Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface

FANG Zuqi CHENG Qiang CUI Tiejun

方祖琦, 程强, 崔铁军. 基于时域数字编码超材料的非线性准贝塞尔波束生成[J]. 雷达学报, 2021, 10(2): 267–273. DOI: 10.12000/JR21043
引用本文: 方祖琦, 程强, 崔铁军. 基于时域数字编码超材料的非线性准贝塞尔波束生成[J]. 雷达学报, 2021, 10(2): 267–273. DOI: 10.12000/JR21043
FANG Zuqi, CHENG Qiang, and CUI Tiejun. Nonlinear quasi-Bessel beam generation based on the time-domain digital-coding metasurface[J]. Journal of Radars, 2021, 10(2): 267–273. DOI: 10.12000/JR21043
Citation: FANG Zuqi, CHENG Qiang, and CUI Tiejun. Nonlinear quasi-Bessel beam generation based on the time-domain digital-coding metasurface[J]. Journal of Radars, 2021, 10(2): 267–273. DOI: 10.12000/JR21043

Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface

DOI: 10.12000/JR21043
Funds: The National Key Research and Development Program of China (2017YFA0700201), The National Natural Science Foundation of China (61890544)
More Information
    Author Bio:

    FANG Zuqi (1995–) is a doctoral candidate at Southeast University. His main research interests are passive phased arr ays, smart antennas and metamaterials. E-mail: 230209030@seu.edu.cn

    CHENG Qiang (1979–) received the B.S. and M.S. degrees from the Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2001 and 2004, respectively, and the Ph.D. degree from Southeast University, Nanjing, in 2008. In 2008, he joined the State Key Laboratory of Millimeter Waves, Southeast University, where he was involved in the development of metamaterials and metadevices. He is currently a Full Professor with the School of Information Science and Engineering, Southeast University. He leads a group of Ph.D. students and master’s students in the areas of metamaterials, tunable microwaves circuits, microwave imaging, and terahertz systems. He has authored or coauthored more than 100 publications, with citation over 2000 times. E-mail: qiangcheng@seu.edu.cn

    CUI Tiejun (1965–) is the academician of Chinese Academy of Sciences and the Chief Professor of Southeast University, Nanjing, China. He authored or co-authored two books and published over 500 peer-review journal papers, which have been cited by more than 35000 times (H-index 93, Google Scholar). He proposed the concepts of digital coding metamaterials, programmable metamaterials, and information metamaterials, and realized their first demonstrations. Dr. Cui received the National Natural Science Awards of China in 2014 and 2018, respectively. Based on Clarivate Analytics, he was a Highly Cited Researcher (Web of Science) in 2019 and 2020, and his researches have been widely reported by Nature News, Science, MIT Technology Review, Scientific American, New Scientists, etc. Dr. Cui is an IEEE Fellow. E-mail: tjcui@seu.edu.cn

    Corresponding author: CUI Tiejun. E-mail: tjcui@seu.edu.cn
  • 摘要: 准贝塞尔光束是一种广泛应用于微波和光学领域中的非衍射波束。虽然有许多生成准贝塞尔波束的方法被提出,但它们只应用于线性系统中,因此非线性准贝塞尔波束的生成仍然是一个重大的挑战。为此,作者提出了一种基于时域数字编码超表面的高次谐波上的准贝塞尔光束产生方法,通过适当的编码方案实现对非线性频率分量上的超表面相位分布的精确控制,并详细分析了相位离散化对贝塞尔波束形成造成的影响。仿真结果验证了该方法的有效性,并为非线性波束生成提供了一条新的路径。

     

  • Figure  1.  Schematic of the nonlinear Quasi-Bessel beam generation based on the metasurface

    Figure  2.  Phase distribution of the metasurface in order to get a nonlinear zeroth-order Quasi-Bessel beam

    Figure  3.  Dependence of the metasurface reflectivity on normalized time (a) and generation of the first order harmonic at the incidence of the monochromatic wave with the carrier frequency of f0 (b)

    Figure  4.  Dependence of the first harmonic phase on the delay time (Time delay quantization effects are taken into account)

    Figure  5.  The relative amplitudes of the higher-order harmonics due to the time delay quantization

    Figure  6.  Continuous harmonic phase distribution (a) and discrete harmonic phase distribution (b) of the metasurface

    Figure  7.  Simulated electric field distributions of the first order harmonic Quasi-Bessel beam at a cutplane perpendicular to the metasurface, when the phase profile of the metasurface

