基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别

马琳 潘宗序 黄钟泠 韩冰 胡玉新 周晓 雷斌

马琳, 潘宗序, 黄钟泠, 等. 基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别[J]. 雷达学报, 2021, 10(1): 159–172. doi: 10.12000/JR20106
引用本文: 马琳, 潘宗序, 黄钟泠, 等. 基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别[J]. 雷达学报, 2021, 10(1): 159–172. doi: 10.12000/JR20106
MA Lin, PAN Zongxu, HUANG Zhongling, et al. Multichannel false-target discrimination in SAR images based on sub-aperture and full-aperture feature learning[J]. Journal of Radars, 2021, 10(1): 159–172. doi: 10.12000/JR20106
Citation: MA Lin, PAN Zongxu, HUANG Zhongling, et al. Multichannel false-target discrimination in SAR images based on sub-aperture and full-aperture feature learning[J]. Journal of Radars, 2021, 10(1): 159–172. doi: 10.12000/JR20106

基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别

DOI: 10.12000/JR20106
基金项目: 国家自然科学基金(61701478)
详细信息
    作者简介:

    马 琳(1996–),女,河南南阳人,中国科学院空天信息创新研究院硕士研究生,2018年获郑州大学信息工程学院学士学位。主要研究方向为深度学习,SAR图像目标识别研究

    潘宗序(1986–),男,黑龙江哈尔滨人,2015年获清华大学电子工程系博士学位,现为中国科学院空天信息创新研究院副研究员,硕士生导师。主要研究方向为深度学习在遥感中的应用研究,包括光学和SAR图像中的目标检测与识别,遥感图像质量提升与超分辨率重建,遥感图像语义级分割及精细化解译

    黄钟泠(1994–),女,重庆人,中国科学院空天信息创新研究院博士研究生,2015年获北京师范大学信息科学与技术学院学士学位,2018年10月至2019年9月赴德国韦斯林德国航空航天中心(DLR)交流学习。主要研究方向为遥感、合成孔径雷达(SAR)目标识别,SAR图像理解和深度学习

    韩 冰(1980–),女,北京人,2008年获中国科学院研究生院博士学位,现为中国科学院空天信息创新研究院研究员,硕士生导师。主要研究方向为新体制多模式SAR成像算法、面向海洋遥感应用的SAR精细化处理和针对典型目标的SAR遥感信息智能提取等

    胡玉新(1981–),男,内蒙古赤峰人,中国科学院电子学研究所获博士学位,现为中国科学院空天信息创新研究院研究员,硕士生导师。主要研究方向为星载SAR信号处理,遥感卫星地面系统、空间信息处理系统体系架构

    周 晓(1986–),男,辽宁兴城人,2014年获北京大学摄影测量与遥感博士学位,现为中国科学院空天信息创新研究院助理研究员。主要研究方向为高分辨率遥感影像处理与应用,合成孔径雷达图像定标

    雷 斌(1978–),男,贵州黔西人,2000年获清华大学电机系学士学位,2014年在中国科学院电子学研究所获博士学位,现为中国科学院空天信息创新研究院研究员,博士生导师。主要研究方向为多传感器遥感信息处理系统体系架构设计、SAR 信号并行处理、SAR图像处理与图像质量提升和 SAR系统性能预估与优化等

    通讯作者:

    潘宗序 zxpan@mail.ie.ac.cn

  • 责任主编:计科峰 Corresponding Editor: JI Kefeng
  • 中图分类号: TN958; TP183

Multichannel False-target Discrimination in SAR Images Based on Sub-aperture and Full-aperture Feature Learning

Funds: The National Natural Science Foundation of China (61701478)
More Information
  • 摘要: SAR多通道引起的虚假目标与散焦的船舶目标形状纹理特征非常相似,在全孔径SAR图像中难以区分。针对此类虚假目标造成的虚警问题,该文提出一种基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别方法。首先,对复数SAR图像进行幅值计算得到幅度图像,利用迁移学习方法提取幅度图像中的全孔径特征;接着,对复数SAR图像进行子孔径分解获得一系列子孔径图像,然后用栈式卷积自编码器(SCAE)提取子孔径图像中的子孔径特征;最后,将子孔径和全孔径特征进行串联并利用联合特征进行分类。在高分三号超精细条带模式SAR图像上的实验结果表明,该方法可以有效的鉴别船舶目标和多通道虚假目标,与仅使用全孔径特征学习的方法相比准确率提升了16.32%。

