光控电磁超材料研究进展

柏林 张信歌 蒋卫祥 崔铁军

柏林, 张信歌, 蒋卫祥, 等. 光控电磁超材料研究进展[J]. 雷达学报, 2021, 10(2): 240–258. doi: 10.12000/JR21013
引用本文: 柏林, 张信歌, 蒋卫祥, 等. 光控电磁超材料研究进展[J]. 雷达学报, 2021, 10(2): 240–258. doi: 10.12000/JR21013
BAI Lin, ZHANG Xin’ge, JIANG Weixiang, et al. Research progress of light-controlled electromagnetic metamaterials[J]. Journal of Radars, 2021, 10(2): 240–258. doi: 10.12000/JR21013
Citation: BAI Lin, ZHANG Xin’ge, JIANG Weixiang, et al. Research progress of light-controlled electromagnetic metamaterials[J]. Journal of Radars, 2021, 10(2): 240–258. doi: 10.12000/JR21013

光控电磁超材料研究进展

DOI: 10.12000/JR21013
基金项目: 国家自然科学基金(61890544),国家重点研发计划(2017YFA0700201)
详细信息
    作者简介:

    柏 林(1993–),女,吉林辽源人,东南大学博士研究生。主要研究方向为声学超材料、声电结合超材料、光控电磁超表面等。目前已发表SCI论文8篇,其中第一作者4篇。多次参加国内外学术会议。E-mail: nustbl@163.com

    张信歌(1991–),男,河南信阳人,东南大学博士研究生,主要研究方向为电磁超表面、基于超表面的新型功能器件和通信系统。目前以第一作者身份发表了9篇SCI论文,包括1篇《Nature Electronics》、2篇《Advanced Science》等。多次在国内外学术会议上做口头报告,获第1届全国超材料大会“研究生学术新人奖”。E-mail: xinge.zhang@qq.com

    蒋卫祥(1981–),男,江苏东台人,东南大学青年首席教授、博士生导师,中国电子学会高级会员、“青年科学家”俱乐部成员、中国材料学会超材料分会理事、IEEE Senior Member。2010年于东南大学毫米波国家重点实验室博士毕业后留校任教,主要研究方向为变换光学、透镜天线及可编程超表面。在《Nature Electronics》、《Advanced Materials》等学术刊物上发表SCI论文110余篇,合作撰写英文专著、中文专著各一本,研究成果曾多次被国际学术期刊选为“研究亮点”,所发表论文被国内外同行正面引用4300余次。曾获2011年教育部自然科学一等奖(排二),2014年国家自然科学二等奖(排三)、第十七届江苏省青年科技奖和2018年国家自然科学二等奖(排三),获国家自然科学基金优秀青年基金资助。E-mail: wxjiang81@seu.edu.cn

    崔铁军(1965–),男,中国科学院院士,东南大学首席教授,IEEE Fellow,研究方向为电磁超材料和计算电磁学。1993年获西安电子科技大学博士学位,1995—2002年先后任职德国洪堡学者、美国UIUC博士后和研究科学家。2001年受聘东南大学长江学者特聘教授;2002年获得国家杰出青年科学基金。2014年创建信息超材料新方向。发表学术论文500余篇,被引用35000余次、H因子93(谷歌学术)。研究成果入选2010年中国科学十大进展、2016年中国光学重要成果;获2011年教育部自然科学一等奖、2014年国家自然科学二等奖、2016年军队科学技术进步一等奖、2018年国家自然科学二等奖。E-mail: tjcui@seu.edu.cn

    通讯作者:

    蒋卫祥 wxjiang81@seu.edu.cn

    崔铁军 tjcui@seu.edu.cn

  • 责任主编:朱卫仁 Corresponding Editor: ZHU Weiren
  • 中图分类号: TN82

Research Progress of Light-controlled Electromagnetic Metamaterials

Funds: The National Natural Science Foundation of China (61890544), The National Key Research and Development Program of China (2017YFA0700201)
More Information
  • 摘要: 电磁超材料是由亚波长尺寸单元周期或非周期排列组成的人工结构,能对电磁波的频率、幅度、相位和极化等基本物理特征进行调控,突破了传统材料的限制,可实现很多自然界不存在的有趣物理现象及应用。过去二十余年,超材料因其强大的电磁调控能力一直是物理领域的研究热点。但无源超材料在电磁波调控中存在局限性,如工作频率固定、实现功能单一等。所以,可调有源超材料越来越受关注。通过引入有源元器件,超材料的功能可通过外部激励信号进行动态调控,在实际应用中具有重要意义。目前常用的控制方式包括电控、温控、光控和机械控制等,其中光控具有可远程调控、无接触式控制、调制速度快以及结构简单等优点。该文概述了近年来光控电磁超材料的研究进展,从直流、微波、太赫兹和光频段4种不同频段分别介绍现有光控超材料和超表面的工作,重点介绍其工作机制和应用场景,并对这一快速发展领域进行总结和展望。

     

  • 图  1  变换静电学超材料

    Figure  1.  Transformation direct-current metamaterials

    图  2  SRR结构的光控超材料

    Figure  2.  Light-controlled metamaterials with SRR structures

    图  3  1比特光控数字编码超表面[42]

    Figure  3.  1-bit light-controlled digital coding metasurface[42]

    图  4  光驱动可编程数字编码超表面[43]

    Figure  4.  Light-driven digital metasurface for programming electromagnetic functions[43]

    图  5  透射式光控编码超表面[44]

    Figure  5.  Light-controlled transmission-type digital coding metasurface[44]

    图  6  红外调控的可编程超表面的功能示意图[45]

    Figure  6.  Illustration of the infrared-controlled programmable metasurface[45]

    图  7  基于CW和SRR结构的EIT超材料

    Figure  7.  EIT metamaterials based on CW and SRR structures

    图  8  基于超材料的太赫兹光控吸收器

    Figure  8.  Light-controlled Terahertz absorbers based on metamaterials

    图  9  光控超材料传感器和光子自旋设备超表面

    Figure  9.  Light-controlled metamaterial sensor and spin-photonic devices based on metasurface

    图  10  基于GST的光控超表面[63]

    Figure  10.  Optically reconfigurable metasurface based on GST[63]

    图  11  动态颜色显示的钙钛矿纳米结构[65]

    Figure  11.  Perovskite nanostructure for dynamic color display[65]

    表  1  光控电磁超材料(超表面)特点总结表

    Table  1.   Summary of the characteristics of light-controlled electromagnetic metamaterials (metasurfaces)

