极化SAR图像舰船目标检测研究综述

刘涛 杨子渊 蒋燕妮 高贵

万显荣, 刘同同, 易建新, 等. LTE外辐射源雷达系统设计及目标探测实验研究[J]. 雷达学报, 2020, 9(6): 967–973. doi: 10.12000/JR18111
引用本文: 刘涛, 杨子渊, 蒋燕妮, 等. 极化SAR图像舰船目标检测研究综述[J]. 雷达学报, 2021, 10(1): 1–19. doi: 10.12000/JR20155
WAN Xianrong, LIU Tongtong, YI Jianxin, et al. System design and target detection experiments for LTE-based passive radar[J]. Journal of Radars, 2020, 9(6): 967–973. doi: 10.12000/JR18111
Citation: LIU Tao, YANG Ziyuan, JIANG Yanni, et al. Review of ship detection in polarimetric synthetic aperture imagery[J].Journal of Radars, 2021, 10(1): 1–19. doi: 10.12000/JR20155

极化SAR图像舰船目标检测研究综述

DOI: 10.12000/JR20155
基金项目: 国家自然科学基金(61771483)
详细信息
    作者简介:

    刘 涛(1978–),男,山东人,博士,海军工程大学教授,博士生导师。主要研究方向为雷达极化统计理论、极化信息处理、雷达极化检测与识别、电子战系统建模与仿真等。E-mail: liutao1018@sina.com

    杨子渊(1997–),男,湖北人,海军工程大学博士研究生。主要研究方向为雷达极化信息处理、合成孔径雷达运动目标检测、新体制雷达等。E-mail: yzy_199702@sina.com

    蒋燕妮(1987–),女,湖北人,海军工程大学博士研究生。主要研究方向为雷达极化信息处理、合成孔径雷达舰船目标尾迹检测、高频雷达海态信息反演等。E-mail: asiajiang2005@163.com

    高 贵(1981–),内蒙古人,博士,西南交通大学地球科学与环境工程学院副院长,教授,博士生导师。主要研究方向为遥感信息处理、人工智能、新体制雷达系统工程研制。E-mail: dellar@126.com

    通讯作者:

    刘涛 liutao1018@sina.com

    高贵 dellar@126.com

  • 责任主编:陈思伟 Corresponding Editor: CHEN Siwei
  • 中图分类号: TN95

Review of Ship Detection in Polarimetric Synthetic Aperture Imagery (in English)

Funds: The National Natural Science Foundation of China (61771483)
More Information
  • 摘要: 极化合成孔径雷达(PolSAR)使用二维脉冲压缩技术获取高分辨力极化信息图像,目前已广泛应用在军事侦察、地形测绘、环境与自然灾害监视、海上舰船目标检测等领域。如何解决复杂海杂波的建模与参数估计、慢小目标检测、密集目标检测等问题仍然是当前PolSAR图像舰船目标检测的难点。该文归纳梳理了PolSAR图像舰船目标检测的4类主流方法:极化特征目标检测方法、慢速运动目标检测方法、舰船目标尾迹检测方法以及基于深度学习的目标检测方法等,同时给出了各类方法所存在的问题以及可能的解决方法,并预测了其未来研究重点和发展趋势。

     

  • 外辐射源雷达(又称为无源雷达)是一种利用第三方辐射源进行目标探测跟踪的双/多基地雷达系统。该体制雷达具有绿色环保、安全隐蔽、成本可控、易于组网、无需频谱分配等优势[1,2]。现阶段可利用的第三方照射源主要包括FM广播、数字音频广播信号(DAB)、数字电视广播(DVB-T, CMMB, DTMB)、全球微波互联接入信号(WiMAX)、WiFi信号等[310]。长期演进(Long Term Evolution, LTE)信号是由第3代合作伙伴计划(the 3rd Generation Partnership Project, 3GPP)组织制定的一种通用的无线通信信号,作为一种新型的外辐射源雷达机会照射源,受到了国内外的广泛关注。该信号作为第三方照射源具有独特的优势:(1)信号普及率高,易于组网,探测范围易扩展;(2)最大可支持20 MHz带宽,具有较高的距离分辨率;(3)超低空覆盖好,适用于地面与低空移动目标探测。

    相对于广播或者电视信号的外辐射源雷达,LTE外辐射源雷达发展相对滞后。而随着4G时代的发展,LTE信号的覆盖范围逐步扩大,为研究该体制雷达提供了极为便利的条件,现阶段国内外已进行了一些探索性工作。马来西亚博特拉大学的Abdullah等人[11,12]利用频分双工长期演进(Frequency Division Duplexing Long Term Evolution, FDD-LTE)信号进行了地面移动目标探测以及目标分类识别研究。美国莱特州立大学的Evers等人[1315]分析了具有扩展循环前缀(Cyclic Prefix, CP)的LTE信号的模糊函数,研究了典型副峰产生的机理,并介绍了利用FDD-LTE信号进行SAR成像的研究结果。武汉大学电波传播实验室研究了实测FDD-LTE信号的模糊函数特性,率先分析了帧间模糊带的形成机理,并提出了一种基于子载波系数归一化的帧间模糊带抑制方法[16,17]。中国科学院电子学研究所探讨了对于远距离目标探测有影响的相关副峰,并针对此类副峰给出了相应的抑制方法,最终得到图钉状的模糊函数[18]。据调研所及,国内有关利用LTE信号进行目标探测实验的研究尚无报道。

    根据LTE外辐射源雷达探测需求,本文设计了一种高集成度、小型化的多通道外辐射源雷达系统。相对于传统外辐射源雷达系统,本系统具有以下优势:(1)通用性强,系统工作频率范围广且支持不同带宽,可涵盖所有频段的LTE信号;(2)集成度高,接收机系统采用高度集成的射频芯片实现,降低了系统的复杂程度;(3)传输速率快,采用万兆光纤传输方案,可满足不同带宽信号的传输要求;(4)成本较低,系统的高集成度、通用化优势也使得系统成本可控。系统的上述优势有利于实现LTE外辐射源雷达的组网探测,扩展雷达监测范围。