    Figure  8.  The simulated first order harmonic electric field distributions at a cutplane parallel to the metasurface

  • [1] DURNIN J, MICELI J J JR, and EBERLY J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499–1501. doi: 10.1103/PhysRevLett.58.1499
    [2] LEMAITRE-AUGER P, ABIELMONA S, and CALOZ C. Generation of bessel beams by two-dimensional antenna arrays using sub-sampled distributions[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(4): 1838–1849. doi: 10.1109/TAP.2012.2232263
    [3] VASARA A, TURUNEN J, and FRIBERG A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America A, Optics and Image Science, 1989, 6(11): 1748–1754. doi: 10.1364/JOSAA.6.001748
    [4] SCOTT G and MCARDLE N. Efficient generation of nearly diffraction-free beams using an axicon[J]. Optical Engineering, 1992, 31(12): 2640–2643. doi: 10.1117/12.60017
    [5] XU Hexiu, HAN Lei, LI Ying, et al. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control[J]. ACS Photonics, 2019, 6(1): 211–220. doi: 10.1021/acsphotonics.8b01439
    [6] XU Hexiu, HU Guangwei, LI Ying, et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation[J]. Light: Science & Applications, 2019, 8(1): 3. doi: 10.1038/s41377-018-0113-y
    [7] QI Meiqing, TANG Wenxuan, and CUI Tiejun. A broadband bessel beam launcher using metamaterial[J]. Scientific Reports, 2015, 5: 11732. doi: 10.1038/srep11732
    [8] PFEIFFER C and GRBIC A. Controlling vector bessel beams with metasurfaces[J]. Physical Review Applied, 2014, 2(4): 044012. doi: 10.1103/PhysRevApplied.2.044012
    [9] ZHANG Cheng, YANG Jin, YANG Liuxi, et al. Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics[J]. Nanophotonics, 2020, 9(9): 2771–2781. doi: 10.1515/nanoph-2019-0538
    [10] ROSE A, POWELL D A, SHADRIVOV I V, et al. Circular dichroism of four-wave mixing in nonlinear metamaterials[J]. Physical Review B, 2013, 88(19): 195148. doi: 10.1103/PhysRevB.88.195148
    [11] LUO Zhangjie, CHEN Mingzheng, WANG Zhengxing, et al. Digital nonlinear metasurface with customizable nonreciprocity[J]. Advanced Functional Materials, 2019, 29(49): 1906635. doi: 10.1002/adfm.201906635
    [12] STEWART S A, SMY T J, and GUPTA S. Finite-difference time-domain modeling of space-time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 281–292. doi: 10.1109/TAP.2017.2772045
    [13] ROSE A and SMITH D R. Overcoming phase mismatch in nonlinear metamaterials [Invited][J]. Optical Materials Express, 2011, 1(7): 1232–1243. doi: 10.1364/OME.1.001232
    [14] KLEIN M W, ENKRICH C, WEGENER M, et al. Second-harmonic generation from magnetic metamaterials[J]. Science, 2006, 313(5786): 502–504. doi: 10.1126/science.1129198
    [15] HADAD Y, SOUNAS D L, and ALU A. Space-time gradient metasurfaces[J]. Physical Review B, 2015, 92: 100304. doi: 10.1103/PhysRevB.92.100304
    [16] SHALTOUT A, KILDISHEV A, and SHALAEV V. Time-varying metasurfaces and Lorentz non-reciprocity[J]. Optical Materials Express, 2015, 5(11): 2459–2467. doi: 10.1364/OME.5.002459
    [17] LUO Zhangjie, WANG Qiang, ZHANG Xin’ge, et al. Intensity‐dependent metasurface with digitally reconfigurable distribution of nonlinearity[J]. Advanced Optical Materials, 2019, 7(19): 1900792. doi: 10.1002/adom.201900792
    [18] DAI Junyan, YANG Liuxi, KE Junchen, et al. High-efficiency synthesizer for spatial waves based on space-time-coding digital metasurface[J]. Laser & Photonics Reviews, 2020, 14(6): 1900133. doi: 10.1002/lpor.201900133
  • 加载中
图(8)
计量
  • 文章访问数:  1522
  • HTML全文浏览量:  519
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 修回日期:  2021-04-26
  • 网络出版日期:  2021-04-28

目录

    /

    返回文章
    返回