     

  • 图  1  GF-3 UFS图像中的多通道虚假目标示意图

    Figure  1.  An example of multichannel false-target in a GF-3 UFS SAR image

    图  2  结合子孔径与全孔径特征学习的网络框架

    Figure  2.  The detailed implementations of SFFL framework

    图  3  子孔径分解流程图

    Figure  3.  Flowchart of sub-aperture decomposition

    图  4  真实船舶目标、纯海面、多通道虚假目标切片的全孔径图像及其对应子孔径图像

    Figure  4.  Examples of sublook amplitude for ships (a)—(d), sea (e), multichannel false-targets (f)—(h) and the relevant amplitude SLC images

    图  5  基于子孔径特征学习的网络结构

    Figure  5.  Network structure based on sub-aperture feature learning

    图  6  传递式迁移学习方法流程图

    Figure  6.  Flowchart of transitive transfer learning method

    图  7  残差块结构图

    Figure  7.  The architecture of residual block (ResBlock)

    图  8  散焦图像仿真算法流程图

    Figure  8.  Flowchart of defocused image simulation algorithm

    图  9  不同程度散焦图像及其对应方位误差曲线图

    Figure  9.  Different degrees of defocused images and their corresponding azimuth error curves

    图  10  原图分类结果比较

    Figure  10.  Comparison of FFL and SFFL results in the original image

    图  11  t-SNE降维特征可视化结果比较

    Figure  11.  Comparison of FFL and SFFL visualization results using t-SNE

    图  12  纹理特征与真实目标相似的多通道虚假目标切片鉴别结果详细说明

    Figure  12.  The elaborate explanation of the discrimination results of multichannel false-targets similar to real targets in texture

    图  13  测试集仿真散焦目标示例

    Figure  13.  An example of simulated defocus target in test set

    图  14  不同子孔径数目下SFFL方法的准确率

    Figure  14.  Overall accuracy of SFFL method with different numbers of sub-apertures

    表  1  各个自编码单元的卷积层设计

    Table  1.   Design of convolutional layers in each auto-encoder unit

    自编码单元通道数卷积核尺寸
    1325×5
    2645×5
    3643×3
    41284×4
    下载: 导出CSV

    表  2  基于子孔径与全孔径特征学习的算法

    Table  2.   SFFL algorithm

     输入:复数SAR图像$ C\left(x,y\right) $
     for 所有训练样本$ C\left(x,y\right) $ do
       (1) 通过子孔径分解获得子孔径图像$ S\left(x,y\right) $
       (2) 训练栈式卷积自编码网络$ {F}_{2} $,获得子孔径特征${\rm{\varphi } }_{2}\left(x, y\right)$
         for 子孔径图像$ S\left(x,y\right) $ do
          for 所有自编码单元$ l $ do
           计算自编码单元的输出
           ${y}_{i}^{l-1}={F}_{2}\left(\displaystyle\sum\limits_{i=1}^{ {M}_{l-1} }{x}_{i}^{l-1},{\theta }_{2}\right)$
           计算损失函数
           ${\rm{Loss} } = \displaystyle\sum \limits_{i = 1}^{ {M_{l - 1} } } \left\| {x_i^{l - 1} - y_i^{l - 1} } \right\|_{\rm{F}}^2$
           反向传播,更新参数θ2
          end for
         end for
       (3) 计算全孔径幅度图像$ I\left(x,y\right)=\sqrt{{A\left(x,y\right)}^{2}+{B\left(x,y\right)}^{2}} $
       (4) 迁移学习ResNet-18预训练模型$ {F}_{1} $,微调参数θ1,获得
       全孔径特征${\rm{\varphi } }_{1}\left(x, y\right)$
       (5) 特征归一化${\rm{\varphi } }_{1}\left(x, y\right)$, ${\rm{\varphi } }_{2}\left(x, y\right)$
       (6) 特征拼接得到${\rm{\psi } }\left(x, y\right)$
       (7) 计算损失函数(交叉熵)
       (8) 反向传播,更新参数θ
     end for
     输出:最终模型
    下载: 导出CSV

    表  3  GF-3超精细条带图像参数

    Table  3.   The detailed information of GF-3 UFS SAR images used in the experiment

    参数图像1—图像8
    成像模式UFS
    产品类型SLC
    产品级别L1A级
    轨道模式升轨
    极化方式DH
    斜距分辨率(m)2.5~5.0
    方位向分辨率(m)3
    幅宽(km)30
    像元间距[Rg×Az](m)1.124×1.729
    入射角(º)39.54~41.52
    下载: 导出CSV

