全极化探地雷达多极化数据融合分析研究

薛策文 冯晅 李晓天 梁文婧 周皓秋 王颖

薛策文, 冯晅, 李晓天, 等. 全极化探地雷达多极化数据融合分析研究[J]. 雷达学报, 2021, 10(1): 74–85. doi: 10.12000/JR20104
引用本文: 薛策文, 冯晅, 李晓天, 等. 全极化探地雷达多极化数据融合分析研究[J]. 雷达学报, 2021, 10(1): 74–85. doi: 10.12000/JR20104
XUE Cewen, FENG Xuan, LI Xiaotian, et al. Multi-polarization data fusion analysis of full-polarimetric ground penetrating radar[J]. Journal of Radars, 2021, 10(1): 74–85. doi: 10.12000/JR20104
Citation: XUE Cewen, FENG Xuan, LI Xiaotian, et al. Multi-polarization data fusion analysis of full-polarimetric ground penetrating radar[J]. Journal of Radars, 2021, 10(1): 74–85. doi: 10.12000/JR20104

全极化探地雷达多极化数据融合分析研究

DOI: 10.12000/JR20104
基金项目: 国家重点研发计划(2018YFC1503705),近地面探测技术重点实验室(6142414180911),中央高校基础研究基金(20130061110061),吉林省科技发展项目(20180101091JC)
详细信息
    作者简介:

    薛策文(1996–),男,吉林人,吉林大学硕士生,研究方向为全极化探地雷达数据融合,探地雷达数据处理。E-mail: xuecw18@mails.jlu.edu.cn

    冯 晅(1973–),男,博士,教授,博士生导师,吉林大学地球探测科学与技术学院副院长。2002年获吉林大学博士学位;日本東北大学(Tohoku University)博士后、研究助手(2003–2006);美国麻省理工学院(MIT)访问学者(2014–2016); IEEE Senior Member。教育部新世纪优秀人才,国土资源部国土资源杰出青年科技人才。主要研究方向为全极化探地雷达地下探测理论和技术、非线性弹性地震学。E-mail: fengxuan@jlu.edu.cn

    李晓天(1995–),男,河南人,吉林大学硕士生,研究方向全极化探地雷达系统、探地雷达数据处理。E-mail: lixt@mails.jlu.edu.cn

    通讯作者:

    冯晅 fengxuan@jlu.edu.cn

  • 责任主编:雷文太 Corresponding Editor: LEI Wentai
  • 中图分类号: P631

Multi-polarization Data Fusion Analysis of Full-Polarimetric Ground Penetrating Radar

Funds: The National Key Research and Development Program of China (2018YFC1503705), The Science and Technology on Near-Surface Detection Laboratory (6142414180911), The Fundamental Research Funds for the Central Universities (20130061110061), The Technology Development Program of Jilin Province (20180101091JC)
More Information
  • 摘要: 对于相同地下目标体,相比大部分传统单极化探地雷达,全极化探地雷达(FP-GPR)可以测得更全面的极化数据,称为VV, HH, VH。为了对地下目标体进行更全面精细的成像和识别, 数据融合技术被应用于FP-GPR将3种不同极化模式的极化信息结合起来。然而,目前全极化探地雷达数据融合常用的加权平均融合方法,它会掩盖全极化的优点,同时也无法同时适应不同的散射机制。因此,该文提出了基于主成分分析(PCA),拉普拉斯金字塔(LP)以及多尺度小波变换(WT)的3种FP-GPR数据融合方法。为了检验几种数据融合方法的可靠性,该文在实验室分别测量了代表3种不同基本散射机制目标体的FP-GPR数据进行分析, 引入瞬时振幅为主、梯度为辅的方法将加权平均融合方法与3种方法进行比较。结果表明该研究所应用的3种数据融合方法效果均优于加权平均融合,并且3种方法可以分别适应不同散射机制的目标体,主成分分析融合可以更好的应用于未知散射机制目标体。最后,将主成分分析融合应用于实际冰裂缝数据成像,得到很好的融合效果,且优于加权平均融合方法。

     

  • 图  1  全极化探地雷达系统中的天线配置

    Figure  1.  Antenna configurations used in a FP-GPR system

    图  2  金属目标体

    Figure  2.  Metallic targets

    图  3  FP-GPR系统

    Figure  3.  FP-GPR system

    图  4  板的FP-GPR图像

    Figure  4.  FP-GPR image of plate

    图  5  二面角的FP-GPR图像

    Figure  5.  FP-GPR image of dihedral

    图  6  多分支散射体的FP-GPR图像

    Figure  6.  FP-GPR image of multi-branch scatterer

    图  7  板偏移后融合图像

    Figure  7.  Fusion images of plate after migration

    图  8  板偏移后融合瞬时振幅图

    Figure  8.  Fusion instantaneous amplitude images of plate after migration

    图  9  板偏移后融合梯度图

    Figure  9.  Fusion gradient images of plate after migration

    图  10  二面角偏移后融合图像

    Figure  10.  Fusion images of dihedral after migration

    图  11  二面角偏移后融合瞬时振幅图

    Figure  11.  Fusion instantaneous amplitude images of dihedral after migration

    图  12  二面角偏移后融合梯度图

    Figure  12.  Fusion gradient images of dihedral after migration

    图  13  多分支散射体偏移后融合图像

    Figure  13.  Fusion images of multi-branch scatterer after migration

    图  14  多分支散射体偏移后融合瞬时振幅图

    Figure  14.  Fusion instantaneous amplitude images of multi-branch scatterer after migration