    文献频率光控材料实现功能是否有实验结果
    [39]直流光敏电阻隐身斗篷与可调幻象设备
    [40]2.20~2.23 GHz光电二极管+变容二极管谐振频率可调
    [41]3 GHz左右光电二极管+变容二极管波束偏折、聚焦、发散
    [42]3.69~4.10 GHz光电二极管+变容二极管主波束与波束分裂的切换
    [43]5.2~7.6 GHz光电二极管+变容二极管微波外部隐身、电磁幻觉、动态涡旋波束调控
    [44]3.12 GHz, 5.72 GHz光电二极管+变容二极管透射状态切换
    [45]4.1~4.5 GHz红外接收模块+FPGA+变容二极管主波束与波束分裂
    [46]0.74 THz左右光敏材料硅电磁诱导透明效应可调
    [47]1.3 THz左右光敏材料硅电磁诱导透明效应可调
    [48]4.86~5.36 THz光敏材料硅多种谐振模式可切换
    [49]1.19~2.96 THz光敏材料砷化镓可调多频吸波器
    [50]0.518~1.514 THz光敏材料砷化镓+锗可调多频吸波器
    [51]0.645~1.716 THz光敏材料硅谐振峰可调
    [52]0.67 THz左右二氧化钒聚焦、发散、波束分裂、涡旋波发生器
    [56]远红外-中红外石墨烯等离子体共振可调
    [61]近红外-可见光锗锑碲合金透射反射率可调
    [63]近红外-可见光锗锑碲合金聚焦透镜焦距可调
    [65]可见光钙钛矿动态色彩显示
    [68]190.50~196.08 THz两束相干光脉冲恢复、相干滤波器和光对光调制器
    下载: 导出CSV
  • [1] CUI Tiejun, SMITH D R, and LIU Ruopeng. Metamaterials: Theory, Design, and Applications[M]. New York: Springer, 2010: 1–19.
    [2] SHELBY R A, SMITH D R, and SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79. doi: 10.1126/science.1058847
    [3] PENDRY J B, SCHURIG D, and SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782. doi: 10.1126/science.1125907
    [4] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980. doi: 10.1126/science.1133628
    [5] CUMMER S A, POPA B I, SCHURIG D, et al. Full-wave simulations of electromagnetic cloaking structures[J]. Physical Review E, 2006, 74(3): 036621. doi: 10.1103/PhysRevE.74.036621
    [6] CAI Wenshan, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224–227. doi: 10.1038/nphoton.2007.28
    [7] CHEN Hongsheng, WU B I, ZHANG Baile, et al. Electromagnetic wave interactions with a metamaterial cloak[J]. Physical Review Letters, 2007, 99(6): 063903. doi: 10.1103/PhysRevLett.99.063903
    [8] RUAN Zhichao, YAN Min, NEFF C W, et al. Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations[J]. Physical Review Letters, 2007, 99(11): 113903. doi: 10.1103/PhysRevLett.99.113903
    [9] MILLER D A B. On perfect cloaking[J]. Optics Express, 2006, 14(25): 12457–12466. doi: 10.1364/OE.14.012457
    [10] SILVEIRINHA M G, ALÙ A, and ENGHETA N. Parallel-plate metamaterials for cloaking structures[J]. Physical Review E, 2007, 75(3): 036603. doi: 10.1103/PhysRevE.75.036603
    [11] JIANG Weixiang, QIU Chengwei, HAN Tiancheng, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25(48): 6963–6968. doi: 10.1002/adma.201303657
    [12] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966–3969. doi: 10.1103/PhysRevLett.85.3966
    [13] WEN Dandan, YUE Fuyong, LI Guixin, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
    [14] ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi: 10.1038/NNANO.2015.2
    [15] LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
    [16] CHEN Tianhang, LI Jun, CAI Tong, et al. Design of a reconfigurable broadband greyscale multiplexed metasurface hologram[J]. Applied Optics, 2020, 59(12): 3660–3665. doi: 10.1364/AO.386811
    [17] HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35. doi: 10.1109/MAP.2012.6230714
    [18] POPA B I and CUMMER S A. Design and characterization of broadband acoustic composite metamaterials[J]. Physical Review B, 2009, 80(17): 174303. doi: 10.1103/PhysRevB.80.174303
    [19] LIANG Zixian and LI J. Extreme acoustic metamaterial by coiling up space[J]. Physical Review Letters, 2012, 108(11): 114301. doi: 10.1103/PhysRevLett.108.114301
    [20] GARCÍA-CHOCANO V M, CHRISTENSEN J, and SÁNCHEZ-DEHESA J. Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics[J]. Physical Review Letters, 2014, 112(14): 144301. doi: 10.1103/PhysRevLett.112.144301
    [21] DÍAZ-RUBIO A and TRETYAKOV S A. Acoustic metasurfaces for scattering-free anomalous reflection and refraction[J]. Physical Review B, 2017, 96(12): 125409. doi: 10.1103/PhysRevB.96.125409
    [22] KHORASANINEJAD M, CHEN Weiting, DEVLIN R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194. doi: 10.1126/science.aaf6644