    表  4  二分类问题混淆矩阵

    Table  4.   Confusion matrix of binary classification

    预测结果实际为真实际为假
    预测为真TPFP
    预测为假FNTN
    下载: 导出CSV

    表  5  不同方法的鉴别性能对比

    Table  5.   Comparison of discrimination performance of different methods

    实验方法准确率(%)运行时间(s)
    SLCF+SVM90.560.8823
    SFL90.994.9824
    FFL83.694.2189
    SFFL96.575.3546
    下载: 导出CSV

    表  6  不同方法的混淆矩阵

    Table  6.   Confusion matrix of different methods

    方法预测结果识别结果实际为真识别结果实际为假
    SLCF+SVM预测为真7020
    预测为假2141
    SFL预测为真6817
    预测为假4144
    FFL预测为真6935
    预测为假3126
    SFFL预测为真695
    预测为假3156
    下载: 导出CSV

    表  7  加入散焦数据结果对比(%)

    Table  7.   Comparison of two methods after adding defocus data (%)

    测试数据FFL方法准确率SFFL方法准确率
    GF-3数据83.6996.57
    GF-3数据+仿真散焦数据80.4196.73
    下载: 导出CSV
  • [1] 杜兰, 王兆成, 王燕, 等. 复杂场景下单通道SAR目标检测及鉴别研究进展综述[J]. 雷达学报, 2020, 9(1): 34–54. doi: 10.12000/JR19104

    DU Lan, WANG Zhaocheng, WANG Yan, et al. Survey of research progress on target detection and discrimination of single-channel SAR images for complex scenes[J]. Journal of Radars, 2020, 9(1): 34–54. doi: 10.12000/JR19104
    [2] 吴亮, 雷斌, 韩冰, 等. 卫星姿态误差对多通道SAR成像质量的影响[J]. 测绘通报, 2015, (1): 124–130. doi: 10.13474/j.cnki.11-2246.2015.0026

    WU Liang, LEI Bin, HAN Bing, et al. The impact of satellite attitude error on multi-channel SAR image quality[J]. Bulletin of Surveying and Mapping, 2015, (1): 124–130. doi: 10.13474/j.cnki.11-2246.2015.0026
    [3] 张双喜, 乔宁, 邢孟道, 等. 多普勒频谱模糊情况下的星载方位向多通道高分宽幅SAR-GMTI杂波抑制方法[J]. 雷达学报, 2020, 9(2): 295–303. doi: 10.12000/JR20005

    ZHANG Shuangxi, QIAO Ning, XING Mengdao, et al. A novel clutter suppression approach for the space-borne multiple channel in the azimuth high-resolution and wide-swath SAR-GMTI system with an ambiguous Doppler spectrum[J]. Journal of Radars, 2020, 9(2): 295–303. doi: 10.12000/JR20005
    [4] ZHANG Shuangxi, XING Mengdao, XIA Xianggen, et al. Multichannel HRWS SAR imaging based on range-variant channel calibration and multi-Doppler-direction restriction ambiguity suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4306–4327. doi: 10.1109/TGRS.2013.2281329
    [5] PAN Zongxu, LIU Lei, QIU Xiaolan, et al. Fast vessel detection in Gaofen-3 SAR images with ultrafine strip-map mode[J]. Sensors, 2017, 17(7): 1578. doi: 10.3390/s17071578
    [6] DI MARTINO G, IODICE A, RICCIO D, et al. Filtering of azimuth ambiguity in stripmap synthetic aperture radar images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(9): 3967–3978. doi: 10.1109/JSTARS.2014.2320155
    [7] 温雪娇, 仇晓兰, 尤红建, 等. 高分辨率星载SAR起伏运动目标精细聚焦与参数估计方法[J]. 雷达学报, 2017, 6(2): 213–220. doi: 10.12000/JR17005