    图  15  多分支散射体偏移后融合梯度图

    Figure  15.  Fusion gradient images of multi-branch scatterer after migration

    图  16  冰裂缝实验

    Figure  16.  Ice crack experiment

    图  17  冰裂缝FP-GPR数据图像

    Figure  17.  FP-GPR image of ice crack

    图  18  冰裂缝偏移后融合图像

    Figure  18.  Fusion images of ice crack after migration

    图  19  冰裂缝偏移后融合瞬时振幅图

    Figure  19.  Fusion instantaneous amplitude images of ice crack after migration

    图  20  冰裂缝偏移后融合梯度图

    Figure  20.  Fusion gradient images of ice crack after migration

    表  1  瞬时振幅最大值

    Table  1.   Max of instantaneous amplitude

    目标体加权平均PCALPWT
    0.00660.01500.01340.0183
    二面角0.00310.01190.00940.0100
    多分支散射体3.0135×10–48.707×10-48.6279×10–48.7215×10–4
    下载: 导出CSV

    表  2  梯度最大值

    Table  2.   Max of gradient

    目标体加权平均PCALPWT
    8.8737×10–92.0838×10–81.9288×10–99.5532×10–8
    二面角9.0147×10–91.6597×10–83.5484×10–86.0511×10–8
    多分支散射体9.0209×10–102.3254×10–92.4932×10–93.8864×10–9
    下载: 导出CSV
  • [1] KANG M S, KIM N, IM S B, et al. 3D GPR image-based UcNet for enhancing underground cavity detectability[J]. Remote Sensing, 2019, 11(21): 2545. doi: 10.3390/rs11212545
    [2] GABALLAH M, GRASMUECK M, and SATO M. Characterizing subsurface archaeological structures with full resolution 3D GPR at the early dynastic foundations of Saqqara Necropolis, Egypt[J]. Sensing and Imaging, 2018, 19(1): 23. doi: 10.1007/s11220-018-0209-8
    [3] SATO M and LU Q. Ground water migration monitoring by GPR[C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002: 345–347. doi: 10.1109/IGARSS.2002.1025035.
    [4] FENG Xuan and SATO M. Pre-stack migration applied to GPR for landmine detection[J]. Inverse Problems, 2004, 20(6): S99–S115. doi: 10.1088/0266-5611/20/6/S07
    [5] CHENG Siyuan, LIU Sixin, GUO Jingxue, et al. Data processing and interpretation of antarctic ice-penetrating radar based on variational mode decomposition[J]. Remote Sensing, 2019, 11(10): 1253. doi: 10.3390/rs11101253
    [6] HU Bin, WANG Deli, ZHANG Ling, et al. Rock location and quantitative analysis of regolith at the Chang’e 3 landing site based on local similarity constraint[J]. Remote Sensing, 2019, 11(5): 530. doi: 10.3390/rs11050530
    [7] FENG Xuan, YU Yue, LIU Cai, et al. Subsurface polarimetric migration imaging for full polarimetric ground-penetrating radar[J]. Geophysical Journal International, 2015, 202(2): 1324–1338. doi: 10.1093/gji/ggv208
    [8] FENG Xuan, YU Yue, LIU Cai, et al. Combination of H-alpha decomposition and migration for enhancing subsurface target classification of GPR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4852–4861. doi: 10.1109/TGRS.2015.2411572
    [9] FENG Xuan, LIANG Wenjing, LIU Cai, et al. Application of freeman decomposition to full polarimetric GPR for improving subsurface target classification[J]. Signal Processing, 2017, 132: 284–292. doi: 10.1016/j.sigpro.2016.07.030
    [10] 李玲玲. 像素级图像融合方法与应用[M]. 兰州: 甘肃人民出版社, 2006.

