层析SAR地表参数信息提取研究进展

李震 张平 乔海伟 赵常军 周建民 黄磊

李震, 张平, 乔海伟, 等. 层析SAR地表参数信息提取研究进展[J]. 雷达学报, 2021, 10(1): 116–130. doi: 10.12000/JR20095
引用本文: 李震, 张平, 乔海伟, 等. 层析SAR地表参数信息提取研究进展[J]. 雷达学报, 2021, 10(1): 116–130. doi: 10.12000/JR20095
LI Zhen, ZHANG Ping, QIAO Haiwei, et al. Advances in information extraction of surface parameters using Tomographic SAR[J]. Journal of Radars, 2021, 10(1): 116–130. doi: 10.12000/JR20095
Citation: LI Zhen, ZHANG Ping, QIAO Haiwei, et al. Advances in information extraction of surface parameters using Tomographic SAR[J]. Journal of Radars, 2021, 10(1): 116–130. doi: 10.12000/JR20095

层析SAR地表参数信息提取研究进展

DOI: 10.12000/JR20095
基金项目: 海南省重点研发计划(ZDYF2019002),中国科学院空天信息创新研究院重点部署项目(Y950930Z2F)
详细信息
    作者简介:

    李 震(1966–),男,湖北武汉人,研究员、博士生导师。主要从事地物目标散射机制、SAR地表参数反演与冰冻圈环境变化等方面的研究。E-mail: lizhen@aircas.ac.cn

    张 平(1979–),女,河北沧州人,高级工程师。主要从事合成孔径雷达信号处理、超分辨率图像处理、极化定标等方面的研究。E-mail: zhangping@aircas.ac.cn

    乔海伟(1997–),男,甘肃张掖人,博士研究生。主要从事雷达干涉、层析雷达、积雪遥感等方面的研究。E-mail: qhwgis@gmail.com

    赵常军(1991–),男,甘肃陇南人,博士研究生。主要从事InSAR技术及应用研究。E-mail: zhaocj@radi.ac.cn

    周建民(1978–),男,山东聊城人,副研究员。主要从事雷达遥感机理与应用、全球变化遥感等方面的研究。E-mail: zhoujm@aircas.ac.cn

    黄 磊(1982–),男,山东邹城人,副研究员,主要从事微波遥感、极化散射机制方面的研究。E-mail: huanglei@radi.ac.cn

    通讯作者:

    张平 zhangping@aircas.ac.cn

  • 责任主编:廖明生 Corresponding Editor: LIAO Mingsheng
  • 中图分类号: TN957.52

Advances in Information Extraction of Surface Parameters Using Tomographic SAR

Funds: The Key Research and Development Program of Hainan Province (ZDYF2019002), The Key Deployment Program of AIRCAS (Y950930Z2F)
More Information
  • 摘要: 传统的合成孔径雷达(SAR)成像是将现实中的三维场景投影到方位-斜距向二维平面的一系列处理过程,损失了三维空间的高度维信息。随着SAR系统及处理技术的发展,层析SAR系统通过沿高度向的多个数据获取构造高度维合成孔径,利用阵列信号处理方法实现目标高分辨率三维成像,对观测场景进行三维重建,获取地面目标的垂直结构信息,对植被监测、雪冰探测、城市建模等应用具有重要应用价值。该文基于层析SAR观测机理,分析了配准、去平地效应、相位补偿、高度维聚焦等三维成像关键环节以及算法研究现状,着重阐述了层析SAR在植被、雪冰、城市信息提取方面的应用,介绍了过去20年中相关的实验结果,讨论了不同平台下植被高度与冠层结构、冰川厚度与内部结构、积雪厚度与分层、城市区三维重建与形变监测等方面的应用潜力与存在的问题,并对其发展趋势进行了展望。

     

