时变极化编码表面及其在无线通信中的应用

胡琪 陈克 郑依琳 徐之源 王健 赵俊明 冯一军

胡琪, 陈克, 郑依琳, 等. 时变极化编码表面及其在无线通信中的应用[J]. 雷达学报, 2021, 10(2): 304–312. doi: 10.12000/JR21042
引用本文: 胡琪, 陈克, 郑依琳, 等. 时变极化编码表面及其在无线通信中的应用[J]. 雷达学报, 2021, 10(2): 304–312. doi: 10.12000/JR21042
HU Qi, CHEN Ke, ZHENG Yilin, et al. Time-varying polarization-converting programmable metasurface and its application in wireless communication system[J]. Journal of Radars, 2021, 10(2): 304–312. doi: 10.12000/JR21042
Citation: HU Qi, CHEN Ke, ZHENG Yilin, et al. Time-varying polarization-converting programmable metasurface and its application in wireless communication system[J]. Journal of Radars, 2021, 10(2): 304–312. doi: 10.12000/JR21042

时变极化编码表面及其在无线通信中的应用

doi: 10.12000/JR21042
基金项目: 国家重点研发计划(2017YFA0700201),国家自然科学基金(91963128, 62071215, 61801207, 61731010),江苏高校优势学科建设工程项目,中央高校基本科研基金
详细信息
    作者简介:

    胡 琪,女,南京大学电子科学与工程学院在读博士生,主要研究方向为时变调制超构表面和全空间超构表面及其在波束调控中的应用。E-mail: hqahq1111@126.com

    陈 克,男,博士,南京大学电子科学与工程学院副教授,主要研究方向为人工电磁材料及其在电磁吸波、波束形成、成像、天线设计等中的应用。E-mail: ke.chen@nju.edu.cn

    郑依琳,女,南京大学电子科学与工程学院在读博士生,主要研究方向为超构表面在波束调控、无线通信中的应用。E-mail: Zylecho@126.com

    赵俊明,男,博士,南京大学电子科学与工程学院教授,博士生导师,主要研究方向为电磁超构材料与电磁超构表面及其在微波段的应用。E-mail: jmzhao@nju.edu.cn

    冯一军,男,博士,南京大学电子科学与工程学院教授,博士生导师,主要研究方向为人工电磁材料设计及其在光电子器件中的应用、微波射频器件及其在无线通信技术中的应用以及天线与电磁波传播。E-mail: yjfeng@nju.edu.cn

    通讯作者:

    陈克 ke.chen@nju.edu.cn

    冯一军 yjfeng@nju.edu.cn

  • 责任主编:李廉林 Corresponding Editor: LI Lianlin
  • 中图分类号: TN925

Time-varying Polarization-converting Programmable Metasurface and Its Application in Wireless Communication System

Funds: The National Key Research and Development Program of China (2017YFA0700201), The National Natural Science Foundation of China (91963128, 62071215, 61801207, 61731010), The Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, The Fundamental Research Funds for the Central Universities and Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave
More Information
  • 摘要: 该文提出了一种时变极化编码超构表面的设计方法,实现了对电磁波基波与谐波分布的非线性调控。通过加载开关二极管的方式,超构表面可在2.4 GHz频率处实现转极化与同极化反射之间的动态切换,进而通过调节时域方波调制信号的占空比和频率,可在频域内调控电磁波基波与谐波的能量分配及频率偏移。在此基础上,利用超构表面的动态电磁响应,构建了基于二进制幅度调制方式的超构表面无线通信系统,实现对传输信息的直接调制和实时传输,其中该无线通信系统的最高传输码率可达625 kbps。所有实验结果均与理论计算吻合良好。该文所提出的设计方法在下一代通信、高分辨率成像等实际应用中具有良好的发展前景。

     

  • 图  1  基于幅度调制的时变方波调制信号示意图

    Figure  1.  Square-wave-type time-varying signals used for AM

    图  2  转极化超构表面单元

    Figure  2.  Schematic of the proposed polarization-converting meta-atom

    图  3  转极化超构表面单元在开关二极管导通(ON)与截止(OFF)时同极化与交叉极化反射系数的全波仿真结果

    Figure  3.  Full-wave simulated co- and cross- polarized results of meta-atom switching between“ON”state and“OFF”state

    图  4  加工样品与测试环境

    Figure  4.  Photo of fabricated sample and experimental configuration

    图  5  超构表面在占空比为50%的不同频率的方波信号调制下各阶谐波反射幅度的计算值与测试值

    Figure  5.  Calculated and measured spectral intensities under square-wave-type time-varying modulation with different modulation frequency but identical duty cycle S=50%

