓣干扰方向形成凹口,副瓣干扰得到抑制而目标检测基本不受影响。

    图  4  主雷达自适应响应方向图
    Figure  4.  Adaptive response pattern of the primary radar

    同样对辅雷达进行分析,根据辅雷达波束排布,当(100.0°,0°)为波束指向时,转换为天线坐标系下为(10.0°, 0°),干扰在天线坐标系下分别为干扰1(4.1°, –1°),干扰2(–31.8°, –1°),干扰3(9.6°, –2°),以及目标(9.7°, –2°)。其中,干扰1、干扰2为副瓣干扰,干扰3为主瓣干扰,其空间自适应响应图在有、没有遮蔽条件下的结果分别为图5(a)图5(b)所示。从图中可看出,通过重构协方差矩阵可对主波束进行遮蔽,在抑制干扰时,主波束没有畸变,而在副瓣干扰方向形成凹口,能形成对副瓣干扰有效抑制,而未重构协方差矩阵则对目标检测存在影响。

    图  5  辅雷达自适应响应方向图
    Figure  5.  Adaptive response pattern of the auxiliary radar

    双基地极化敏感阵列采用单发双收模式,主雷达发射,主辅雷达分别接收,对接收的目标空间-极化参数(θ,φ,γ,η)进行仿真,仿真结果如图6所示(考虑俯仰角φ相同,不单独给出),从图中可看出,目标极化参数(10,70)相同,但由于目标进入主辅雷达的空间角度不同,主雷达为80.3,辅雷达为99.7,主辅雷达接收的目标回波信号也就不同;而对于干扰信号来说,极化参数和空间角度基本相同,因此利用主辅雷达进行主瓣干扰对消而对目标基本不产生影响。

    图  6  主辅雷达的目标空间-极化分布
    Figure  6.  The space-polarization of targets of the primary and auxiliary radar

    在主副瓣干扰同时存在条件下,文献[19]算法的干扰抑制能力大幅下降,而采用本文方法则可有效抑制。图7给出主瓣干扰对消仿真结果,通过500次蒙特卡罗实验验证。从仿真结果来看,导向矢量未修正时主瓣干扰能被有效抑制,干扰抑制后的目标信干噪比为21.53 dB,损失了约3.5 dB;通过导向矢量修正后,干扰抑制能力进一步改善,干扰抑制后的目标信干噪比为22.8 dB,损失了约2.2 dB。

    图  7  主瓣干扰对消后目标仿真
    Figure  7.  Simulation of target under the main-lobe interference suppressed

    本文针对主副瓣干扰难以同时抑制,而双基地雷达对基线长度又有限定问题,提出了一种基于机载双基地-极化分级同时对抗主副瓣干扰的方法。该方法充分利用目标在主辅雷达的极化特性存在差异,而干扰基本相同的特点,推导了机载双基地雷达分级对消处理算法,并对算法进行理论分析与仿真验证。仿真表明,该方法在对主副瓣干扰抑制的同时实现了目标的有效检测,所提算法有效提升了机载雷达对抗复杂电磁环境能力,为后续开展分布式协同探测研究打下基础。

  • 图  1  基于广域节点分布的大规模MIMO雷达系统定位场景

    Figure  1.  Location diagram of massive MIMO radar system based on wide-area node distribution

    图  2  1比特数字雷达射频采样前端

    Figure  2.  RF sampling front end of one-bit digital radar

    图  3  1bit-DPD算法流程图

    Figure  3.  Flow chart for 1bit-DPD algorithm

    图  4  不同信噪比下1bit-DPD算法代价函数平面

    Figure  4.  1bit-DPD cost function plane under different SNR

    图  5  不同信噪比下1bit-DPD与1bit-IDP有效估计率曲线

    Figure  5.  Effective estimation rate curves of 1bit-DPD and 1bit-IDP under different SNR

    图  6  不同信噪比下1bit-DPD与1bit-IDP以及16bit-DPD的定位性能对比图

    Figure  6.  Comparison of localization performance of 1bit-DPD, 1bit-IDP and 16bit-DPD under different SNR

    图  7  不同过采样因子v下1bit-DPD和1bit-IDP的定位性能对比图

    Figure  7.  Localization performance of 1bit-DPD and 1bit-IDP under different over-sampling factors v

    图  8  不同天线数量下1bit-DPD和1bit-IDP的定位性能

    Figure  8.  Localization performance of 1bit-DPD and 1bit-IDP under different number of base stations