    本文介绍了利用本系统开展国内首次基于LTE信号的地面及低空目标探测实验研究的进展,包括信号分析、雷达系统设计与实现、实验场景配置以及初步实验结果分析等。

    LTE信号根据双工方式可以分为频分双工(Frequency Division Duplexing, FDD)和时分双工(Time Division Duplexing, TDD)两种模式[19,20],两者仅在物理层上略有区别。图1展示了这两种工作模式的框架结构,其中图1(a)为FDD-LTE帧结构,图1(b)为TDD-LTE帧结构。两者相同点在于系统以10 ms的无线帧为传输单位,每个无线帧由10个1 ms的子帧组成,每一个子帧又包含两个0.5 ms的时隙。每个时隙根据CP的不同包含不同数目的正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)符号,其中普通型CP包含7个OFDM符号,扩展型CP包含6个OFDM符号。两者区别在于FDD-LTE模式中系统在分离的两个对称频率信道上进行数据接收和传送,下行过程中整个无线帧都被应用于下行链路传输。TDD-LTE模式则是上下行使用相同的频段在不同时隙进行传输,一定数量的子帧用于下行链路传输,而另外一些子帧用作上行链路传输或者作为特殊子帧使用。相比之下,TDD-LTE含有多种传输模式且上下行信号的频段相同,导致多个终端的上行信号不可避免地干扰外辐射源雷达,使其难以准确划分下行信号时间窗,进而影响目标探测,FDD-LTE则可以避免上行信号的干扰。因此,本系统采用FDD-LTE信号进行目标探测。

    图  1  LTE信号帧结构
    Figure  1.  The frame structure of LTE signals

    模糊函数是研究外辐射源雷达波形特性的重要工具,它描述了外辐射源雷达系统采用的发射波形所具有的目标分辨率、测量精度、模糊度和杂波抑制能力。计算表达式如式(1)所示,其中s(t)为信号复包络,τ为距离时延,fd为多普勒频移。

    |A(τ,fd)|=|+s(t)s(tτ)ej2πfdtdt|
    (1)

    图2给出了实测FDD-LTE信号的模糊函数。从图2中可以看出,LTE信号模糊函数在零距离元和零多普勒频率处具有类似图钉形状的主峰。从时域和频域的梯度可以看出,其下降梯度较大,表明LTE信号具有良好的距离分辨率和速度分辨率。除主峰之外还存在多种有规律的模糊副峰,现有文献详细分析了LTE信号典型副峰的产生原因和位置[1118]。依据副峰产生机理,副峰主要包括CP引起的副峰,控制区域信号(Control Channels, CCs)周期性引起的副峰,以及小区特定参考信号(Cell-specific Reference Signals, CRS)引起的副峰。

    图  2  实测FDD-LTE信号模糊函数
    Figure  2.  The AF of a real-life FDD-LTE signal

    在不同的探测需求下,并非所有的副峰都会影响目标的探测。在城市环境下,一般基站的覆盖范围在1 km以内,常见目标(车辆、无人机、行人等)对应的多普勒频率在250 Hz以内。图2中CP引起的副峰相对于主峰时延为66.67 μs,对应双基距离达 20 km; CCs引起的副峰对应多普勒频率为1 kHz的整数倍,超出地面及低空典型运动目标的多普勒频率范围;CRS引起的副峰对应多普勒频率为2 kHz的整数倍,时延为11.11 μs的整数倍,同样超出目标多普勒频率和目标观测范围。综上所述,这些副峰对观测范围内的目标几乎无影响,本文中不考虑这些副峰的干扰。

    图3展示了LTE外辐射源雷达的工作原理,与其它外辐射源雷达系统类似,LTE外辐射源雷达在接收端同样分为参考通道与监测通道,分别用来接收直达波信号和目标的回波信号,通过相关处理可以得到目标的距离、速度以及方位等信息,从而实现对目标的检测和跟踪。

    图  3  外辐射源雷达工作示意图
    Figure  3.  Working principle for passive radar

    本文采用如图4所示的典型外辐射源雷达信号处理流程。首先对原始参考通道信号进行提纯,并利用提纯之后的参考信号与监测信号进行杂波抑制,以消除直达波以及多径干扰,从而突显目标回波[6,21]。之后参考信号和监测信号进行二维互相关处理,即匹配滤波,得到距离-多普勒谱(RD谱)。然后进行波束形成,最后通过恒虚警(Constant False Alarm Rate, CFAR)检测获得目标的双基距离和双基速度信息。

    图  4  外辐射源雷达信号处理流程
    Figure  4.  The signal processing diagram of passive radars
    3.2.1   需求分析

    LTE信号支持多种波段,且能够灵活配置不同的带宽,每个国家或地区可以根据自身的通讯环境需求以及频谱使用情况进行合理分配。表1展示了LTE信号的相关参数。从表中可以看出,LTE外辐射源雷达系统需满足以下要求:(1)工作频率范围广,满足700~3800 MHz的频段变化范围;(2)支持多种带宽分配,可根据具体需求配置不同带宽;(3)采样率可配置,实现对不同带宽信号的采样。

    表  1  LTE信号基本参数
    Table  1.  Basic parameters of the LTE signal
    参数 取值
    频段(MHz) 700~3800
    带宽(MHz) 1.4/3/5/10/15/20
    采样率(MHz) 1.92/3.84/7.68/15.36/23.04/30.72
    下载: 导出CSV 
    | 显示表格
    3.2.2   接收机方案设计

    现阶段常用的雷达接收机系统,往往存在结构复杂、体积庞大、通用性较差、成本不可控等问题。本文选用高集成度的射频芯片AD9361完成接收机系统设计。该芯片内部集成零中频结构,不仅能大大降低对模数转换器(Analog-to-Digital Converter, ADC)性能的要求以及数字信号处理的复杂度,同时能减少模拟器件的数量,有利于实现系统小型化。芯片工作频率范围为70~6000 MHz,支持0.2~56.0 MHz的接收带宽,涵盖大部分的数字多媒体广播业务以及无线通信业务信号频段。仅需要简单控制就可实现对中心频率、带宽、滤波器参数以及增益等参数的配置,真正意义上做到系统的通用化。同时针对零中频结构本身的缺陷,其内部每个接收通道都具备直流失调校正和正交校正的功能,可以降低芯片本振泄露以及非正交带来的弊端。

    为满足系统高速数据的实时传输需求,本文采用万兆光纤传输方案,实现接收机系统与上位机之间的数据交互。万兆光纤传输的主要优势在于其传输速率快,传输距离远。表2展示了系统的基本技术参数。

    表  2  系统基本技术参数
    Table  2.  Basic technical parameters of the system
    参数 取值
    中心频率(MHz) 70~6000
    带宽(MHz) 0.2~56.0
    采样率 可配置
    增益(dB) 0~76
    传输速率(Gbps) 10
    下载: 导出CSV 
    | 显示表格
    3.2.3   系统总体设计

    图5展示了本系统的总体框图,主要由接收天线、多通道LTE外辐射源雷达接收机以及信号处理机组成。其中接收天线采用多元八木天线,包括参考天线与监测天线阵列。接收机直接与天线相连,将接收到的射频信号进行正交混频、采样、抽取滤波下变频为数字基带信号,然后由FPGA对数据进行打包,最后采用万兆光纤传输方案将数据传输至信号处理机。信号处理机一方面控制接收机实现增益、带宽以及中心频率等参数的配置,另一方面完成3.1节所述的信号处理流程,最终输出目标距离和速度信息。

