-
摘要: 电磁超材料是由亚波长尺寸单元周期或非周期排列组成的人工结构,能对电磁波的频率、幅度、相位和极化等基本物理特征进行调控,突破了传统材料的限制,可实现很多自然界不存在的有趣物理现象及应用。过去二十余年,超材料因其强大的电磁调控能力一直是物理领域的研究热点。但无源超材料在电磁波调控中存在局限性,如工作频率固定、实现功能单一等。所以,可调有源超材料越来越受关注。通过引入有源元器件,超材料的功能可通过外部激励信号进行动态调控,在实际应用中具有重要意义。目前常用的控制方式包括电控、温控、光控和机械控制等,其中光控具有可远程调控、无接触式控制、调制速度快以及结构简单等优点。该文概述了近年来光控电磁超材料的研究进展,从直流、微波、太赫兹和光频段4种不同频段分别介绍现有光控超材料和超表面的工作,重点介绍其工作机制和应用场景,并对这一快速发展领域进行总结和展望。Abstract: Electromagnetic metamaterials are artificial structures composed of a periodic or aperiodic arrangement of subwavelength unit cells and can regulate the physical characteristics of electromagnetic waves, such as their frequency, amplitude, phase, and polarization. Metamaterials overcome many limitations of traditional materials and can be used to realize interesting physical phenomena and applications that do not occur in nature. Over the past two decades, metamaterials have become a focus in the fields of physics and electronics owing to their powerful electromagnetic regulation ability. However, passive metamaterials have limitations in electromagnetic wave regulation, such as fixed operating frequency and single function. As such, increasing attention is being paid to tunable and active metamaterials. By introducing active elements, the functions of metamaterials can be dynamically regulated by external excitation signals, which is highly significant for practical applications. At present, commonly used control methods include electrical, temperature, light, and mechanical controls, among which light control has the advantages of remote and noncontact control, a fast modulation speed, and a simple structure. In this study, we summarize the latest progress in light-controlled electromagnetic metamaterial research, and introduce recent work on light-controlled metamaterials and metasurfaces in direct currents, microwaves, terahertz waves, and optics. We focus primarily on relevant operational mechanisms and application scenarios and discuss future prospects.
-
表 1 光控电磁超材料(超表面)特点总结表
Table 1. Summary of the characteristics of light-controlled electromagnetic metamaterials (metasurfaces)
文献 频率 光控材料 实现功能 是否有实验结果 [39] 直流 光敏电阻 隐身斗篷与可调幻象设备 是 [40] 2.20~2.23 GHz 光电二极管+变容二极管 谐振频率可调 是 [41] 3 GHz左右 光电二极管+变容二极管 波束偏折、聚焦、发散 是 [42] 3.69~4.10 GHz 光电二极管+变容二极管 主波束与波束分裂的切换 是 [43] 5.2~7.6 GHz 光电二极管+变容二极管 微波外部隐身、电磁幻觉、动态涡旋波束调控 是 [44] 3.12 GHz, 5.72 GHz 光电二极管+变容二极管 透射状态切换 是 [45] 4.1~4.5 GHz 红外接收模块+FPGA+变容二极管 主波束与波束分裂 是 [46] 0.74 THz左右 光敏材料硅 电磁诱导透明效应可调 是 [47] 1.3 THz左右 光敏材料硅 电磁诱导透明效应可调 否 [48] 4.86~5.36 THz 光敏材料硅 多种谐振模式可切换 否 [49] 1.19~2.96 THz 光敏材料砷化镓 可调多频吸波器 否 [50] 0.518~1.514 THz 光敏材料砷化镓+锗 可调多频吸波器 否 [51] 0.645~1.716 THz 光敏材料硅 谐振峰可调 否 [52] 0.67 THz左右 二氧化钒 聚焦、发散、波束分裂、涡旋波发生器 否 [56] 远红外-中红外 石墨烯 等离子体共振可调 是 [61] 近红外-可见光 锗锑碲合金 透射反射率可调 是 [63] 近红外-可见光 锗锑碲合金 聚焦透镜焦距可调 是 [65] 可见光 钙钛矿 动态色彩显示 是 [68] 190.50~196.08 THz 两束相干光 脉冲恢复、相干滤波器和光对光调制器 否 -
[1] CUI Tiejun, SMITH D R, and LIU Ruopeng. Metamaterials: Theory, Design, and Applications[M]. New York: Springer, 2010: 1–19. [2] SHELBY R A, SMITH D R, and SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77–79. doi: 10.1126/science.1058847 [3] PENDRY J B, SCHURIG D, and SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782. doi: 10.1126/science.1125907 [4] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980. doi: 10.1126/science.1133628 [5] CUMMER S A, POPA B I, SCHURIG D, et al. Full-wave simulations of electromagnetic cloaking structures[J]. Physical Review E, 2006, 74(3): 036621. doi: 10.1103/PhysRevE.74.036621 [6] CAI Wenshan, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics, 2007, 1(4): 224–227. doi: 10.1038/nphoton.2007.28 [7] CHEN Hongsheng, WU B I, ZHANG Baile, et al. Electromagnetic wave interactions with a metamaterial cloak[J]. Physical Review Letters, 2007, 99(6): 063903. doi: 10.1103/PhysRevLett.99.063903 [8] RUAN Zhichao, YAN Min, NEFF C W, et al. Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations[J]. Physical Review Letters, 2007, 99(11): 113903. doi: 10.1103/PhysRevLett.99.113903 [9] MILLER D A B. On perfect cloaking[J]. Optics Express, 2006, 14(25): 12457–12466. doi: 10.1364/OE.14.012457 [10] SILVEIRINHA M G, ALÙ A, and ENGHETA N. Parallel-plate metamaterials for cloaking structures[J]. Physical Review E, 2007, 75(3): 036603. doi: 10.1103/PhysRevE.75.036603 [11] JIANG Weixiang, QIU Chengwei, HAN Tiancheng, et al. Broadband all-dielectric magnifying lens for far-field high-resolution imaging[J]. Advanced Materials, 2013, 25(48): 6963–6968. doi: 10.1002/adma.201303657 [12] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966–3969. doi: 10.1103/PhysRevLett.85.3966 [13] WEN Dandan, YUE Fuyong, LI Guixin, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241 [14] ZHENG Guoxing, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308–312. doi: 10.1038/NNANO.2015.2 [15] LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9 [16] CHEN Tianhang, LI Jun, CAI Tong, et al. Design of a reconfigurable broadband greyscale multiplexed metasurface hologram[J]. Applied Optics, 2020, 59(12): 3660–3665. doi: 10.1364/AO.386811 [17] HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10–35. doi: 10.1109/MAP.2012.6230714 [18] POPA B I and CUMMER S A. Design and characterization of broadband acoustic composite metamaterials[J]. Physical Review B, 2009, 80(17): 174303. doi: 10.1103/PhysRevB.80.174303 [19] LIANG Zixian and LI J. Extreme acoustic metamaterial by coiling up space[J]. Physical Review Letters, 2012, 108(11): 114301. doi: 10.1103/PhysRevLett.108.114301 [20] GARCÍA-CHOCANO V M, CHRISTENSEN J, and SÁNCHEZ-DEHESA J. Negative refraction and energy funneling by hyperbolic materials: An experimental demonstration in acoustics[J]. Physical Review Letters, 2014, 112(14): 144301. doi: 10.1103/PhysRevLett.112.144301 [21] DÍAZ-RUBIO A and TRETYAKOV S A. Acoustic metasurfaces for scattering-free anomalous reflection and refraction[J]. Physical Review B, 2017, 96(12): 125409. doi: 10.1103/PhysRevB.96.125409 [22] KHORASANINEJAD M, CHEN Weiting, DEVLIN R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194. doi: 10.1126/science.aaf6644 [23] HUANG Lingling, CHEN Xianzhong, MÜHLENBERND HOLGER, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi: 10.1038/ncomms3808 [24] EL MAKLIZI M, HENDAWY M, and SWILLAM M A. Super-focusing of visible and UV light using a meta surface[J]. Journal of Optics, 2014, 16(10): 105007. doi: 10.1088/2040-8978/16/10/105007 [25] ZHANG Xiyue, LI Qi, LIU Feifei, et al. Controlling angular dispersions in optical metasurfaces[J]. Light: Science & Applications, 2020, 9(1): 76. doi: 10.1038/s41377-020-0313-0 [26] LI Ying, SHEN Xiangying, WU Zuhui, et al. Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes[J]. Physical Review Letters, 2015, 115(19): 195503. doi: 10.1103/PhysRevLett.115.195503 [27] NICOLAOU Z G and MOTTER A E. Mechanical metamaterials with negative compressibility transitions[J]. Nature Materials, 2012, 11(7): 608–613. doi: 10.1038/NMAT3331 [28] PAN Fei, LI Yilun, LI Zhaoyu, et al. 3D pixel mechanical metamaterials[J]. Advanced Materials, 2019, 31(25): 1900548. doi: 10.1002/adma.201900548 [29] LI Yong, SHI Zhusheng, RONG Qi, et al. Effect of pin arrangement on formed shape with sparse multi-point flexible tool for creep age forming[J]. International Journal of Machine Tools and Manufacture, 2019, 140: 48–61. doi: 10.1016/j.ijmachtools.2019.03.001 [30] CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3(10): e218. doi: 10.1038/lsa.2014.99 [31] GAO Xi, YANG Wanli, MA Huifeng, et al. A reconfigurable broadband polarization converter based on an active metasurface[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(11): 6086–6095. doi: 10.1109/TAP.2018.2866636 [32] RATNI B, DE LUSTRAC A, PIAU G P, et al. Active metasurface for reconfigurable reflectors[J]. Applied Physics A, 2018, 124(2): 104. doi: 10.1007/s00339-017-1502-4 [33] SINGH R, AZAD A K, JIA Quanxi, et al. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates[J]. Optics Letters, 2011, 36(7): 1230–1232. doi: 10.1364/OL.36.001230 [34] CSELYUSZKA N, SEČUJSKI M, ENGHETA N, et al. Temperature-controlled acoustic surface waves[J]. New Journal of Physics, 2016, 18(10): 103006. doi: 10.1088/1367-2630/18/10/103006 [35] MAO Min, LIANG Yaoyao, LIANG Ruisheng, et al. Dynamically temperature-voltage controlled multifunctional device based on VO2 and graphene hybrid metamaterials: Perfect absorber and highly efficient polarization converter[J]. Nanomaterials, 2019, 9(8): 1101. doi: 10.3390/nano9081101 [36] BAI Lin, SONG Gangyong, JIANG Weixiang, et al. Acoustic tunable metamaterials based on anisotropic unit cells[J]. Applied Physics Letters, 2019, 115(23): 231902. doi: 10.1063/1.5125735 [37] HAND T and CUMMER S. Characterization of tunable metamaterial elements using MEMS switches[J]. IEEE Antennas and Wireless Propagation Letters, 2007, 6: 401–404. doi: 10.1109/LAWP.2007.902807 [38] FU Y H, LIU Aiqun, ZHU Weiming, et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split-ring resonators[J]. Advanced Functional Materials, 2011, 21(18): 3589–3594. doi: 10.1002/adfm.201101087 [39] JIANG Weixiang, LUO Chenyang, GE Shuo, et al. An optically controllable transformation-dc illusion device[J]. Advanced Materials, 2015, 27(31): 4628–4633. doi: 10.1002/adma.201500729 [40] KAPITANOVA P V, MASLOVSKI S I, SHADRIVOV I V, et al. Controlling split-ring resonators with light[J]. Applied Physics Letters, 2011, 99(25): 251914. doi: 10.1063/1.3671617 [41] SHADRIVOV I V, KAPITANOVA P V, MASLOVSKI S I, et al. Metamaterials controlled with light[J]. Physical Review Letters, 2012, 109(8): 083902. doi: 10.1103/PhysRevLett.109.083902 [42] ZHANG Xin’ge, TANG Wenxuan, JIANG Weixiang, et al. Light-controllable digital coding metasurfaces[J]. Advanced Science, 2018, 5(11): 1801028. doi: 10.1002/advs.201801028 [43] ZHANG Xin’ge, JIANG Weixiang, JIANG Haolin, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165–171. doi: 10.1038/s41928-020-0380-5 [44] ZHANG Xin’ge, JIANG Weixiang, and CUI Tiejun. Frequency-dependent transmission-type digital coding metasurface controlled by light intensity[J]. Applied Physics Letters, 2018, 113(9): 091601. doi: 10.1063/1.5045718 [45] SUN Yalun, ZHANG Xin’ge, YU Qian, et al. Infrared-controlled programmable metasurface[J]. Science Bulletin, 2020, 65(11): 883–888. doi: 10.1016/j.scib.2020.03.016 [46] GU Jianqiang, SINGH R, LIU Xiaojun, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3: 1151. doi: 10.1038/ncomms2153 [47] 王娅茹, 梁兰菊, 杨茂生, 等. 一种光控的电磁诱导透明太赫兹超材料[J]. 