    图  6  超构表面在不同占空比、频率为500 kHz方波信号调制下的各阶谐波反射幅度的计算值与测试值

    Figure  6.  Calculated and measured spectral intensities under square-wave-type time-varying modulation of 500 kHz with different duty cycle

    图  7  无线通信系统

    Figure  7.  The proposed wireless communication system

  • [1] YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [2] DING Guowen, CHEN Ke, LUO Xinyao, et al. Dual-helicity decoupled coding metasurface for independent spin-to-orbital angular momentum conversion[J]. Physical Review Applied, 2019, 11(4): 044043. doi: 10.1103/PhysRevApplied.11.044043
    [3] TSENG M L, HSIAO H H, CHU C H, et al. Metalenses: Advances and applications[J]. Advanced Optical Materials, 2018, 6(18): 1800554. doi: 10.1002/adom.201800554
    [4] CHEN Ke, FENG Yijun, MONTICONE F, et al. A reconfigurable active huygens’ metalens[J]. Advanced Materials, 2017, 29(17): 1606422. doi: 10.1002/adma.201606422
    [5] CHEN Ke, ZHANG Na, DING Guowen, et al. Active anisotropic coding metasurface with independent real-time reconfigurability for dual polarized waves[J]. Advanced Materials Technologies, 2020, 5(2): 1900930. doi: 10.1002/admt.201900930
    [6] ZHANG Na, CHEN Ke, ZHENG Yilin, et al. Programmable coding metasurface for dual-band independent real-time beam control[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 20–28. doi: 10.1109/jetcas.2020.2973310
    [7] RATNI B, DE LUSTRAC A, PIAU G P, et al. Electronic control of linear-to-circular polarization conversion using a reconfigurable metasurface[J]. Applied Physics Letters, 2017, 111(21): 214101. doi: 10.1063/1.4998556
    [8] MA Xiaoliang, PAN Wenbo, HUANG Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945–949. doi: 10.1002/adom.201400212
    [9] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [10] TYMCHENKO M, GOMEZ-DIAZ J S, LEE J, et al. Gradient nonlinear pancharatnam-berry metasurfaces[J]. Physical Review Letters, 2015, 115(20): 207403. doi: 10.1103/PhysRevLett.115.207403
    [11] WU Zhanni and GRBIC A. Serrodyne frequency translation using time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1599–1606. doi: 10.1109/tap.2019.2943712
    [12] LIU Mingkai, KOZYREV A B, and SHADRIVOV I V. Time-varying metasurfaces for broadband spectral camouflage[J]. Physical Review Applied, 2019, 12(5): 054052. doi: 10.1103/PhysRevApplied.12.054052
    [13] RAMACCIA D, SOUNAS D L, ALÙ A, et al. Phase-induced frequency conversion and doppler effect with time-modulated metasurfaces[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 1607–1617. doi: 10.1109/tap.2019.2952469
    [14] ZHANG Cheng, YANG Jin, YANG Liuxi, et al. Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics[J]. Nanophotonics, 2020, 9(9): 2771–2781. doi: 10.1515/nanoph-2019-0538
    [15] ZHAO Hanting, SHUANG Ya, WEI Menglin, et al. Metasurface-assisted massive backscatter wireless communication with commodity Wi-Fi signals[J]. Nature Communications, 2020, 11(1): 3926. doi: 10.1038/s41467-020-17808-y
    [16] SHUANG Ya, ZHAO Hanting, JI Wei, et al. Programmable high-order OAM-carrying beams for direct-modulation wireless communications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 29–37. doi: 10.1109/jetcas.2020.2973391
    [17] HU Jingzhi, ZHANG Hongliang, DI Boya, et al. Reconfigurable intelligent surface based RF sensing: Design, optimization, and implementation[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(11): 2700–2716. doi: 10.1109/jsac.2020.3007041
    [18] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [19] DAI Linglong, WANG Bichai, WANG Min, et al. Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[J]. IEEE Access, 2020, 8: 45913–45923. doi: 10.1109/access.2020.2977772
    [20] TANG Wankai, DAI Junyan, CHEN Mingzheng, et al. Programmable metasurface-based RF chain-free 8PSK wireless transmitter[J]. Electronics Letters, 2019, 55(7): 417–420. doi: 10.1049/el.2019.0400
    [21] ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
  • 加载中
图(7)
计量
  • 文章访问数:  1321
  • HTML全文浏览量:  672
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-05
  • 修回日期:  2021-04-17
  • 网络出版日期:  2021-04-28

目录

    /

    返回文章
    返回