    图  5  系统总体框图
    Figure  5.  The block diagram of the system

    本文为验证LTE外辐射源雷达的目标探测性能,开展了合作目标探测实验。实验中选用中国电信FDD-LTE信号作为第三方照射源,其中心频率为1867.5 MHz,带宽为15 MHz。实验场景如图6所示。图6中左侧建筑物顶部的演进节点基站(evolved Node Bases, eNB)作为发射站,接收站位于建筑物前的道路上,参考天线指向eNB接收参考信号,监测阵列指向图中橘红色扇形所示的监测区域收集目标回波信号。目标移动范围为黄色线所示的地面以及低空区域。

    图  6  目标探测实验场景
    Figure  6.  The experimental scenario for the target detection

    实验主要针对地面移动目标以及低空移动目标进行探测。其中地面目标探测实验选用搭载了GPS设备的电动车作为合作目标,该电动车材质为高碳钢,轮圈尺寸为35.56 cm,最高速率为10 m/s。低空目标探测实验采用常见的消费级无人机大疆精灵4作为合作目标。该无人机旋翼数为4,每个旋翼叶片数为2,叶片长度为13.97 cm,轴距为35 cm,飞行速度可达20 m/s。实验中将电动车上GPS设备记录的数据以及无人机飞行记录中的GPS数据作为合作目标的真实信息,与系统检测得到的信息进行对比,验证系统的探测性能。

    图7展示了地面移动目标探测实验的结果。图7(a)为一场数据的距离多普勒谱,可观测到目标位于第15距离元,多普勒频率为70 Hz,信噪比为23 dB。为进一步确认其为实验所用之合作目标,本文将CFAR检测后的潜在目标信息与合作目标的GPS信息在同一RD谱上进行比较,如图7(b)所示。图中除合作目标之外,还有一些非合作目标(车辆、行人等),但是通过与合作目标GPS信息对比可以看出检测结果与实际目标信息基本吻合,表明系统成功探测到地面移动目标。图7(c)图7(d)展示了目标双基距离和双基速度随时间变化的情况。图中结果更直观地表明系统检测得到的信息与合作目标信息匹配度较好,能够真实地反应目标的移动规律。

    图  7  LTE外辐射源雷达地面移动目标探测结果
    Figure  7.  Experimental results of the ground moving target with the LTE-based passive radar

    图8展示了无人机目标探测实验的结果,图8(a)同样为目标位于第15距离元处的距离多普勒谱,无人机目标多普勒频率为122 Hz,信噪比为17 dB,其信噪比明显低于相同距离元处的地面移动目标。图8(b)为系统检测数据与无人机飞行记录的比对结果,虽然其信噪比普遍低于地面目标检测结果,但是检测的结果依然与无人机真实数据吻合,表明系统适用于无人机这类“低小慢”目标的探测。图8(c)图8(d)展示的结果与图7对比可以看出,相比于地面目标,无人机检测效果略差,主要原因可能是无人机散射截面积(Radar Cross Section, RCS)明显小于电动车,目标回波强度较弱。另外由于无人机机动性更强,导致目标在转弯时双基速度变化更快,检测更加不连续。

    图  8  LTE外辐射源雷达无人机探测结果
    Figure  8.  Experimental results of the drone with the LTE-based passive radar

    系统检测得到的信息与合作目标真实信息比对的结果,证实了利用LTE信号实现地面及低空目标探测的可行性。

    本文首先介绍了LTE信号的物理层特性,在此基础上选用FDD-LTE信号作为第三方照射源进行研究。然后设计并实现了一种高集成度、小型化的通用外辐射源雷达系统,并利用此系统开展了国内首次基于LTE信号的地面及低空目标探测实验,为该探测技术的发展奠定了实验基础。后续将围绕更多不同目标开展实验,进行目标分类与识别研究,并进行组网探测研究,进一步挖掘该体制外辐射源雷达在目标监测领域的潜力。

  • 图  1  PolSAR舰船目标检测方法分类

    Figure  1.  Classification of PolSAR ship detection methods

    图  2  常用极化优化检测方法的性能对比[18]

    Figure  2.  Performance comparison of common polarimetric optimization detection methods[18]

    图  3  各类纹理分布PWF处理结果[21]

    Figure  3.  PWF processing results with different textural distributions[21]

    图  4  基于自适应截断法的PolSAR图像密集目标检测[28]

    Figure  4.  Dense ship detection in PolSAR images based on the adaptive truncation method[28]

    图  5  PNF与NPNF性能对比[8]

    Figure  5.  Performance comparison of PNF and NPNF[8]

    图  6  不同检测方法的小目标检测效果对比[36]

    Figure  6.  Comparison of detection results among different methods for small targets[36]

    图  7  不同舰船目标检测方法与SPN的对比结果[51]

    Figure  7.  Comparison results among different ship detectors with SPN[51]

    图  8  不同舰船目标检测方法与NPCM的对比[6]

    Figure  8.  Performance comparision among different ship detection methods with NPCM[6]

    图  9  PolSAR图像不同极化通道动目标检测效果图[69]

    Figure  9.  Moving target detection results in different polarimetric channels in PolSAR images[69]

    图  10  极化顺轨干涉动目标检测仿真结果[76]

    Figure  10.  Simulation results of polarimetric along-track interferometry moving target detection[76]

    图  11  PWF与Radon变换实现尾流检测[90]

    Figure  11.  Wake detection results by PWF and Radon transform[90]

    图  12  低秩稀疏分解与极化结合的舰船尾流检测结果[98]

    Figure  12.  Ship wake detection results of low-rank and sparse decomposition combined with polarization[98]

    图  13  P2P-CNN网络结构及其检测性能[107]

    Figure  13.  P2P-CNN network structure and detection performance[107]

    图  1  Classification of PolSAR ship detection methods

    图  2  Performance comparison of common polarimetric optimization detection methods[18]

    图  3  PWF processing results with different textural distributions[21]

    图  4  Dense ship detection in PolSAR images based on the adaptive truncation method[28]

    图  5  Performance comparison of PNF and NPNF[8]

    图  6  Comparison of detection results among different methods for small targets[36]

    图  7  Comparison results among different ship detectors with SPN[51]

    图  8  Performance comparision among different ship detection methods with NPCM[6]

    图  9  Moving target detection results in different polarimetric channels in PolSAR images[69]

    图  10  Simulation results of polarimetric along-track interferometry moving target detection[76]

    图  11  Wake detection results by PWF and Radon transform[90]

    图  12  Ship wake detection results of low-rank and sparse decomposition combined with polarization[98]

    图  13  P2P-CNN network structure and detection performance[107]

    表  1  PolSAR图像舰船目标检测方法适用场景和优缺点总结

    Table  1.   Applicable scenarios and pros & cons summary of PolSAR ship detection methods