激光与光电子学进展, 2019, 56(4): 041603. doi: 10.3788/LOP56.041603WANG Yaru, LIANG Lanju, YANG Maosheng, et al. Terahertz metamaterial based on controllable electromagnetic induced transparency structure[J]. Laser &Optoelectronics Progress, 2019, 56(4): 041603. doi: 10.3788/LOP56.041603 [48] GONG Cheng, SU Wenming, ZHANG Yang, et al. An active metamaterials controlled by structured light illumination[J]. Optik, 2018, 171: 204–209. doi: 10.1016/j.ijleo.2018.06.052 [49] 孟庆龙, 张艳, 张彬, 等. 光控可调谐多频带太赫兹超材料吸收器的特性[J]. 激光与光电子学进展, 2019, 56(10): 101603. doi: 10.3788/LOP56.101603MENG Qinglong, ZHANG Yan, ZHANG Bin, et al. Characteristics of optically tunable multi-band terahertz metamaterial absorber[J]. Laser &Optoelectronics Progress, 2019, 56(10): 101603. doi: 10.3788/LOP56.101603 [50] 李达民, 袁苏, 杨荣草, 等. 动态光调控多态太赫兹超材料吸收器[J]. 光学学报, 2020, 40(8): 0816001. doi: 10.3788/AOS202040.0816001LI Damin, YUAN Su, YANG Rongcao, et al. Dynamical optical-controlled multi-state THz metamaterial absorber[J]. Acta Optica Sinica, 2020, 40(8): 0816001. doi: 10.3788/AOS202040.0816001 [51] 刘婧, 沈京玲, 张存林, 等. 光调制超材料及其传感应用[J]. 红外与毫米波学报, 2020, 39(4): 430–433. doi: 10.11972/j.issn.1001-9014.2020.04.006LIU Jing, SHEN Jingling, ZHANG Cunlin, et al. Photo-excited tunable metamaterial and its sensing application[J]. Journal of Infrared and Millimeter Waves, 2020, 39(4): 430–433. doi: 10.11972/j.issn.1001-9014.2020.04.006 [52] LI Jie, LI Jitao, ZHANG Yating, et al. All-optical switchable terahertz spin-photonic devices based on vanadium dioxide integrated metasurfaces[J]. Optics Communications, 2020, 460: 124986. doi: 10.1016/j.optcom.2019.124986 [53] GUO Peijun, SCHALLER R D, KETTERSON J B, et al. Ultrafast switching of tunable infrared plasmons in indium tin oxide nanorod arrays with large absolute amplitude[J]. Nature Photonics, 2016, 10(4): 267–273. doi: 10.1038/NPHOTON.2016.14 [54] ALAM M Z, SCHULZ S A, UPHAM J, et al. Large optical nonlinearity of nanoantennas coupled to an epsilon-near-zero material[J]. Nature Photonics, 2018, 12(2): 79–83. doi: 10.1038/s41566-017-0089-9 [55] YANG Yuanmu, KELLEY K, SACHET E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 2017, 11(6): 390–395. doi: 10.1038/NPHOTON.2017.64 [56] DAI Yunyun, XIA Yuyu, JIANG Tao, et al. Dynamical tuning of graphene plasmonic resonances by ultraviolet illuminations[J]. Advanced Optical Materials, 2018, 6(6): 1701081. doi: 10.1002/adom.201701081 [57] AKSELROD G M, MING Tian, ARGYROPOULOS C, et al. Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors[J]. Nano Letters, 2015, 15(5): 3578–3584. doi: 10.1021/acs.nanolett.5b01062 [58] YI Fei, REN Mingliang, REED J C, et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity[J]. Nano Letters, 2016, 16(3): 1631–1636. doi: 10.1021/acs.nanolett.5b04448 [59] WANG Zhuo, DONG Zhaogang, GU Yinghong, et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures[J]. Nature Communications, 2016, 7: 11283. doi: 10.1038/ncomms11283 [60] WANG Zhuo, DONG Zhaogang, ZHU Hai, et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates[J]. ACS Nano, 2018, 12(2): 1859–1867. doi: 10.1021/acsnano.7b08682 [61] GHOLIPOUR B, ZHANG Jianfa, MACDONALD K F, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials, 2013, 25(22): 3050–3054. doi: 10.1002/adma.201300588 [62] WANG Qian, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60–65. doi: 10.1038/NPHOTON.2015.247 [63] YIN Xinghui, STEINLE T, HUANG Lingling, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016. doi: 10.1038/lsa.2017.16 [64] GHOLIPOUR B, KARVOUNIS A, YIN Jun, et al. Phase-change-driven dielectric-plasmonic transitions in chalcogenide