    [23] HUANG Lingling, CHEN Xianzhong, MÜHLENBERND HOLGER, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi: 10.1038/ncomms3808
    [24] EL MAKLIZI M, HENDAWY M, and SWILLAM M A. Super-focusing of visible and UV light using a meta surface[J]. Journal of Optics, 2014, 16(10): 105007. doi: 10.1088/2040-8978/16/10/105007
    [25] ZHANG Xiyue, LI Qi, LIU Feifei, et al. Controlling angular dispersions in optical metasurfaces[J]. Light: Science & Applications, 2020, 9(1): 76. doi: 10.1038/s41377-020-0313-0
    [26] LI Ying, SHEN Xiangying, WU Zuhui, et al. Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503. doi: 10.1103/PhysRevLett.115.195503
    [27] NICOLAOU Z G and MOTTER A E. Mechanical metamaterials with negative compressibility transitions[J]. Nature Materials, 2012, 11(7): 608–613. doi: 10.1038/NMAT3331
    [28] PAN Fei, LI Yilun, LI Zhaoyu, et al. 3D pixel mechanical metamaterials[J]. Advanced Materials, 2019, 31(25): 1900548. doi: 10.1002/adma.201900548
    [29] LI Yong, SHI Zhusheng, RONG Qi, et al. Effect of pin arrangement on formed shape with sparse multi-point flexible tool for creep age forming[J]. International Journal of Machine Tools and Manufacture, 2019, 140: 48–61. doi: 10.1016/j.ijmachtools.2019.03.001
    [30] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99
    [31] GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636
    [32] RATNI B, DE LUSTRAC A, PIAU G P, et al. Active metasurface for reconfigurable reflectors[J]. Applied Physics A, 2018, 124(2): 104. doi: 10.1007/s00339-017-1502-4
    [33] SINGH R, AZAD A K, JIA Quanxi, et al. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Optics Letters, 2011, 36(7): 1230–1232. doi: 10.1364/OL.36.001230
    [34] CSELYUSZKA N, SEČUJSKI M, ENGHETA N, et al. Temperature-controlled acoustic surface waves[J]. New Journal of Physics, 2016, 18(10): 103006. doi: 10.1088/1367-2630/18/10/103006
    [35] MAO Min, LIANG Yaoyao, LIANG Ruisheng, et al. Dynamically temperature-voltage controlled multifunctional device based on VO2 and graphene hybrid metamaterials: Perfect absorber and highly efficient polarization converter[J]. Nanomaterials, 2019, 9(8): 1101. doi: 10.3390/nano9081101
    [36] BAI Lin, SONG Gangyong, JIANG Weixiang, et al. Acoustic tunable metamaterials based on anisotropic unit cells[J]. Applied Physics Letters, 2019, 115(23): 231902. doi: 10.1063/1.5125735
    [37] HAND T and CUMMER S. Characterization of tunable metamaterial elements using MEMS switches[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 401–404. doi: 10.1109/LAWP.2007.902807
    [38] FU Y H, LIU Aiqun, ZHU Weiming, et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Advanced Functional Materials, 2011, 21(18): 3589–3594. doi: 10.1002/adfm.201101087
    [39] JIANG Weixiang, LUO Chenyang, GE Shuo, et al. An optically controllable transformation-dc illusion device[J]. Advanced Materials, 2015, 27(31): 4628–4633. doi: 10.1002/adma.201500729
    [40] KAPITANOVA P V, MASLOVSKI S I, SHADRIVOV I V, et al. Controlling split-ring resonators with light[J]. Applied Physics Letters, 2011, 99(25): 251914. doi: 10.1063/1.3671617
    [41] SHADRIVOV I V, KAPITANOVA P V, MASLOVSKI S I, et al. Metamaterials controlled with light[J]. Physical Review Letters, 2012, 109(8): 083902. doi: 10.1103/PhysRevLett.109.083902
    [42] ZHANG Xin’ge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028
    [43] ZHANG Xin’ge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi: 10.1038/s41928-020-0380-5
    [44] ZHANG Xin’ge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi: 10.1063/1.5045718
    [45] SUN Yalun, ZHANG Xin’ge, YU Qian, et al. Infrared-controlled programmable metasurface[J]. Science Bulletin, 2020, 65(11): 883–888. doi: 10.1016/j.scib.2020.03.016
    [46] GU Jianqiang, SINGH R, LIU Xiaojun, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3: 1151. doi: 10.1038/ncomms2153
    [47] 王娅茹, 梁兰菊, 杨茂生, 等. 一种光控的电磁诱导透明太赫兹超材料[J]. 激光与光电子学进展, 2019, 56(4): 041603. doi: 10.3788/LOP56.041603