    检测分类 适用场景 具体检测方法 优点 缺点
    目标极化特征检测 主要适用于舰船目标本体极化特征和杂波特征有一定差异情形下的检测 简单极化合成检测技术 早期PolSAR目标检测方法,简单易实现且效果优于单极化SAR图像目标检测方法 一定程度上利用了幅度或相位信息,对极化信息的利用不够充分
    基于极化最优化的检测技术 1. 充分利用了各极化通道相关信息
    2. 通过对PolSAR图像进行优化,达到最佳对比效果
    要根据实际情况选择不同的极化优化准则,同时滑窗的选择也对性能影响较大
    基于散射机理的检测技术 具有较强的物理可解释性 对目标类型和海况状态的适应性需要提高
    基于空间邻域的检测技术 融合空域与极化信息,大幅增强目标检测能力 后期数据处理需要降维以避免维数灾难
    慢速运动目标检测 主要适用于目标杂波极化特征差异较小但有一定速度差异的情形,同时也能提取目标运动信息以获取实时海面态势 单通道慢动目标检测 利用交叉极化信息增强慢动目标的检测效果 静止目标模糊抑制和慢动目标检测难以同时实现
    虚拟干涉慢动目标检测 解决了实际干涉数据来源缺乏的问题 子孔径分解的个数与重叠度的选择较为困难
    多通道慢动目标检测 融合多平台和极化信息的优势,极大增强运动目标检测能力 复杂结构和成本限制工程应用
    舰船目标尾迹检测 不是检测舰船目标本体,而是检测运动产生的尾迹,主要针对小目标和
    隐身目标
    尾迹边缘线性特征检测 检测问题抽象成线形特征检测问题,方法相对简单 杂波背景下不同类型弱尾迹的检测困难
    尾迹区域背景差异检测 尾迹区域和背景海面由于散射机理不同,在频谱特性、统计特征、极化特性等方面均存在较大差异,效果好 理论分析和方法实现更加复杂
    基于深度学习的目标检测 不需要人工提取目标特征,在PolSAR图像智能解译中取得了巨大成功 基于卷积神经网络的检测方法 结构灵活、能够自动提取结构化特征,不仅能提取图像的低维特征,而且能提取图像的高维特征 1. 需要大量样本进行训练
    2. 可解释性有待研究
    下载: 导出CSV

    表  1  Applicable scenarios and pros & cons summary of PolSAR ship detection methods 

    Detection method Advantage Disadvantage
    Target polarimetric characteristic detection method (mainly applied to the detection of ship and clutter when the polarimetric characteri
    stics are different)
    Simple polarimetric channel
    synthesis technology
    The early PolSAR target dete
    ction method is simple and easy to realize, and the effect is better than the single PolSAR image target detection method
    To some extent, the amplitude or phase information is used, but the polarimetric information is not fully utilized
    Polarimetric optimization
    detection technology
    1. The information of each polari
    metric channel is fully utilized
    2. PolSAR images are optimized to achieve the best contrast effect
    Different optimization criteria should be selected according to the actual situation, and the selection of a sliding window also has a significant influence on the performance
    Detection technology based on the
    scattering mechanism
    It has strong physical interpre
    tability
    Adaptability to target types and sea state needs to be improved
    Spatial neighborhood detection
    method
    The fusion of spatial and polarime
    tric information considerably enhances the target detection capability
    Dimensions need to be reduced to avoid a dimensional disaster
    Slow-moving target detection method (mainly applied to the situation where the polarimetric characteristic difference between target and clutter is small but thesre is a certain velocity diffe
    rence; simultaneously, it can also extract the target motion informa
    tion to obtain the real-time sea surface situation)
    Single-channel PolSAR-GMTI Cross-polarimetric information is used to enhance the detection effect of slow-moving targets Suppression of stationary targets and detection of slow-moving targets are difficult to achieve simultaneously
    Virtual interferometric
    slow-moving target detection
    The problem of the lack of actual interference data source is solved It is difficult to choose the number of subaperture decompo
    sition and overlap degree
    Multichannel PolSAR-GMTI Integrating the advantages of multi-platform and polarization information considerably enhan
    ces the ability to move target detection
    Complex structure and cost limit engineering applications
    Ship wake detection method (it is used not to detect the ship target body but to detect the wake gene
    rated by the movement, mainly for small targets and stealth targets)
    Linear feature detection of
    wake edge
    The detection problem is abstrac
    ted into the linear feature detec
    tion problem, and the method is relatively simple
    It is difficult to detect different types of weak wakes in the cluttered background
    Background difference detection
    in the wake region
    Due to the different scattering mechanisms of the wake region and background sea surface, there are considerable differences in spectrum characteristics, statisti
    cal characteristics, polarimetric characteristics, and other aspects, and the effect is good
    The theoretical analysis and method implementation are more complex
    Target detection algorithm based on deep learning (it has achieved great success in intelligent PolSAR image interpretation without extracting target features man
    ually)
    Detection method based on CNN Flexible structure can automa
    tically extract structured features,
    including both low-dimensional and high-dimensional features of images
    1. It needs a large number of samples to train with
    2. Interpretability needs to be investigated
    下载: 导出CSV
  • [1] CRISP D J. The state-of-the-art in ship detection in synthetic aperture radar imagery[R]. DSTO-RR-0272, 2004.
    [2] RANSON K J and SUN Guoqing. An evaluation of AIRSAR and SIR-C/X-SAR images for mapping northern forest attributes in Maine, USA[J]. Remote Sensing of Environment, 1997, 59(2): 203–222. doi: 10.1016/S0034-4257(96)00154-X
    [3] 代大海, 王雪松, 肖顺平, 等. PolSAR系统与技术的发展趋势[J]. 雷达科学与技术, 2008, 6(1): 15–22. doi: 10.3969/j.issn.1672-2337.2008.01.003

    DAI Dahai, WANG Xuesong, and XIAO Shunping, et al. Development trend of PolSAR system and technology[J]. Radar Science and Technology, 2008, 6(1): 15–22. doi: 10.3969/j.issn.1672-2337.2008.01.003
    [4] 匡纲要, 陈强, 蒋咏梅, 等. 极化合成孔径雷达基础理论及其应用[M]. 长沙: 国防科技大学出版社, 2011.

    KUANG Gangyao, CHEN Qiang, JIANG Yongmei, et al. Polarimetric Synthetic Aperture Radar Basic Principles and Its Applications[M]. Changsha: University of Defense Science and Technology Press, 2011.
    [5] 刘涛, 崔浩贵, 谢恺, 等. 极化合成孔径雷达图像解译技术[M]. 北京: 国防工业出版社, 2017.