  • 图  1  层析SAR观测机理

    Figure  1.  Tomographic SAR observation mechanism

    图  2  层析SAR处理流程

    Figure  2.  Tomographic SAR processing flow

    图  3  差分干涉相位,其时间基线和空间基线是490 d和97.7 m

    Figure  3.  Differential interferograms with temporal baseline of 490 days and spatial baseline of 97.7 m

    图  4  人造目标成像结果对比

    Figure  4.  Manmade targets imaging results comparison

    图  5  TomoSAR反演的森林树高切片[44]

    Figure  5.  Forest tree height transects inverted by TomoSAR[44]

    图  6  阿尔卑斯山冰川反演实验[61]

    Figure  6.  Reversion experiment of Alps Glacier[61]

    图  7  地基层析SAR积雪结构观测结果[11]

    Figure  7.  Snow structure observation result of ground based tomography SAR[11]

  • [1] 吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047

    WU Yirong. Concept of multidimensional space joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135–142. doi: 10.3724/SP.J.1300.2013.13047
    [2] GINI F and LOMBARDINI F. Multibaseline cross-track SAR interferometry: A signal processing perspective[J]. IEEE Aerospace and Electronic Systems Magazine, 2005, 20(8): 71–93. doi: 10.1109/MAES.2005.1499278
    [3] KNAELL K. Three-dimensional SAR from curvilinear apertures[C]. 1996 IEEE National Radar Conference, Ann Arbor, USA, 1996: 220–225.
    [4] FORNARO G, LOMBARDINI F, PAUCIULLO A, et al. Tomographic processing of interferometric SAR data: Developments, applications, and future research perspectives[J]. IEEE Signal Processing Magazine, 2014, 31(4): 41–50. doi: 10.1109/MSP.2014.2312073
    [5] REIGBER A and MOREIRA A. First demonstration of airborne SAR tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5): 2142–2152. doi: 10.1109/36.868873
    [6] FORNARO G, LOMBARDINI F, and SERAFINO F. Three-dimensional multipass SAR focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 702–714. doi: 10.1109/TGRS.2005.843567
    [7] QUEGAN S, LE TOAN T, CHAVE J, et al. The European space agency BIOMASS mission: Measuring forest above-ground biomass from space[J]. Remote Sensing of Environment, 2019, 227: 44–60. doi: 10.1016/j.rse.2019.03.032
    [8] TELLO M, CAZCARRA-BES V, PARDINI M, et al. Forest structure characterization from SAR tomography at L-band[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3402–3414. doi: 10.1109/JSTARS.2018.2859050
    [9] AGHABABAEI H, FERRAIOLI G, FERRO-FAMIL L, et al. Forest SAR tomography: Principles and applications[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2): 30–45. doi: 10.1109/MGRS.2019.2963093
    [10] YITAYEW T G, FERRO-FAMIL L, ELTOFT T, et al. Tomographic imaging of fjord ice using a very high resolution ground-based SAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 698–714. doi: 10.1109/TGRS.2016.2613900
    [11] REKIOUA B, DAVY M, FERRO-FAMIL L, et al. Snowpack permittivity profile retrieval from tomographic SAR data[J]. Comptes Rendus Physique, 2017, 18(1): 57–65. doi: 10.1016/j.crhy.2015.12.016
    [12] AGHABABAEE H, FERRAIOLI G, SCHIRINZI G, et al. Regularization of SAR tomography for 3-D height reconstruction in urban areas[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(2): 648–659. doi: 10.1109/JSTARS.2018.2889428
    [13] ZHU Xiaoxiang and BAMLER R. Superresolving SAR tomography for multidimensional imaging of urban areas: Compressive sensing-based TomoSAR inversion[J]. IEEE Signal Processing Magazine, 2014, 31(4): 51–58. doi: 10.1109/MSP.2014.2312098
    [14] 丁赤飚, 仇晓兰, 徐丰, 等. 合成孔径雷达三维成像——从层析、阵列到微波视觉[J]. 雷达学报, 2019, 8(6): 693–709. doi: 10.12000/JR19090