    表  1  式(25)的梯度下降求解步骤

    Table  1.   The gradient descent solution for Eq. (25)

     初始化˜α0mn, 0<ξ1, 0<ζ1
     迭代:对于l=0lmax
     1:计算代价函数\Xi \left( {\tilde \alpha _{{\rm{mn}}}^l} \right)\nabla \left( {\Xi \left( {\tilde \alpha _{{\rm{mn}}}^l} \right)} \right)
     2:初始化步长{u^l} = {u_{{\rm{init}}} },更新
       \tilde \alpha _{{\rm{mn}}}^{l + 1} = \tilde \alpha _{{\rm{mn}}}^l - {u^l}\nabla \left( {\Xi \left( {{{\tilde \alpha }_{{\rm{mn}}}}} \right)} \right)
     3:当\Xi \left( {\tilde \alpha _{{\rm{mn}}}^{l + 1}} \right) > \Xi \left( {\tilde \alpha _{{\rm{mn}}}^l} \right) - \xi {u^l}\left\| {\nabla \left( {\Xi \left( {\tilde \alpha _{{\rm{mn}}}^l} \right)} \right)} \right\|_2^2,令
       {u^l} = \zeta {u_{{\rm{init}}} }
     更新\tilde \alpha _{{\rm{mn}}}^{l + 1} = \tilde \alpha _{{\rm{mn}}}^l - {u^l}\nabla \left( {\Xi \left( {{{\tilde \alpha }_{{\rm{mn}}}}} \right)} \right)
     4:满足停止条件,退出
    下载: 导出CSV

    表  2  数据量及功耗对比

    Table  2.   Comparison of data volume and power consumption

    算法单个采样点数据量功耗
    16bit-DPD2 Byte(实部/虚部)约为几瓦
    1bit-DPD1 bit(实部/虚部)约几毫瓦
    下载: 导出CSV
  • [1] LESTURGIE M. T06 — MIMO radar[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 33.
    [2] NORRDINE A, CETINKAYA H, and HERSCHEL R. Radar wave based positioning of spatially distributed MIMO radar antenna systems for near-field nondestructive testing[J]. IEEE Sensors Letters, 2020, 4(5): 5500804. doi: 10.1109/LSENS.2020.2989546
    [3] KHAMIDULLINA L, PODKURKOV I, and HAARDT M. Conditional and unconditional Cramér-Rao bounds for near-field localization in bistatic MIMO radar systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 3220–3234. doi: 10.1109/TSP.2021.3082469
    [4] SONG Haibo, WEN Gongjian, LIANG Yuanyuan, et al. Target localization and clock refinement in distributed MIMO radar systems with time synchronization errors[J]. IEEE Transactions on Signal Processing, 2021, 69: 3088–3103. doi: 10.1109/TSP.2021.3081038
    [5] DONTAMSETTI S G and KUMAR R V R. A distributed MIMO radar with joint optimal transmit and receive signal combining[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 623–635. doi: 10.1109/TAES.2020.3027103
    [6] LA MANNA M and FUHRMANN D R. Cramér-Rao lower bounds comparison for 2D hybrid-MIMO and MIMO radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 404–413. doi: 10.1109/JSTSP.2016.2627187
    [7] HACK D E, PATTON L K, HIMED B, et al. Detection in passive MIMO radar networks[J]. IEEE Transactions on Signal Processing, 2014, 62(11): 2999–3012. doi: 10.1109/TSP.2014.2319776
    [8] ZHENG Yang, SHENG Min, LIU Junyu, et al. Exploiting AoA estimation accuracy for indoor localization: A weighted AoA-based approach[J]. IEEE Wireless Communications Letters, 2019, 8(1): 65–68. doi: 10.1109/LWC.2018.2853745
    [9] SHAO Huajie, ZHANG Xiaoping, and WANG Zhi. Efficient closed-form algorithms for AOA based self-localization of sensor nodes using auxiliary variables[J]. IEEE Transactions on Signal Processing, 2014, 62(10): 2580–2594. doi: 10.1109/TSP.2014.2314064
    [10] 刘振, 苏晓龙, 刘天鹏, 等. 基于矩阵差分的远场和近场混合源定位方法[J]. 雷达学报, 2021, 10(3): 432–442. doi: 10.12000/JR20145