metasurfaces[J]. NPG Asia Materials, 2018, 10(6): 533–539. doi: 10.1038/s41427-018-0043-4 [65] GAO Yisheng, HUANG Can, HAO Chenglong, et al. Lead halide perovskite nanostructures for dynamic color display[J]. ACS Nano, 2018, 12(9): 8847–8854. doi: 10.1021/acsnano.8b02425 [66] SHCHERBAKOV M R, VABISHCHEVICH P P, SHOROKHOV A S, et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures[J]. Nano Letters, 2015, 15(10): 6985–6990. doi: 10.1021/acs.nanolett.5b02989 [67] SHCHERBAKOV M R, LIU Sheng, ZUBYUK V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nature Communications, 2017, 8: 17. doi: 10.1038/s41467-017-00019-3 [68] ZHANG Jianfa, MACDONALD K F, and ZHELUDEV N I. Controlling light-with-light without nonlinearity[J]. Light: Science & Applications, 2012, 1(7): e18. doi: 10.1038/lsa.2012.18 [69] RAHM M, SCHURIG D, ROBERTS D A, et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations[J]. Photonics and Nanostructures - Fundamentals and Applications, 2008, 6(1): 87–95. doi: 10.1016/j.photonics.2007.07.013 [70] LUO Yu, CHEN Hongsheng, ZHANG Jingjing, et al. Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations[J]. Physical Review B, 2008, 77(12): 125127. doi: 10.1103/PhysRevB.77.125127 [71] CHEN Huanyang and CHAN C T. Transformation media that rotate electromagnetic fields[J]. Applied Physics Letters, 2007, 90(24): 241105. doi: 10.1063/1.2748302 [72] YANG Fan, MEI Zhonglei, JIN Tianyu, et al. dc Electric invisibility cloak[J]. Physical Review Letters, 2012, 109(5): 053902. doi: 10.1103/PhysRevLett.109.053902 [73] MA Qian, MEI Zhonglei, ZHU Shoukui, et al. Experiments on active cloaking and illusion for Laplace equation[J]. Physical Review Letters, 2013, 111(17): 173901. doi: 10.1103/PhysRevLett.111.173901 [74] MOCCIA M, LIU Shuo, WU Ruiyuan, et al. Coding metasurfaces for diffuse scattering: Scaling laws, bounds, and suboptimal design[J]. Advanced Optical Materials, 2017, 5(19): 1700455. doi: 10.1002/adom.201700455 [75] LIU Shuo, CUI Tiejun, XU Quan, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076. doi: 10.1038/lsa.2016.76 [76] SARABANDI K and BEHDAD N. A frequency selective surface with miniaturized elements[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(5): 1239–1245. doi: 10.1109/TAP.2007.895567 [77] DEBUS C and BOLIVAR P H. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Applied Physics Letters, 2007, 91(18): 184102. doi: 10.1063/1.2805016 [78] HUSSEIN M N, ZHOU Jiafeng, HUANG Yi, et al. A miniaturized low-profile multilayer frequency-selective surface insensitive to surrounding dielectric materials[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(12): 4851–4860. doi: 10.1109/TMTT.2017.2709317 [79] GHOSH S and SRIVASTAVA K V. Broadband polarization-insensitive tunable frequency selective surface for wideband shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 166–172. doi: 10.1109/TEMC.2017.2706359 [80] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402 [81] LI Aobo, KIM S, LUO Yong, et al. High-power transistor-based tunable and switchable metasurface absorber[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8): 2810–2818. doi: 10.1109/TMTT.2017.2681650 [82] AKSELROD G M, HUANG Jiani, HOANG T B, et al. Large-area metasurface perfect absorbers from visible to near-infrared[J]. Advanced Materials, 2015, 27(48): 8028–8034. doi: 10.1002/adma.201503281 [83] COSTA F and MONORCHIO A. A frequency selective radome with wideband absorbing properties[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(6): 2740–2747. doi: 