    WANG Yaru, LIANG Lanju, YANG Maosheng, et al. Terahertz metamaterial based on controllable electromagnetic induced transparency structure[J]. Laser &Optoelectronics Progress, 2019, 56(4): 041603. doi: 10.3788/LOP56.041603
    [48] GONG Cheng, SU Wenming, ZHANG Yang, et al. An active metamaterials controlled by structured light illumination[J]. Optik, 2018, 171: 204–209. doi: 10.1016/j.ijleo.2018.06.052
    [49] 孟庆龙, 张艳, 张彬, 等. 光控可调谐多频带太赫兹超材料吸收器的特性[J]. 激光与光电子学进展, 2019, 56(10): 101603. doi: 10.3788/LOP56.101603

    MENG Qinglong, ZHANG Yan, ZHANG Bin, et al. Characteristics of optically tunable multi-band terahertz metamaterial absorber[J]. Laser &Optoelectronics Progress, 2019, 56(10): 101603. doi: 10.3788/LOP56.101603
    [50] 李达民, 袁苏, 杨荣草, 等. 动态光调控多态太赫兹超材料吸收器[J]. 光学学报, 2020, 40(8): 0816001. doi: 10.3788/AOS202040.0816001

    LI Damin, YUAN Su, YANG Rongcao, et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 2020, 40(8): 0816001. doi: 10.3788/AOS202040.0816001
    [51] 刘婧, 沈京玲, 张存林, 等. 光调制超材料及其传感应用[J]. 红外与毫米波学报, 2020, 39(4): 430–433. doi: 10.11972/j.issn.1001-9014.2020.04.006