    WEN Xuejiao, QIU Xiaolan, YOU Hongjian, et al. Focusing and parameter estimation of fluctuating targets in high resolution spaceborne SAR[J]. Journal of Radars, 2017, 6(2): 213–220. doi: 10.12000/JR17005
    [8] WEN Xuejiao, QIU Xiaolan, and YOU Hongjian. Focusing and parameter estimating of fluctuating target in high resolution spaceborne SAR[C]. 2016 CIE International Conference on Radar, Guangzhou, China, 2016: 1–5. doi: 10.1109/RADAR.2016.8059537.
    [9] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. doi: 10.1109/TPAMI.2016.2577031
    [10] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]. The 14th European Conference on Computer Vision, Amsterdam, Holland, 2016. doi: 10.1007/978-3-319-46448-0_2.
    [11] LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications, Beijing, China, 2017: 1–6. doi: 10.1109/BIGSARDATA.2017.8124934.
    [12] KANG Miao, LENG Xiangguang, LIN Zhao, et al. A modified faster R-CNN based on CFAR algorithm for SAR ship detection[C]. 2017 International Workshop on Remote Sensing with Intelligent Processing, Shanghai, China, 2017: 1–4. doi: 10.1109/RSIP.2017.7958815.
    [13] LIU Lei, CHEN Guowei, PAN Zongxu, et al. Inshore ship detection in SAR images based on deep neural networks[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 25–28. doi: 10.1109/IGARSS.2018.8519555.
    [14] ZHANG Fan, WANG Yunchong, NI Jun, et al. SAR target small sample recognition based on CNN cascaded features and AdaBoost rotation forest[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 1008–1012. doi: 10.1109/LGRS.2019.2939156
    [15] LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. Ship detection based on complex signal kurtosis in single-channel SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6447–6461. doi: 10.1109/TGRS.2019.2906054
    [16] LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. Discriminating ship from radio frequency interference based on noncircularity and non-gaussianity in sentinel-1 SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 352–363. doi: 10.1109/TGRS.2018.2854661
    [17] ZHANG Zhimian, WANG Haipeng, XU Feng, et al. Complex-valued convolutional neural network and its application in polarimetric SAR image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(12): 7177–7188. doi: 10.1109/TGRS.2017.2743222
    [18] HUANG Zhongling, DATCU M, PAN Zongxu, et al. Deep SAR-Net: Learning objects from signals[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161: 179–193. doi: 10.1016/j.isprsjprs.2020.01.016
    [19] TANG Jiaxin, ZHANG Fan, ZHOU Yongsheng, et al. A fast inference networks for SAR target few-shot learning based on improved siamese networks[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1212–1215. doi: 10.1109/IGARSS.2019.8898180.
    [20] OUCHI K, TAMAKI S, YAGUCHI H, et al. Ship detection based on coherence images derived from cross correlation of multilook SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(3): 184–187. doi: 10.1109/LGRS.2004.827462
    [21] MARINO A, SANJUAN-FERRER M J, HAJNSEK I, et al. Ship detection with spectral analysis of synthetic aperture radar: A comparison of new and well-known algorithms[J]. Remote Sensing, 2015, 7(5): 5416–5439. doi: 10.3390/rs70505416
    [22] RENGA A, GRAZIANO M D, and MOCCIA A. Segmentation of marine SAR images by sublook analysis and application to sea traffic monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(3): 1463–1477. doi: 10.1109/TGRS.2018.2866934
    [23] BREKKE C, ANFINSEN S N, and LARSEN Y. Subband extraction strategies in ship detection with the subaperture cross-correlation magnitude[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 786–790. doi: 10.1109/LGRS.2012.2223656
    [24] SOUYRIS J C, HENRY C, and ADRAGNA F. On the use of complex SAR image spectral analysis for target detection: Assessment of polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(12): 2725–2734. doi: 10.1109/TGRS.2003.817809
    [25] FERRO-FAMIL L, REIGBER A, POTTIER E, et al. Scene characterization using subaperture polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10): 2264–2276. doi: 10.1109/TGRS.2003.817188
    [26] DUMITRU C O, SCHWARZ G, and DATCU M. Land cover semantic annotation derived from high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2215–2232. doi: 10.1109/JSTARS.2016.2549557
    [27] HUANG Zhongling, DUMITRU C O, PAN Zongxu, et al. Classification of large-scale high-resolution SAR images with deep transfer learning[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 107–111. doi: 10.1109/LGRS.2020.2965558
    [28] TerraSAR-X Basic Product Specification Document, Issue1.9[Online]. http://sss.terrasar-x.dlr.de/pdfs/TX-GS-DD-3302.pdf, 2013.
    [29] HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/TGRS.2019.2947634
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  3876
  • HTML全文浏览量:  1397
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2020-09-09
  • 网络出版日期:  2021-02-25

目录

    /

    返回文章
    返回