    LIU Zhen, SU Xiaolong, LIU Tianpeng, et al. Matrix differencing method for mixed far-field and near-field source localization[J]. Journal of Radars, 2021, 10(3): 432–442. doi: 10.12000/JR20145
    [11] ZHANG Fengrui, GAO Lin, SUN Yimao, et al. Time-delay-based target localization in wireless sensor network with unknown noise covariance[J]. IEEE Sensors Letters, 2021, 5(1): 7000104. doi: 10.1109/LSENS.2020.3048417
    [12] JIA Tianyi, HO K C, WANG Haiyan, et al. Effect of sensor motion on time delay and Doppler shift localization: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5881–5895. doi: 10.1109/TSP.2019.2946025
    [13] WEN Fei, LIU Peilin, WEI Haichao, et al. Joint azimuth, elevation, and delay estimation for 3-D indoor localization[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4248–4261. doi: 10.1109/TVT.2018.2794322
    [14] 赵勇胜, 赵拥军, 赵闯. 联合角度和时差的单站无源相干定位加权最小二乘算法[J]. 雷达学报, 2016, 5(3): 302–311. doi: 10.12000/JR15133

    ZHAO Yongsheng, ZHAO Yongjun, and ZHAO Chuang. Weighted least squares algorithm for single-observer passive coherent location using DOA and TDOA measurements[J]. Journal of Radars, 2016, 5(3): 302–311. doi: 10.12000/JR15133
    [15] AMAR A and WEISS A J. Localization of narrowband radio emitters based on Doppler frequency shifts[J]. IEEE Transactions on Signal Processing, 2008, 56(11): 5500–5508. doi: 10.1109/TSP.2008.929655
    [16] BIANCHI V, CIAMPOLINI P, and DE MUNARI I. RSSI-based indoor localization and identification for ZigBee wireless sensor networks in smart homes[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(2): 566–575. doi: 10.1109/TIM.2018.2851675
    [17] HOANG M T, YUEN B, DONG Xiaodai, et al. Recurrent neural networks for accurate RSSI indoor localization[J]. IEEE Internet of Things Journal, 2019, 6(6): 10639–10651. doi: 10.1109/JIOT.2019.2940368
    [18] TIRER T and WEISS A J. High resolution direct position determination of radio frequency sources[J]. IEEE Signal Processing Letters, 2016, 23(2): 192–196. doi: 10.1109/LSP.2015.2503921
    [19] TIRER T and WEISS A J. Performance analysis of a high-resolution direct position determination method[J]. IEEE Transactions on Signal Processing, 2017, 65(3): 544–554. doi: 10.1109/TSP.2016.2621729
    [20] MA Fuhe, LIU Zhangmeng, and GUO Fucheng. Distributed direct position determination[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 14007–14012. doi: 10.1109/TVT.2020.3025386
    [21] XIA Wei, LIU Wei, and ZHU Lingfeng. Distributed adaptive direct position determination based on diffusion framework[J]. Journal of Systems Engineering and Electronics, 2016, 27(1): 28–38.
    [22] WEISS A J. Direct position determination of narrowband radio frequency transmitters[J]. IEEE Signal Processing Letters, 2004, 11(5): 513–516. doi: 10.1109/LSP.2004.826501
    [23] PICARD J S and WEISS A J. Direct position determination sensitivity to NLOS propagation effects on Doppler-shift[J]. IEEE Transactions on Signal Processing, 2019, 67(14): 3870–3881. doi: 10.1109/TSP.2019.2923152
    [24] 吴癸周, 郭福成, 张敏. 信号直接定位技术综述[J]. 雷达学报, 2020, 9(6): 998–1013. doi: 10.12000/JR20040

    WU Guizhou, GUO Fucheng, and ZHANG Min. Direct position determination: An overview[J]. Journal of Radars, 2020, 9(6): 998–1013. doi: 10.12000/JR20040
    [25] 陈芳香, 易伟, 周涛, 等. 基于分数阶傅里叶变换的多辐射源被动直接定位算法[J]. 雷达学报, 2018, 7(4): 523–530. doi: 10.12000/JR18027