10.1109/TAP.2012.2194640 [84] MEI Peng, LIN Xianqi, YU Jiawei, et al. Development of a low radar cross section antenna with band-notched absorber[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(2): 582–589. doi: 10.1109/TAP.2017.2780903 [85] KUMAR P, KEDAR A, and SINGH A K. Design and development of low-cost low sidelobe level slotted waveguide antenna array in X-Band[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(11): 4723–4731. doi: 10.1109/TAP.2015.2475632 [86] KEIZER W P M N. Fast low-sidelobe synthesis for large planar array antennas utilizing successive fast Fourier transforms of the array factor[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(3): 715–722. doi: 10.1109/TAP.2007.891511 [87] HARRIS S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36–42. doi: 10.1063/1.881806 [88] OLIVERI G, WERNER D H, and MASSA A. Reconfigurable electromagnetics through metamaterials—a review[J]. Proceedings of the IEEE, 2015, 103(7): 1034–1056. doi: 10.1109/JPROC.2015.2394292 [89] NEMATI A, WANG Qian, HONG Minghui, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009. doi: 10.29026/oea.2018.180009 [90] 宋健, 李敏华, 董建峰. 基于集总元件的超材料吸波器研究进展[J]. 材料导报, 2017, 31(11): 114–122. doi: 10.11896/j.issn.1005-023X.2017.021.016SONG Jian, LI Minhua, and DONG Jianfeng. Progress in metamaterial absorber based on lumped elements[J]. Materials Reports, 2017, 31(11): 114–122. doi: 10.11896/j.issn.1005-023X.2017.021.016 [91] HE Qiong, SUN Shulin, and ZHOU Lei. Tunable/reconfigurable metasurfaces: Physics and applications[J]. Research, 2019, 2019: 1849272. doi: 10.34133/2019/1849272 [92] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展[J]. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246CUI Tiejun, WU Haotian, and LIU Shuo. Research progress of information metamaterials[J]. Acta Physica Sinica, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246 [93] 崔铁军. 电磁超材料——从等效媒质到现场可编程系统[J]. 中国科学: 信息科学, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123CUI Tiejun. Electromagnetic metamaterials—from effective media to field programmable systems[J]. Scientia Sinica Informationis, 2020, 50(10): 1427–1461. doi: 10.1360/SSI-2020-0123 [94] 杨欢欢, 曹祥玉, 高军, 等. 可重构电磁超表面及其应用研究进展[J]. 雷达学报, 2021, 10(2): 206–219. doi: 10.12000/JR20137.YANG Huanhuan, CAO Xiangyu, GAO Jun, et al. Recent advances in reconfigurable metasurfaces and their applications[J]. Journal of Radars, 2021, 10(2): 206–219. doi: 10.12000/JR20137. [95] LI Lianlin and CUI Tiejun. Information metamaterials - from effective media to real-time information processing systems[J]. Nanophotonics, 2019, 8(5): 703–724. doi: 10.1515/nanoph-2019-0006 [96] MA Qian, BAI Guodong, JING Hongbo, et al. Smart metasurface with self-adaptively reprogrammable functions[J]. Light: Science & Applications, 2019, 8: 98. doi: 10.1038/s41377-019-0205-3 [97] ZHAO Jie, YANG Xi, DAI Junyan, et al. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems[J]. National Science Review, 2019, 6(2): 231–238. doi: 10.1093/nsr/nwy135 [98] DAI Junyan, TANG Wankai, ZHAO Jie, et al. Wireless communications through a simplified architecture based on time-domain digital coding metasurface[J]. Advanced Materials Technologies, 2019, 4(7): 1900044. doi: 10.1002/admt.201900044 [99] ZHANG Lei, CHEN Xiaoqing, LIU Shuo, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0 [100] ZHANG Lei, CHEN Xiaoqing, SHAO Ruiwen, et al. Breaking reciprocity with space-time-coding digital metasurfaces[J]. Advanced Materials, 2019, 31(41): 1904069. doi: 10.1002/adma.201904069