    DING Chibiao, QIU Xiaolan, XU Feng, et al. Synthetic aperture radar three-dimensional imaging——from TomoSAR and array InSAR to microwave vision[J]. Journal of Radars, 2019, 8(6): 693–709. doi: 10.12000/JR19090
    [15] 匡辉, 杨威, 王鹏波, 等. 多方位角多基线星载SAR三维成像方法研究[J]. 雷达学报, 2018, 7(6): 685–695. doi: 10.12000/JR18073

    KUANG Hui, YANG Wei, WANG Pengbo, et al. Three-dimensional imaging algorithm for multi-azimuth-angle multi-baseline spaceborne synthetic aperture radar[J]. Journal of Radars, 2018, 7(6): 685–695. doi: 10.12000/JR18073
    [16] 张斌, 韦立登, 胡庆荣, 等. 基于四阶累积量的机载多基线SAR谱估计解叠掩方法[J]. 雷达学报, 2018, 7(6): 740–749. doi: 10.12000/JR18087

    ZHANG Bin, WEI Lideng, HU Qingrong, et al. Solution to layover problemin airborne multi-baseline SAR based on spectrum estimation with fourth-order cumulant[J]. Journal of Radars, 2018, 7(6): 740–749. doi: 10.12000/JR18087
    [17] 张冰尘, 王万影, 毕辉, 等. 基于压缩多信号分类算法的森林区域极化SAR层析成像[J]. 电子与信息学报, 2015, 37(3): 625–630. doi: 10.11999/JEIT140584

    ZHANG Bingchen, WANG Wanying, BI Hui, et al. Polarimetric SAR tomography for forested areas based on compressive multiple signal classification[J]. Journal of Electronics &Information Technology, 2015, 37(3): 625–630. doi: 10.11999/JEIT140584
    [18] 李文梅, 陈尔学, 李增元. 多基线干涉层析SAR提取森林树高方法研究[J]. 林业科学研究, 2014, 27(6): 815–821.

    LI Wenmei, CHEN Erxue, and LI Zengyuan. Approach for forest height extraction using multi-baseline interferometric tomographic SAR[J]. Forest Research, 2014, 27(6): 815–821.
    [19] 廖明生, 魏恋欢, 汪紫芸, 等. 压缩感知在城区高分辨率SAR层析成像中的应用[J]. 雷达学报, 2015, 4(2): 123–129. doi: 10.12000/JR15031

    LIAO Mingsheng, WEI Lianhuan, WANG Ziyun, et al. Compressive sensing in high-resolution 3D SAR tomography of urban scenarios[J]. Journal of Radars, 2015, 4(2): 123–129. doi: 10.12000/JR15031
    [20] 秦斐, 梁兴东, 张福博, 等. 基于机器学习的阵列层析SAR建筑物目标提取方法[J]. 信号处理, 2019, 35(2): 176–186. doi: 10.16798/j.issn.1003-0530.2019.02.003

    QIN Fei, LIANG Xingdong, ZHANG Fubo, et al. Building target extraction methods in array SAR tomography based on machine learning[J]. Journal of Signal Processing, 2019, 35(2): 176–186. doi: 10.16798/j.issn.1003-0530.2019.02.003
    [21] 解金卫, 李真芳, 王帆, 等. 基于幅相不一致准则的建筑物SAR层析成像[J]. 雷达学报, 2020, 9(1): 154–165. doi: 10.12000/JR19062