    CHEN Fangxiang, YI Wei, ZHOU Tao, et al. Passive direct location determination for multiple sources based on FRFT[J]. Journal of Radars, 2018, 7(4): 523–530. doi: 10.12000/JR18027
    [26] LI Bin, WANG Shusen, FENG Zhiyong, et al. Fast pseudo-spectrum estimation for automotive massive MIMO radar[J]. IEEE Internet of Things Journal, 2021, in press. doi: 10.1109/JIOT.2021.3052512
    [27] AHMED A M, AHMAD A A, FORTUNATI S, et al. A reinforcement learning based approach for multi-target detection in massive MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, in press. doi: 10.1109/TAES.2021.3061809
    [28] LI Bin, WANG Shusen, ZHANG Jun, et al. Fast randomized-MUSIC for Mm-wave massive MIMO radars[J]. IEEE Transactions on Vehicular Technology, 2021, 70(2): 1952–1956. doi: 10.1109/TVT.2021.3051266
    [29] FORTUNATI S, SANGUINETTI L, GINI F, et al. Massive MIMO radar for target detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 859–871. doi: 10.1109/TSP.2020.2967181
    [30] LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems[J]. IEEE Communications Magazine, 2014, 52(2): 186–195. doi: 10.1109/MCOM.2014.6736761
    [31] GOKCEOGLU A, BJÖRNSON E, LARSSON E G, et al. Spatio-temporal waveform design for multiuser massive MIMO downlink with 1-bit receivers[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 347–362. doi: 10.1109/JSTSP.2016.2628347
    [32] CIUONZO D, JAVADI S H, MOHAMMADI A, et al. Bandwidth-constrained decentralized detection of an unknown vector signal via multisensor fusion[J]. IEEE Transactions on Signal and Information Processing over Networks, 2020, 6: 744–758. doi: 10.1109/TSIPN.2020.3037832
    [33] WANG Xueqian, LI Gang, and VARSHNEY P K. Detection of sparse stochastic signals with quantized measurements in sensor networks[J]. IEEE Transactions on Signal Processing, 2019, 67(8): 2210–2220. doi: 10.1109/TSP.2019.2903034
    [34] 陈莹, 钟菲, 郭树旭. 非合作跳频信号参数的盲压缩感知估计[J]. 雷达学报, 2016, 5(5): 531–537. doi: 10.12000/JR15106