    LIU Jing, SHEN Jingling, ZHANG Cunlin, et al. Photo-excited tunable metamaterial and its sensing application[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 430–433. doi: 10.11972/j.issn.1001-9014.2020.04.006
    [52] LI Jie, LI Jitao, ZHANG Yating, et al. All-optical switchable terahertz spin-photonic devices based on vanadium dioxide integrated metasurfaces[J]. Optics Communications, 2020, 460: 124986. doi: 10.1016/j.optcom.2019.124986
    [53] GUO Peijun, SCHALLER R D, KETTERSON J B, et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude[J]. Nature Photonics, 2016, 10(4): 267–273. doi: 10.1038/NPHOTON.2016.14
    [54] ALAM M Z, SCHULZ S A, UPHAM J, et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material[J]. Nature Photonics, 2018, 12(2): 79–83. doi: 10.1038/s41566-017-0089-9
    [55] YANG Yuanmu, KELLEY K, SACHET E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 2017, 11(6): 390–395. doi: 10.1038/NPHOTON.2017.64
    [56] DAI Yunyun, XIA Yuyu, JIANG Tao, et al. Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations[J]. Advanced Optical Materials, 2018, 6(6): 1701081. doi: 10.1002/adom.201701081
    [57] AKSELROD G M, MING Tian, ARGYROPOULOS C, et al. Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors[J]. Nano Letters, 2015, 15(5): 3578–3584. doi: 10.1021/acs.nanolett.5b01062
    [58] YI Fei, REN Mingliang, REED J C, et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity[J]. Nano Letters, 2016, 16(3): 1631–1636. doi: 10.1021/acs.nanolett.5b04448
    [59] WANG Zhuo, DONG Zhaogang, GU Yinghong, et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures[J]. Nature Communications, 2016, 7: 11283. doi: 10.1038/ncomms11283
    [60] WANG Zhuo, DONG Zhaogang, ZHU Hai, et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates[J]. ACS Nano, 2018, 12(2): 1859–1867. doi: 10.1021/acsnano.7b08682
    [61] GHOLIPOUR B, ZHANG Jianfa, MACDONALD K F, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials, 2013, 25(22): 3050–3054. doi: 10.1002/adma.201300588
    [62] WANG Qian, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60–65. doi: 10.1038/NPHOTON.2015.247
    [63] YIN Xinghui, STEINLE T, HUANG Lingling, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016. doi: 10.1038/lsa.2017.16
    [64] GHOLIPOUR B, KARVOUNIS A, YIN Jun, et al. Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces[J]. NPG Asia Materials, 2018, 10(6): 533–539. doi: 10.1038/s41427-018-0043-4
    [65] GAO Yisheng, HUANG Can, HAO Chenglong, et al. Lead halide perovskite nanostructures for dynamic color display[J]. ACS Nano, 2018, 12(9): 8847–8854. doi: 10.1021/acsnano.8b02425
    [66] SHCHERBAKOV M R, VABISHCHEVICH P P, SHOROKHOV A S, et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures[J]. Nano Letters, 2015, 15(10): 6985–6990. doi: 10.1021/acs.nanolett.5b02989
    [67] SHCHERBAKOV M R, LIU Sheng, ZUBYUK V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nature Communications, 2017, 8: 17. doi: 10.1038/s41467-017-00019-3
    [68] ZHANG Jianfa, MACDONALD K F, and ZHELUDEV N I. Controlling light-with-light without nonlinearity[J]. Light: Science & Applications, 2012, 1(7): e18. doi: 10.1038/lsa.2012.18
    [69] RAHM M, SCHURIG D, ROBERTS D A, et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations[J]. Photonics and Nanostructures - Fundamentals and Applications, 2008, 6(1): 87–95. doi: 10.1016/j.photonics.2007.07.013
    [70] LUO Yu, CHEN Hongsheng, ZHANG Jingjing, et al. Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations[J]. Physical Review B, 2008, 77(12): 125127. doi: 10.1103/PhysRevB.77.125127
    [71] CHEN Huanyang and CHAN C T. Transformation media that rotate electromagnetic fields[J]. Applied Physics Letters, 2007, 90(24): 241105. doi: 10.1063/1.2748302
    [72] YANG Fan, MEI Zhonglei, JIN Tianyu, et al. dc Electric invisibility cloak[J]. Physical Review Letters, 2012, 109(5): 053902. doi: 10.1103/PhysRevLett.109.053902
    [73] MA Qian, MEI Zhonglei, ZHU Shoukui, et al. Experiments on active cloaking and illusion for Laplace equation[J]. Physical Review Letters, 2013, 111(17): 173901. doi: 10.1103/PhysRevLett.111.173901
    [74] MOCCIA M, LIU Shuo, WU Ruiyuan, et al. Coding metasurfaces for diffuse scattering: Scaling laws, bounds, and suboptimal design[J]. Advanced Optical Materials, 2017, 5(19): 1700455. doi: 10.1002/adom.201700455
    [75] LIU Shuo, CUI Tiejun, XU Quan, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076. doi: 10.1038/lsa.2016.76
    [76] SARABANDI K and BEHDAD N. A frequency selective surface with miniaturized elements[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1239–1245. doi: 10.1109/TAP.2007.895567
    [77] DEBUS C and BOLIVAR P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Applied Physics Letters, 2007, 91(18): 184102. doi: 10.1063/1.2805016
    [78] HUSSEIN M N, ZHOU Jiafeng, HUANG Yi, et al. A miniaturized low-profile multilayer frequency-selective surface insensitive to surrounding dielectric materials[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 4851–4860. doi: 10.1109/TMTT.2017.2709317
    [79] GHOSH S and SRIVASTAVA K V. Broadband polarization-insensitive tunable frequency selective surface for wideband shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 166–172. doi: 10.1109/TEMC.2017.2706359
    [80] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [81] LI Aobo, KIM S, LUO Yong, et al. High-power transistor-based tunable and switchable metasurface absorber[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8): 2810–2818. doi: 10.1109/TMTT.2017.2681650
    [82] AKSELROD G M, HUANG Jiani, HOANG T B, et al. Large-area metasurface perfect absorbers from visible to near-infrared[J]. Advanced Materials, 2015, 27(48): 8028–8034. doi: 10.1002/adma.201503281
    [83] COSTA F and MONORCHIO A. A frequency selective radome with wideband absorbing properties[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2740–2747. doi: 10.1109/TAP.2012.2194640
    [84] MEI Peng, LIN Xianqi, YU Jiawei, et al. Development of a low radar cross section antenna with band-notched absorber[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 582–589. doi: 10.1109/TAP.2017.2780903
    [85] KUMAR P, KEDAR A, and SINGH A K. Design and development of low-cost low sidelobe level slotted waveguide antenna array in X-Band[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4723–4731. doi: 10.1109/TAP.2015.2475632
    [86] KEIZER W P M N. Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast Fourier transforms of the array factor[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 715–722. doi: 10.1109/TAP.2007.891511
    [87] HARRIS S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36–42. doi: 10.1063/1.881806
    [88] OLIVERI G, WERNER D H, and MASSA A. Reconfigurable electromagnetics through metamaterials—a review[J]. Proceedings of the IEEE, 2015, 103(7): 1034–1056. doi: 10.1109/JPROC.2015.2394292
    [89] NEMATI A, WANG Qian, HONG Minghui, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009. doi: 10.29026/oea.2018.180009
    [90] 宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展[J]. 材料导报, 2017, 31(11): 114–122. doi: 10.11896/j.issn.1005-023X.2017.021.016