    XIE Jinwei, LI Zhenfang, WANG Fan, et al. SAR tomography imaging for buildings using an inconsistency criterion for amplitude and phase[J]. Journal of Radars, 2020, 9(1): 154–165. doi: 10.12000/JR19062
    [22] FORNARO G, SERAFINO F, and SOLDOVIERI F. Three-dimensional focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 507–517. doi: 10.1109/TGRS.2003.809934
    [23] COLE-RHODES A A, JOHNSON K L, LEMOIGNE J, et al. Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient[J]. IEEE Transactions on Image Processing, 2003, 12(12): 1495–1511. doi: 10.1109/TIP.2003.819237
    [24] LE MOIGNE J, NETANYAHU N S, and EASTMAN R D. Image Registration for Remote Sensing[M]. Cambridge: Cambridge University Press, 2011: 215–239.
    [25] CHUREESAMPANT K and SUSAKI J. Automatic GCP extraction of fully polarimetric SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 137–148. doi: 10.1109/TGRS.2012.2236890
    [26] LI Hui, MANJUNATH B S, and MITRA S K. A contour-based approach to multisensor image registration[J]. IEEE Transactions on Image Processing, 1995, 4(3): 320–334. doi: 10.1109/83.366480
    [27] HUANG Lei and LI Zhen. Feature-based image registration using the shape context[J]. International Journal of Remote Sensing, 2010, 31(8): 2169–2177. doi: 10.1080/01431161003621585
    [28] SUO Zhiyong, LI Zhenfang, and BAO Zheng. A new strategy to estimate local fringe frequencies for InSAR phase noise reduction[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 771–775. doi: 10.1109/LGRS.2010.2047935
    [29] OSMANOĞLU B, SUNAR F, WDOWINSKI S, et al. Time series analysis of InSAR data: Methods and trends[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 90–102. doi: 10.1016/j.isprsjprs.2015.10.003
    [30] FERRETTI A, PRATI C, and ROCCA F. Permanent scatterers in SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8–20. doi: 10.1109/36.898661
    [31] HOOPER A, SEGALL P, and ZEBKER H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research, 2007, 112(B7): B07407.
    [32] YANG Bo, XU Huaping, LIU Wei, et al. An improved stanford method for persistent scatterers applied to 3D building reconstruction and monitoring[J]. Remote Sensing, 2019, 11(15): 1807. doi: 10.3390/rs11151807
    [33] LANARI R, MORA O, MANUNTA M, et al. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1377–1386. doi: 10.1109/TGRS.2004.828196
    [34] ZHAO Changjun, LI Zhen, ZHANG Ping, et al. Improved maximum likelihood estimation for optimal phase history retrieval of distributed scatterers in InSAR stacks[J]. IEEE Access, 2019, 7: 186319–186327. doi: 10.1109/ACCESS.2019.2961154
    [35] ZHAO Changjun, LI Zhen, TIAN Bangsen, et al. A ground surface deformation monitoring InSAR method using improved distributed scatterers phase estimation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(11): 4543–4553. doi: 10.1109/JSTARS.2019.2946729
    [36] DEGRAAF S R. SAR imaging via modern 2-D spectral estimation methods[J]. IEEE Transactions on Image Processing, 1998, 7(5): 729–761. doi: 10.1109/83.668029
    [37] 张福博, 刘梅. 基于频域最小二乘APES的非均匀多基线SAR层析成像算法[J]. 电子与信息学报, 2012, 34(7): 1568–1573. doi: 10.3724/SP.J.1146.2011.01184

    ZHANG Fubo and LIU Mei. Uneven multi-baseline SAR tomography base on frequency domain least squares Amplitude and Phase Estimation (APES)[J]. Journal of Electronics &Information Technology, 2012, 34(7): 1568–1573. doi: 10.3724/SP.J.1146.2011.01184
    [38] 张平, 商建, 杨汝良. 一种有效的二维MUSIC超分辨SAR成像算法[J]. 系统仿真学报, 2010, 22(1): 184–187.