    LIU Tao, CUI Haogui, XIE Kai, et al. Interpretation Techniques in Polarimetic Synthetic Apture Radar Imagery[M]. Beijing: National Defense Industry Press, 2017.
    [6] MARINO A, CLOUDE S R, and WOODHOUSE I H. Detecting depolarized targets using a new geometrical perturbation filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(10): 3787–3799. doi: 10.1109/TGRS.2012.2185703
    [7] LIU Tao, YANG Ziyuan, MARINO A, et al. PolSAR ship detection based on neighborhood polarimetric covariance matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, in press. doi: 10.1109/TGRS.2020.3022181
    [8] LIU Tao, YANG Ziyuan, ZHANG Tao, et al. A new form of the polarimetric notch filter[J]. IEEE Geoscience and Remote Sensing Letters, 2020, in press. doi: 10.1109/LGRS.2020.3020052
    [9] SCIOTTI M, PASTINA D, and LOMBARDO P. Polarimetric detectors of extended targets for ship detection in SAR images[C]. IEEE 2001 International Geoscience and Remote Sensing Symposium Scanning the Present and Resolving the Future, Sydney, Australia, 2001.
    [10] 张鹏, 张嘉峰, 刘涛. 雷达多视极化检测器性能对比分析[J]. 电波科学学报, 2017, 32(4): 416–426. doi: 10.13443/j.cjors.2017022401

    ZHANG Peng, ZHANG Jiafeng, and LIU Tao. Contrastive analysis of the performances of radar multi-look polarimetric detectors[J]. Chinese Journal of Radio Science, 2017, 32(4): 416–426. doi: 10.13443/j.cjors.2017022401
    [11] BOERNER W M, KOSTINSKI A B, and JAMES B D. On the concept of the polarimetric matched filter in high resolution radar imaging: An alternative for speckle reduction[C]. International Geoscience and Remote Sensing Symposium, ‘Remote Sensing: Moving Toward the 21st Century’, Edinburgh, UK, 1988: 69–72.
    [12] NOVAK L M, SECHTIN M B, and CARDULLO M J. Studies of target detection algorithms that use polarimetric radar data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1989, 25(2): 150–165. doi: 10.1109/7.18677
    [13] CHANEY R D, BUD M C, and NOVAK L M. On the performance of polarimetric target detection algorithms[J]. IEEE Aerospace and Electronic Systems Magazine, 1990, 5(11): 10–15. doi: 10.1109/62.63157
    [14] NOVAK L M and BURL M C. Optimal speckle reduction in polarimetric SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(2): 293–305. doi: 10.1109/7.53442
    [15] YANG Jian, YAMAGUCHI Y, BOERNER W M, et al. Numerical methods for solving the optimal problem of contrast enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(2): 965–971. doi: 10.1109/36.84197
    [16] YANG Dongwen, DU Lan, LIU Hongwei, et al. Novel polarimetric contrast enhancement method based on minimal clutter to signal ratio subspace[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8570–8583. doi: 10.1109/TGRS.2019.2921629
    [17] NOVAK L M. Target detection studies using fully polarimetric data collected by the Lincoln Laboratory MMW SAR[C]. 92 International Conference on Radar, Brighton, UK, 1992.
    [18] LIU Tao, YANG Ziyuan, YANG Jian, et al. CFAR ship detection methods using compact polarimetric SAR in a K-Wishart distribution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10): 3737–3745. doi: 10.1109/JSTARS.2019.2923009
    [19] LOPES A and SERY F. Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(3): 632–647. doi: 10.1109/36.581979
    [20] LIU Guoqing, HUANG Shunji, TORRE A, et al. The multilook polarimetric whitening filter (MPWF) for intensity speckle reduction in polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 1016–1020. doi: 10.1109/36.673694
    [21] LIU Tao, ZHANG Jiafeng, GAO Gui, et al. CFAR ship detection in polarimetric synthetic aperture radar images based on whitening filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 58(1): 58–81. doi: 10.1109/TGRS.2019.2931353
    [22] GAO Gui, LI Gaosheng, and LI Yipeng. Shape parameter estimator of the generalized Gaussian distribution based on the MoLC[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 350–354. doi: 10.1109/LGRS.2017.2787558
    [23] GAO Gui, OUYANG Kewei, LUO Yongbo, et al. Scheme of parameter estimation for generalized gamma distribution and its application to ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(3): 1812–1832. doi: 10.1109/TGRS.2016.2634862
    [24] GAO Gui, LUO Yongbo, OUYANG Kewei, et al. Statistical modeling of PMA detector for ship detection in high-resolution dual-polarization SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4302–4313. doi: 10.1109/TGRS.2016.2539200
    [25] GAO Gui, WANG Xiaoyang, and NIU Min. Statistical modeling of the reflection symmetry metric for sea clutter in dual-polarimetric SAR data[J]. IEEE Journal of Oceanic Engineering, 2016, 41(2): 339–345. doi: 10.1109/JOE.2015.2458231
    [26] 冷祥光, 计科峰, 熊博莅, 等. 面向舰船目标检测的单通道复值SAR图像统计建模方法研究[J]. 雷达学报, 2020, 9(3): 477–496. doi: 10.12000/JR20070