    SONG Jian, LI Minhua, and DONG Jianfeng. Progress in metamaterial absorber based on lumped elements[J]. Materials Reports, 2017, 31(11): 114–122. doi: 10.11896/j.issn.1005-023X.2017.021.016
    [91] HE Qiong, SUN Shulin, and ZHOU Lei. Tunable/reconfigurable metasurfaces: Physics and applications[J]. Research, 2019, 2019: 1849272. doi: 10.34133/2019/1849272
    [92] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展[J]. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246

    CUI Tiejun, WU Haotian, and LIU Shuo. Research progress of information metamaterials[J]. Acta Physica Sinica, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [93] 崔铁军. 电磁超材料——从等效媒质到现场可编程系统[J]. 中国科学: 信息科学, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123

    CUI Tiejun. Electromagnetic metamaterials—from effective media to field programmable systems[J]. Scientia Sinica Informationis, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123
    [94] 杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137.

    YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137.
    [95] LI Lianlin and CUI Tiejun. Information metamaterials - from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703–724. doi: 10.1515/nanoph-2019-0006
    [96] MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8: 98. doi: 10.1038/s41377-019-0205-3
    [97] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135
    [98] DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044
    [99] ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
    [100] ZHANG Lei, CHEN Xiaoqing, SHAO Ruiwen, et al. Breaking reciprocity with space-time-coding digital metasurfaces[J]. Advanced Materials, 2019, 31(41): 1904069. doi: 10.1002/adma.201904069
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  4440
  • HTML全文浏览量:  1374
  • PDF下载量:  573
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-19
  • 修回日期:  2021-03-29
  • 网络出版日期:  2021-04-28

目录

    /

    返回文章
    返回