    LI Lingling. Pixel-Level Image Fusion Method and Application[M]. Lanzhou: Gansu People’s Publishing House, 2006.
    [11] DAILY M I, FARR T, ELACHI C, et al. Geologic interpretation from composited radar and Landsat imagery[J]. Photogrammetric Engineering and Remote Sensing, 1979, 45(8): 1109–1116.
    [12] ABIDI M A and GONZALEZ R C. Data Fusion in Robotics and Machine Intelligence[M]. Boston: Academic Press, 1992: 1–546.
    [13] HILL D, EDWARDS P, and HAWKES D. Fusing medical images[J]. Image Processing, 1994, 6(2): 22–24.
    [14] POHL C and VAN GENDEREN J L. Review article Multisensor image fusion in remote sensing: Concepts, methods and applications[J]. International Journal of Remote Sensing, 1998, 19(5): 823–854. doi: 10.1080/014311698215748
    [15] DING Ji, LIU Qiang, BAI Mingxuan, et al. A multisensor data fusion method based on gaussian process model for precision measurement of complex surfaces[J]. Sensors, 2020, 20(1): 278. doi: 10.3390/s20010278
    [16] WAN Tao, ZHU Chenchen, and QIN Zengchang. Multifocus image fusion based on robust principal component analysis[J]. Pattern Recognition Letters, 2013, 34(9): 1001–1008. doi: 10.1016/j.patrec.2013.03.003
    [17] JOSE C. A fast, on-line algorithm for PCA and its convergence characteristics[J]. IEEE, Transactions on Neural Network, 2000, 4(2): 299–307.
    [18] PEARSON K. LIII. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2(11): 559–572. doi: 10.1080/14786440109462720
    [19] SAFAYANI M, MANZURI SHALMANI M T, and KHADEMI M. Extended two-dimensional PCA for efficient face representation and recognition[C]. 2008 4th International Conference on Intelligent Computer Communication and Processing, Cluj-Napoca, 2008: 295–298. doi: 10.1109/ICCP.2008.4648390.
    [20] HADRI A, CHOUGDALI K, and TOUAHNI R. Intrusion detection system using PCA and Fuzzy PCA techniques[C]. 2016 International Conference on Advanced Communication Systems and Information Security, Marrakesh, Morocco, 2016: 1–7. doi: 10.1109/ACOSIS.2016.7843930.
    [21] QIU Changzhen, REN Hao, ZOU Huanxin, et al. Performance comparison of target classification in SAR images based on PCA and 2D-PCA features[C]. 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar, Xi’an, China, 2009: 868–871. doi: 10.1109/APSAR.2009.5374193.
    [22] ADELSON E H, ADELSON C H, BERGEN J R, et al. Pyramid methods in image processing[J]. RCA Engineer, 1984, 29(6): 33–41.
    [23] BURT P and ADELSON E. The Laplacian pyramid as a compact image code[J]. IEEE Transactions on Communications, 1983, 31(4): 532–540. doi: 10.1109/TCOM.1983.1095851
    [24] MAO Run, FU Xiansong, NIU Pingjuan, et al. Multi-directional laplacian pyramid image fusion algorithm[C]. 2018 3rd International Conference on Mechanical, Control and Computer Engineering, Huhhot, China, 2018: 568–572. doi: 10.1109/ICMCCE.2018.00125.
    [25] LIANG Pei, XIE Zhiwei, and DAI Jiguang. Joint edge detector based on Laplacian pyramid[C]. 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 2010: 978–982. doi: 10.1109/CISP.2010.5646931.
    [26] MALLAT S G. A theory for multiresolution signal decomposition: The wavelet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674–693. doi: 10.1109/34.192463
    [27] KUMAR K, MUSTAFA N, LI Jianping, et al. Image edge detection scheme using wavelet transform[C]. 2014 11th International Computer Conference on Wavelet Actiev Media Technology and Information Processing, Chengdu, China, 2014: 261–265. doi: 10.1109/ICCWAMTIP.2014.7073404.
    [28] LIU Qingliang, YANG Shuguo, LIU Jing, et al. A discrete wavelet transform and singular value decomposition-based digital video watermark method[J]. Applied Mathematical Modelling, 2020, 85: 273–293. doi: 10.1016/j.apm.2020.04.015
    [29] TAŞMAZ H. Dual tree complex wavelet transform based speech enhancement[C]. 2015 23nd Signal Processing and Communications Applications Conference, Malatya, Turkey, 2015: 823–826. doi: 10.1109/SIU.2015.7129955.
    [30] 梁文婧, 冯晅, 刘财, 等. 多输入多输出极化步进频率探地雷达硬件系统开发[J]. 吉林大学学报: 地球科学版, 2018, 48(2): 483–490. doi: 10.13278/j.cnki.jjuese.20170254

    LIANG Wenjing, FENG Xuan, LIU Cai, et al. Development of multiple-input and multiple-output polarimetric stepped-frequency ground penetrating radar system[J]. Journal of Jilin University:Earth Science Edition, 2018, 48(2): 483–490. doi: 10.13278/j.cnki.jjuese.20170254
  • 加载中
图(20) / 表(2)
计量
  • 文章访问数:  2735
  • HTML全文浏览量:  1182
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-21
  • 修回日期:  2020-09-27
  • 网络出版日期:  2021-02-25

目录

    /

    返回文章
    返回