    LENG Xiangguang, JI Kefeng, XIONG Boli, et al. Statistical modeling methods of single-channel complex-valued SAR images for ship detection[J]. Journal of Radars, 2020, 9(3): 477–496. doi: 10.12000/JR20070
    [27] TAO Ding, ANFINSEN S N, and BREKKE C. Robust CFAR detector based on truncated statistics in multiple-target situations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 117–134. doi: 10.1109/TGRS.2015.2451311
    [28] LIU Tao, YANG Ziyuan, MARINO A, et al. Robust CFAR detector based on truncated statistics for polarimetric synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6731–6747. doi: 10.1109/TGRS.2020.2979252
    [29] LANG Haitao, XI Yuyang, and ZHANG Xi. Ship detection in high-resolution SAR images by clustering spatially enhanced pixel descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5407–5423. doi: 10.1109/TGRS.2019.2899337
    [30] NUNZIATA F, MIGLIACCIO M, and BROWN C E. Reflection symmetry for polarimetric observation of man-made metallic targets at sea[J]. IEEE Journal of Oceanic Engineering, 2012, 37(3): 384–394. doi: 10.1109/JOE.2012.2198931
    [31] WANG Na, SHI Gongtao, LIU Li, et al. Polarimetric SAR target detection using the reflection symmetry[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(6): 1104–1108. doi: 10.1109/LGRS.2012.2189548
    [32] MARINO A. A notch filter for ship detection with polarimetric SAR data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(3): 1219–1232. doi: 10.1109/JSTARS.2013.2247741
    [33] MARINO A and HAJNSEK I. Statistical tests for a ship detector based on the polarimetric notch filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4578–4595. doi: 10.1109/TGRS.2015.2402312
    [34] GAO Gui and SHI Gongtao. CFAR ship detection in nonhomogeneous sea clutter using polarimetric SAR data based on the notch filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4811–4824. doi: 10.1109/TGRS.2017.2701813
    [35] GAO Gui and SHI Gongtao. Ship detection in dual-channel ATI-SAR based on the notch filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(8): 4795–4810. doi: 10.1109/TGRS.2017.2701810
    [36] GAO Gui, GAO Sheng, HE Juan, et al. Ship detection using compact polarimetric SAR based on the notch filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(9): 5380–5393. doi: 10.1109/TGRS.2018.2815582
    [37] CLOUDE S R and POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 498–518. doi: 10.1109/36.485127
    [38] RINGROSE R and HARRIS N. Ship detection using polarimetric SAR data[J]. European Space Agency ESA SP, 2000, 450(450): 687.
    [39] TOUZI R, CHARBONNEAU F, HAWKINS R K, et al. Ship-sea contrast optimization when using polarimetric SARs[C]. IEEE 2001 International Geoscience and Remote Sensing Symposium Scanning the Present and Resolving the Future, Sydney, Australia, 2001.
    [40] TOUZI R. Calibrated polarimetric SAR data for ship detection[C]. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No. 00CH37120), Honolulu, USA, 2000.
    [41] CHEN Jiong, CHEN Yilun, and YANG Jian. Ship detection using polarization cross-entropy[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4): 723–727. doi: 10.1109/LGRS.2009.2024224
    [42] SUGIMOTO M, OUCHI K, and NAKAMURA Y. On the novel use of model-based decomposition in SAR polarimetry for target detection on the sea[J]. Remote Sensing Letters, 2013, 4(9): 843–852. doi: 10.1080/2150704X.2013.804220
    [43] YANG Jian, DONG Guiwei, PENG Yingning, et al. Generalized optimization of polarimetric contrast enhancement[C]. IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No. 03CH37450), Columbus, USA, 2003.
    [44] YIN Junjun, YANG Jian, XIE Chunhua, et al. An improved generalized optimization of polarimetric contrast enhancement and its application to ship detection[J]. IEICE Transactions on Communications, 2013, E96.B(7): 2005–2013. doi: 10.1587/transcom.E96.B.2005
    [45] TOUZI R, HURLEY J, and VACHON P W. Optimization of the degree of polarization for enhanced ship detection using polarimetric RADARSAT-2[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10): 5403–5424. doi: 10.1109/TGRS.2015.2422134
    [46] BORDBARI R and MAGHSOUDI Y. A new target detector based on subspace projections using polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3025–3039. doi: 10.1109/TGRS.2018.2879681
    [47] 殷君君, 安文韬, 杨健. 基于极化散射参数与Fisher-OPCE的监督目标分类[J]. 清华大学学报: 自然科学版, 2011, 51(12): 1782–1786.

    YIN Junjun, AN Wentao, and YANG Jian. Supervised target classification using polarimetric scattering parameters and Fisher-OPCE[J]. Journal of Tsinghua University:Science and Technology, 2011, 51(12): 1782–1786.
    [48] CUI Xingchao, CHEN Siwei, and SU Yi. Ship detection in polarimetric SAR image based on similarity test[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019. doi: 10.1109/IGARSS.2019.8900480.
    [49] HE Jinglu, WANG Yinghua, LIU Hongwei, et al. A novel automatic PolSAR ship detection method based on superpixel-level local information measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(3): 384–388. doi: 10.1109/LGRS.2017.2789204
    [50] LANG Haitao, TAO Yunhong, NIU Lihui, et al. A new scattering similarity based metric for ship detection in polarimetric synthetic aperture radar image[J]. Acta Oceanologica Sinica, 2020, 39(5): 145–150. doi: 10.1007/s13131-020-1563-7
    [51] CUI Xingchao, SU Yi, and CHEN Siwei. A saliency detector for polarimetric SAR ship detection using similarity test[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3423–3433. doi: 10.1109/JSTARS.2019.2925833
    [52] HUANG Xiaojing, HUANG Pingping, DONG Lixia, et al. Saliency detection based on distance between patches in polarimetric SAR images[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014.
    [53] JÄGER M and HELLWICH O. Saliency and salient region detection in SAR polarimetry[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, South Korea, 2005.
    [54] WANG Haipeng, XU Feng, and CHEN Shanshan. Saliency detector for SAR images based on pattern recurrence[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(7): 2891–2900. doi: 10.1109/JSTARS.2016.2521709
    [55] LIN Huiping, CHEN Hang, JIN Kan, et al. Ship detection with superpixel-level fisher vector in high-resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(2): 247–251. doi: 10.1109/LGRS.2019.2920668
    [56] ZHANG Tao, JI Jinsheng, LI Xiaofeng, et al. Ship detection from PolSAR imagery using the complete polarimetric covariance difference matrix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(5): 2824–2839. doi: 10.1109/TGRS.2018.2877821
    [57] ZHANG Tao, YANG Zhen, GAN Hongping, et al. PolSAR ship detection using the joint polarimetric information[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(11): 8225–8241. doi: 10.1109/TGRS.2020.2989425
    [58] PERRY R P, DIPIETRO R C, and FANTE R L. SAR imaging of moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(1): 188–200. doi: 10.1109/7.745691
    [59] GAO Gui, WANG Xiaoyang, and LAI Tao. Detection of moving ships based on a combination of magnitude and phase in along-track interferometric SAR—Part II: Statistical modeling and CFAR detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3582–3599. doi: 10.1109/TGRS.2014.2379351
    [60] GAO Gui, WANG Xiaoyang, and LAI Tao. Detection of moving ships based on a combination of magnitude and phase in along-track interferometric SAR—Part I: SIMP metric and its performance[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(7): 3565–3581. doi: 10.1109/TGRS.2014.2379352
    [61] GAO Gui and SHI Gongtao. The CFAR detection of ground moving targets based on a joint metric of SAR interferogram’s magnitude and phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(9): 3618–3624. doi: 10.1109/TGRS.2012.2184836
    [62] PARK H R, LI Jian, and WANG Hong. Polarization-space-time domain generalized likelihood ratio detection of radar targets[J]. Signal Processing, 1995, 41(2): 153–164. doi: 10.1016/0165-1684(94)00097-J
    [63] PARK H R, KWAG Y K, and WANG Hong. An efficient adaptive polarimetric processor with an embedded CFAR[J]. ETRI Journal, 2003, 25(3): 171–178. doi: 10.4218/etrij.03.0102.0316
    [64] WANG Genyuan, XIA Xianggen, and CHEN V C. Radar imaging of moving targets in foliage using multifrequency multiaperture polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(8): 1755–1764. doi: 10.1109/TGRS.2003.813501
    [65] FRIEDLANDER B and PORAT B. VSAR: A high resolution radar system for detection of moving targets[J]. IEE Proceedings-Radar,Sonar and Navigation, 1997, 144(4): 205–218. doi: 10.1049/ip-rsn:19971309
    [66] LIU Zhongxun, DAI Dahai, LI Dun, et al. Optimal polarimetric interferometry coherence analysis in detection and location of moving target with SAR[C]. The 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 2007.
    [67] MATTAR K E, LIU Chen, and SABRY R. Polarimetric SAR interferometry: Investigations using EC CV-580 SAR data[R]. Ottawa: Defence Research and Development Canada Ottawa, 2005.
    [68] ZOU Bin, WEI Tao, and ZHANG Lamei. Moving targets detection and analysis on multi-look polarimetric SAR images using PWF method[C]. 2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, USA, 2008.
    [69] LIU Chen and GIERULL C H. A new application for polsar imagery in the field of moving target indication/ship detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3426–3436. doi: 10.1109/TGRS.2007.907192
    [70] LIU Chen. Time-frequency analysis of PolSAR moving target data[J]. Canadian Journal of Remote Sensing, 2007, 33(4): 237–249. doi: 10.5589/m07-019
    [71] STACY N and PREISS M. Polarimetric ATI slow target detection in a log likelihood framework[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013.
    [72] 李延伟. 单/双基地极化干涉SAR信号建模、检测及参数反演方法研究[D]. [博士论文], 国防科学技术大学, 2010.