    ZHANG Ping, SHANG Jian, and YANG Ruliang. Efficient 2D MUSIC superresolution SAR imaging method[J]. Journal of System Simulation, 2010, 22(1): 184–187.
    [39] ERTIN E, MOSES R L, and POTTER L C. Interferometric methods for three-dimensional target reconstruction with multipass circular SAR[J]. IET Radar, Sonar & Navigation, 2010, 4(3): 464–473.
    [40] ZHU Xiaoxiang and BAMLER R. Tomographic SAR inversion by L1-Norm regularization——the compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839–3846. doi: 10.1109/TGRS.2010.2048117
    [41] ÇETIN M, STOJANOVIĆ I, ÖNHON N Ö, et al. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27–40.
    [42] ZHANG Ping, LI Zhen, and CHEN Quan. 2D uesprit superresolution SAR imaging algorithm[C]. 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, USA, 2010: 4067–4070.
    [43] TEBALDINI S, MINH D H T, D’ALESSANDRO M M, et al. The status of technologies to measure forest biomass and structural properties: State of the art in SAR tomography of tropical forests[J]. Surveys in Geophysics, 2019, 40(4): 779–801. doi: 10.1007/s10712-019-09539-7
    [44] EL MOUSSAWI I, MINH D H T, BAGHDADI N, et al. Monitoring tropical forest structure using SAR tomography at L- and P-band[J]. Remote Sensing, 2019, 11(16): 1934. doi: 10.3390/rs11161934
    [45] CLOUDE S R. Polarization coherence tomography[J]. Radio Science, 2006, 41(4): RS4017.
    [46] FREY O, MORSDORF F, and MEIER E. Tomographic imaging of a forested area by airborne multi-baseline p-band SAR[J]. Sensors, 2008, 8(9): 5884–5896. doi: 10.3390/s8095884
    [47] TEBALDINI S and ROCCA F. Multibaseline polarimetric SAR tomography of a boreal forest at P-and L-bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1): 232–246. doi: 10.1109/TGRS.2011.2159614
    [48] TEBALDINI S. Single and multipolarimetric SAR tomography of forested areas: A parametric approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5): 2375–2387. doi: 10.1109/TGRS.2009.2037748
    [49] FREY O and MEIER E. 3-D time-domain SAR imaging of a forest using airborne multibaseline data at L- and P-bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3660–3664. doi: 10.1109/TGRS.2011.2128875
    [50] D’ALESSANDRO M M and TEBALDINI S. Phenomenology of p-band scattering from a tropical forest through three-dimensional SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 442–446. doi: 10.1109/LGRS.2011.2170658
    [51] MINH D H T, TEBALDINI S, ROCCA F, et al. Capabilities of BIOMASS tomography for investigating tropical forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2): 965–975. doi: 10.1109/TGRS.2014.2331142
    [52] MINHD H T, LE TOAN T, ROCCA F, et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana[J]. Remote Sensing of Environment, 2016, 175: 138–147. doi: 10.1016/j.rse.2015.12.037
    [53] PARDINI M, TELLO M, CAZCARRA-BES V, et al. L- and P-band 3-D SAR reflectivity profiles versus lidar waveforms: The AfriSAR case[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(10): 3386–3401. doi: 10.1109/JSTARS.2018.2847033
    [54] EL MOUSSAWI I, MINH D H T, BAGHDADI N, et al. L-band UAVSAR tomographic imaging in dense forests: Gabon forests[J]. Remote Sensing, 2019, 11(5): 475. doi: 10.3390/rs11050475
    [55] JOERG H, PARDINI M, HAJNSEK I, et al. Sensitivity of SAR tomography to the phenological cycle of agricultural crops at X-, C-, and L-band[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9): 3014–3029. doi: 10.1109/JSTARS.2018.2845127
    [56] JOERG H, PARDINI M, HAJNSEK I, et al. 3-D scattering characterization of agricultural crops at C-band using SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(7): 3976–3989. doi: 10.1109/TGRS.2018.2818440
    [57] WU Xiaoqing, JEZEK K C, RODRIGUEZ E, et al. Ice sheet bed mapping with airborne SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3791–3802. doi: 10.1109/TGRS.2011.2132802
    [58] PADEN J, AKINS T, DUNSON D, et al. Ice-sheet bed 3-D tomography[J]. Journal of Glaciology, 2010, 56(195): 3–11. doi: 10.3189/002214310791190811
    [59] JEZEK K, WU X, PADEN J, et al. Radar mapping of isunnguata sermia, greenland[J]. Journal of Glaciology, 2013, 59(218): 1135–1146. doi: 10.3189/2013JoG12J248
    [60] BANDA F, DALL J, and TEBALDINI S. Single and multipolarimetric P-band SAR tomography of subsurface ice structure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2832–2845. doi: 10.1109/TGRS.2015.2506399
    [61] TEBALDINI S, NAGLER T, ROTT H, et al. Imaging the internal structure of an alpine glacier via L-band airborne SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7197–7209. doi: 10.1109/TGRS.2016.2597361
    [62] PONCE O, PRATS P, SCHEIBER R, et al. Polarimetric 3-D imaging with airborne holographic SAR tomography over glaciers[C]. 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 5280–5283.
    [63] CHAI Huiming, LV Xiaolei, and XIAO Ping. Deformation monitoring using ground-based differential SAR tomography[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(6): 993–997. doi: 10.1109/LGRS.2019.2938233
    [64] 李震, 李治显, 田帮森, 等. 基于准晶体近似的多层积雪InSAR散射模型[J]. 中国科学: 地球科学, 2018, 61(8): 1112–1126. doi: 10.1007/s11430-017-9178-3