    CHEN Ying, ZHONG Fei, and GUO Shuxu. Blind compressed sensing parameter estimation of non-cooperative frequency hopping signal[J]. Journal of Radars, 2016, 5(5): 531–537. doi: 10.12000/JR15106
    [35] KILIÇ B, GÜNGÖR A, KALFA M, et al. Sensing matrix design for compressive sensing based direction of arrival estimation[C]. 2020 28th Signal Processing and Communications Applications Conference (SIU), Gaziantep, Turkey, 2020: 1–4. doi: 10.1109/SIU49456.2020.9302073.
    [36] DING Wenbo, YANG Fang, PAN Changyong, et al. Compressive sensing based channel estimation for OFDM systems under long delay channels[J]. IEEE Transactions on Broadcasting, 2014, 60(2): 313–321. doi: 10.1109/TBC.2014.2315913
    [37] REN Jiaying and LI Jian. One-bit digital radar[C]. 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, USA, 2017: 1142–1146. doi: 10.1109/ACSSC.2017.8335529.
    [38] LI Yongzhi, TAO Cheng, SECO-GRANADOS G, et al. Channel estimation and performance analysis of one-bit massive MIMO systems[J]. IEEE Transactions on Signal Processing, 2017, 65(15): 4075–4089. doi: 10.1109/TSP.2017.2706179
    [39] DABEER O and KARNIK A. Signal parameter estimation using 1-bit dithered quantization[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5389–5405. doi: 10.1109/TIT.2006.885461
    [40] DABEER O and MASRY E. Multivariate signal parameter estimation under dependent noise from 1-bit dithered quantized data[J]. IEEE Transactions on Information Theory, 2008, 54(4): 1637–1654. doi: 10.1109/TIT.2008.917637
    [41] FANG Jun, LIU Yumeng, LI Hongbin, et al. One-bit quantizer design for multisensor GLRT fusion[J]. IEEE Signal Processing Letters, 2013, 20(3): 257–260. doi: 10.1109/LSP.2013.2243144
    [42] LI Xiaoying, FANG Jun, LIU Yumeng, et al. One-bit quantization for multi-sensor GLRT detection of unknown deterministic signals[C]. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, Canada, 2013: 4251–4255. doi: 10.1109/ICASSP.2013.6638461.
    [43] BAR-SHALOM O and WEISS A J. DOA estimation using one-bit quantized measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 868–884. doi: 10.1109/TAES.2002.1039405
    [44] XI Feng, XIANG Yijian, ZHANG Zhen, et al. Joint angle and Doppler frequency estimation for MIMO radar with one-bit sampling: A maximum likelihood-based method[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(6): 4734–4748. doi: 10.1109/TAES.2020.3000841
    [45] ZHU Si, SUN Fei, and CHEN Xiaohui. Joint UWB TOA and AOA estimation under 1-bit quantization resolution[C]. 2013 IEEE/CIC International Conference on Communications in China (ICCC), Xi’an, China, 2013: 321–326. doi: 10.1109/ICCChina.2013.6671136.
    [46] YI Wei, ZHOU Tao, AI Yue, et al. Suboptimal low complexity joint multi-target detection and localization for non-coherent MIMO radar with widely separated antennas[J]. IEEE Transactions on Signal Processing, 2020, 68: 901–916. doi: 10.1109/TSP.2020.2968282
    [47] HAIMOVICH A M, BLUM R S, and CIMINI L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116–129. doi: 10.1109/MSP.2008.4408448
    [48] HE Qian, BLUM R S, and HAIMOVICH A M. Noncoherent MIMO radar for location and velocity estimation: More antennas means better performance[J]. IEEE Transactions on Signal Processing, 2010, 58(7): 3661–3680. doi: 10.1109/TSP.2010.2044613
    [49] RIBEIRO A and GIANNAKIS G B. Bandwidth-constrained distributed estimation for wireless sensor networks-part I: Gaussian case[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 1131–1143. doi: 10.1109/TSP.2005.863009
    [50] WANG Wei and LI Hongbin. Distributed maximum likelihood estimation for bandwidth-constrained wireless sensor networks[C]. 2006 IEEE 12th Digital Signal Processing Workshop & 4th IEEE Signal Processing Education Workshop, Teton National Park, USA, 2006: 506–510. doi: 10.1109/DSPWS.2006.265475.
    [51] BOYD S P and VANDENBERGHE L. Convex Optimization[M]. New York: Cambridge University Press, 2004.
    [52] HAN Xiaodong, SHU Ting, HE Jin, et al. Joint angle-frequency estimation using nested sampling with one-bit quantization[J]. Circuits, Systems, and Signal Processing, 2020, 39(8): 4187–4197. doi: 10.1007/s00034-020-01351-8
    [53] OPPENHEIM A V and SCHAFER R W. Discrete-Time Signal Processing[M]. 3rd ed. Upper Saddle River: Prentice Hall, 2009: 140–214.
    [54] ZAMIR R. A proof of the Fisher information inequality via a data processing argument[J]. IEEE Transactions on Information Theory, 1998, 44(3): 1246–1250. doi: 10.1109/18.669301
    [55] SAMPFORD M R. Some inequalities on mill’s ratio and related functions[J]. The Annals of Mathematical Statistics, 1953, 24(1): 130–132. doi: 10.1214/aoms/1177729093
    [56] PINELIS I. Exact bounds on the inverse mills ratio and its derivatives[J]. Complex Analysis and Operator Theory, 2019, 13(4): 1643–1651. doi: 10.1007/s11785-018-0765-x
  • 期刊类型引用(4)

    1. 张仁李,朱蕾,邱爽,盛卫星. 单脉冲测角的二维分级主旁瓣干扰联合抑制方法. 电子与信息学报. 2024(01): 213-221 . 百度学术
    2. 谢前朋,杜奕航,孙兵,闫华,潘小义,赵锋. 基于降维变换的低复杂度双基地EMVS-MIMO雷达高分辨多维参数估计. 系统工程与电子技术. 2024(06): 1899-1907 . 百度学术
    3. 韩乐天,司伟建,曲明超. 双极化面阵的快速波达方向估计算法. 航空兵器. 2023(01): 120-126 . 百度学术
    4. 张翔,陈楠祺,张珂,王中洋. 基于斜投影算子的引信抗主瓣干扰方法. 装备环境工程. 2022(11): 10-17 . 百度学术

    其他类型引用(2)

  • 加载中
图(8) / 表(2)
计量
  • 文章访问数: 2119
  • HTML全文浏览量: 1495
  • PDF下载量: 306
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-09-01
  • 网络出版日期:  2021-09-24
  • 刊出日期:  2021-12-28

目录

/

返回文章
返回