    LI Yanwei. Study on the method of the modeling, the detection and the parameter inversion for the mono/bi static polarimetric SAR interferometry[D]. [Ph. D. dissertation], National University of Defense Technology, 2010.
    [73] CHIU S, GIERULL C, and RASHID M. First results of experimental polarimetric SAR-GMTI modes on RADARSAT-2[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018.
    [74] CHIU S, GIERULL C, and RASHID M. Ship detection, discrimination, and motion estimation via spaceborne polarimetric SAR-GMTI[C]. 2019 IEEE Radar Conference, Boston, USA, 2019.
    [75] ZHANG Peng, ZHANG Jiafeng, and LIU Tao. Constant false alarm rate detection of slow targets in polarimetric along-track interferometric synthetic aperture radar imagery[J]. IET Radar,Sonar&Navigation, 2019, 13(1): 31–44. doi: 10.1049/iet-rsn.2018.5082
    [76] 张鹏, 张嘉峰, 刘涛. 基于相干度优化的极化顺轨干涉SAR慢小目标CFAR检测[J]. 北京航空航天大学学报, 2019, 45(3): 575–587. doi: 10.13700/j.bh.1001-5965.2018.0322

    ZHANG Peng, ZHANG Jiafeng, and LIU Tao. Slow and small target CFAR detection of polarimetric along-track interferometric SAR using coherence optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 575–587. doi: 10.13700/j.bh.1001-5965.2018.0322
    [77] OUCHI K. On the multilook images of moving targets by synthetic aperture radars[J]. IEEE Transactions on Antennas and Propagation, 1985, 33(8): 823–827. doi: 10.1109/TAP.1985.1143684
    [78] KIRSCHT M. Detection and velocity estimation of moving objects in a sequence of single-look SAR images[C]. 1996 International Geoscience and Remote Sensing Symposium, Lincoln, USA, 1996.
    [79] GAO Fei, MAO Shiyi, SUN Jinping, et al. A tri-look detector for single channel SAR-GMTI[C]. 2009 IET International Radar Conference, Guilin, China, 2009.
    [80] 康雪艳, 杨汝良. 利用DPCA方法对机载单天线SAR实际数据进行动目标检测[J]. 遥感技术与应用, 2004, 19(3): 182–186. doi: 10.3969/j.issn.1004-0323.2004.03.009

    KANG Xueyan and YANG Ruliang. Moving targets detection using DPCA Method for single-antenna airborne SAR real data[J]. Remote Sensing Technology and Application, 2004, 19(3): 182–186. doi: 10.3969/j.issn.1004-0323.2004.03.009
    [81] 张露, 郭华东, 韩春明, 等. 基于子孔径分解的SAR动目标检测方法[J]. 电子学报, 2008, 36(6): 1210–1213. doi: 10.3321/j.issn:0372-2112.2008.06.034

    ZHANG Lu, GUO Huadong, HAN Chunming, et al. Moving targets detection in SAR images based on sub-aperture decomposition[J]. Acta Electronica Sinica, 2008, 36(6): 1210–1213. doi: 10.3321/j.issn:0372-2112.2008.06.034
    [82] 康雪艳, 杨汝良. 对机载单天线SAR实际数据进行ATI动目标检测的新方法[J]. 电子学报, 2005, 33(3): 416–418. doi: 10.3321/j.issn:0372-2112.2005.03.008

    KANG Xueyan and YANG Ruliang. A new method of moving target detection using ATI for single-antenna airborne SAR real data[J]. Acta Electronica Sinica, 2005, 33(3): 416–418. doi: 10.3321/j.issn:0372-2112.2005.03.008
    [83] MARINO A, SANJUAN-FERRER M J, HAJNSEK I, et al. Ship detection with spectral analysis of synthetic aperture radar: A comparison of new and well-known algorithms[J]. Remote Sensing, 2015, 7(5): 5416–5439. doi: 10.3390/rs70505416
    [84] 种劲松, 朱敏慧. SAR图像舰船及其尾迹检测研究综述[J]. 电子学报, 2003, 31(9): 1356–1360. doi: 10.3321/j.issn:0372-2112.2003.09.020

    CHONG Jinsong and ZHU Minhui. Survey of the study on ship and wake detection in SAR imagery[J]. Acta Electronica Sinica, 2003, 31(9): 1356–1360. doi: 10.3321/j.issn:0372-2112.2003.09.020
    [85] SCHULER D L, LEE J S, HOPPEL K, et al. Polarimetric sar image signatures of gulf-stream features and ship wakes[C]. 1992 International Geoscience and Remote Sensing Symposium, Houston, USA, 1992.
    [86] POTTIER E, BOERNER W M, and SCHULER D L. Polarimetric detection and estimation of ship wakes[C]. IEEE 1999 International Geoscience and Remote Sensing Symposium, Hamburg, Germany, 1999.
    [87] WU Peng, WANG Jun, WANG Wenguang, et al. Polarimetric characters extraction research of Kelvin wakes on PolSAR image[C]. 2011 International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 2011.
    [88] HENNINGS I, ROMEISER R, ALPERS W, et al. Radar imaging of Kelvin arms of ship wakes[J]. International Journal of Remote Sensing, 1999, 20(13): 2519–2543. doi: 10.1080/014311699211912
    [89] 叶文隽. SAR图像舰船尾迹检测研究[D]. [硕士论文], 国防科学技术大学, 2009.

    YE Wenjun. Research on detection of ship wake from SAR imagery[D]. [Master dissertation], National University of Defense Technology, 2009.
    [90] IMBO P, SOUYRIS J C, and YEREMY M. Wake detection in polarimetric SAR images[C]. IEEE 2001 International Geoscience and Remote Sensing Symposium Scanning the Present and Resolving the Future, Sydney, Australia, 2001.
    [91] KASILINGAM D, SCHULER D, LEE J S, et al. Modulation of polarimetric coherence by ocean features[C]. 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 432–434.
    [92] MORRIS J, ANDERSON S, and PARFITT A. Polarimetric mapping of ship wakes[C]. 2002 IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002.
    [93] MORRIS J and ANDERSON S. An entropy-based approach to wake echo analysis [ship wake radar detection][C]. 2003 International Conference on Radar, Adelaide, Australia, 2003.
    [94] YANG Jingsong, HUANG Weigen, XIAO Qingmei, et al. Optimal polarization for the observation of ocean features with SAR[C]. 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, USA, 2004.
    [95] ARNOLD-BOS A, MARTIN A, and KHENCHAF A. A versatile bistatic & polarimetric marine radar simulator[C]. 2006 IEEE Conference on Radar, Verona, USA, 2006.
    [96] XU Zhou, TANG Bo, and CHENG Shuiying. Faint ship wake detection in PolSAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(7): 1055–1059. doi: 10.1109/LGRS.2018.2823007
    [97] BIONDI F. Low-rank plus sparse decomposition and localized radon transform for ship-wake detection in synthetic aperture radar images[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(1): 117–121. doi: 10.1109/LGRS.2017.2777264
    [98] BIONDI F. A polarimetric extension of low-rank plus sparse decomposition and radon transform for ship wake detection in synthetic aperture radar images[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 75–79. doi: 10.1109/LGRS.2018.2868365
    [99] 徐丰, 王海鹏, 金亚秋, 等. 合成孔径雷达图像智能解译[M]. 北京: 科学出版社, 2020.

    XU Feng, WANG Haipeng, JIN Yaqiu, et al. Synthetic Aperture Radar Image Intelligent Interpretation[M]. Beijing: Science Press, 2020.
    [100] SAIN S R. The nature of statistical learning theory[J]. Technometrics, 1996, 38(4): 409. doi: 10.1080/00401706.1996.10484565
    [101] 杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(1): 34–54. doi: 10.12000/JR19104

    DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi: 10.12000/JR19104
    [102] GAO Gui. A parzen-window-kernel-based CFAR algorithm for ship detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3): 557–561. doi: 10.1109/LGRS.2010.2090492
    [103] 张晓玲, 张天文, 师君, 等. 基于深度分离卷积神经网络的高速高精度SAR舰船检测[J]. 雷达学报, 2019, 8(6): 841–851. doi: 10.12000/JR19111

    ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, et al. High-speed and high-accurate SAR ship detection based on a depthwise separable convolution neural network[J]. Journal of Radars, 2019, 8(6): 841–851. doi: 10.12000/JR19111
    [104] CHEN Siwei, TAO Chensong, WANG Xuesong, et al. Polarimetric SAR targets detection and classification with deep convolutional neural network[C]. 2018 Progress in Electromagnetics Research Symposium, Toyama, Japan, 2018.
    [105] ZHOU Feng, FAN Weiwei, SHENG Qiangqiang, et al. Ship detection based on deep convolutional neural networks for polsar images[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018.
    [106] 鲁兵兵. 基于深度学习的PolSAR图像分类与舰船检测方法[D]. [硕士论文], 西安电子科技大学, 2019.

    LU Bingbing. PolSAR image classification and ship detection method based on deep learning[D]. [Master dissertation], Xidian University, 2019.
    [107] JIN Kan, CHEN Yilun, XU Bin, et al. A patch-to-pixel convolutional neural network for small ship detection with PolSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9): 6623–6638. doi: 10.1109/TGRS.2020.2978268
    [108] COZZOLINO D, DI MARTINO G, POGGI G, et al. A fully convolutional neural network for low-complexity single-stage ship detection in sentinel-1 SAR images[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 886889.
    [109] 李其. 基于深度特征的SAR图像舰船目标检测方法研究[D]. [硕士论文], 电子科技大学, 2020.

    LI Qi. Research of ship detection in SAR images based on depth features[D]. [Master dissertation], University of Electronic Science and Technology of China, 2020.
    [110] FITCH J P, LEHMAN S K, DOWLA F U, et al. Ship wake-detection procedure using conjugate gradient trained artificial neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(5): 718–726. doi: 10.1109/36.83986
    [111] KANG K M and KIM D J. Ship velocity estimation from ship wakes detected using convolutional neural networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11): 4379–4388. doi: 10.1109/JSTARS.2019.2949006
  • 期刊类型引用(7)

    1. 周群焰,王思然,戴俊彦,程强. 基于时空编码数字超表面的雷达散射截面积缩减及波达角估计方法. 雷达学报. 2024(01): 150-159 . 本站查看
    2. 徐健,王彦朝,罗慧玲,史浩洋,许河秀. 基于双几何相位超表面的三频全空间波前调控. 电子学报. 2024(02): 396-406 . 百度学术
    3. 张娜,陈克,王逊凡,赵健民,赵俊明,冯一军. 可编程超表面实现双极化独立多波束反射阵天线设计. 空军工程大学学报. 2023(03): 10-16 . 百度学术
    4. 司马博羽,侯芸芳,冯梦龙,李坤泽,徐翊邦,康炜,钱嵩松,宗志园. 基于表面-电路-表面型超表面的大旋转角度异常反射和异常折射. 空军工程大学学报. 2023(03): 17-25 . 百度学术
    5. 薛建材,周长达,何国立,李锶阳,周张凯. 基于光学纳米结构的物理型信息安全技术. 中国激光. 2023(18): 120-136 . 百度学术
    6. 王朝辉,许河秀,逄智超,王明照,王少杰. 基于3D打印技术的任意曲面共形超表面隐身衣. 红外与毫米波学报. 2022(01): 210-217 . 百度学术
    7. 逄智超,许河秀,罗慧玲,王朝辉,王彦朝,徐硕,徐健. 低频比波长复用高效双功能超表面. 空军工程大学学报. 2022(05): 57-63 . 百度学术

    其他类型引用(7)

  • 加载中
图(26) / 表(2)
计量
  • 文章访问数: 5183
  • HTML全文浏览量: 2117
  • PDF下载量: 923
  • 被引次数: 14
出版历程
  • 收稿日期:  2020-12-31
  • 修回日期:  2021-02-02
  • 网络出版日期:  2021-02-08

目录

/

返回文章
返回