    LI Zhen, LI Zhixian, TIAN Bangsen, et al. An InSAR scattering model for multi-layer snow based on Quasi-Crystalline Approximation (QCA) theory[J]. Science China Earth Sciences, 2018, 61(8): 1112–1126. doi: 10.1007/s11430-017-9178-3
    [65] TEBALDINI S and FERRO-FAMIL L. High resolution three-dimensional imaging of a snowpack from ground-based sar data acquired at X and Ku band[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, 2013: 77–80.
    [66] FREY O, WERNER C L, CADUFF R, et al. Tomographic profiling with snowscat within the ESA snowlab campaign: Time series of snow profiles over three snow seasons[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6512–6515.
    [67] XU Xiaolan, BALDI C A, DE BLESER J W, et al. Multi-frequency tomography radar observations of snow stratigraphy at fraser during SnowEx[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 6269–6272.
    [68] XU Xiaolan, YUEH S, and TSANG L. Theoretical modeling of multi-frequency tomography radar observations of snow stratigraphy[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 4823–4825.
    [69] FORNARO G, REALE D, and SERAFINO F. Four-dimensional SAR imaging for height estimation and monitoring of single and double scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 224–237. doi: 10.1109/TGRS.2008.2000837
    [70] FORNARO G, PAUCIULLO A, REALE D, et al. Multilook SAR tomography for 3-D reconstruction and monitoring of single structures applied to COSMO-SKYMED data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2776–2785. doi: 10.1109/JSTARS.2014.2316323
    [71] FORNARO G, SERAFINO F, and REALE D. 4-D SAR imaging: The case study of rome[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(2): 236–240. doi: 10.1109/LGRS.2009.2032133
    [72] REALE D, FORNARO G, PAUCIULLO A, et al. Tomographic imaging and monitoring of buildings with very high resolution SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 661–665. doi: 10.1109/LGRS.2010.2098845
    [73] SHI Yilei, ZHU Xiaoxiang, and BAMLER R. Nonlocal compressive sensing-based SAR tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(5): 3015–3024. doi: 10.1109/TGRS.2018.2879382
    [74] ZHU Xiaoxiang, WANG Yuanyuan, MONTAZERI S, et al. A review of ten-year advances of multi-baseline SAR interferometry using TerraSAR-X data[J]. Remote Sensing, 2018, 10(9): 1374. doi: 10.3390/rs10091374
    [75] SHAHZAD M, MAURER M, FRAUNDORFER F, et al. Buildings detection in VHR SAR images using fully convolution neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 1100–1116. doi: 10.1109/TGRS.2018.2864716
    [76] MA Peifeng, LIN Hui, LAN Hengxing, et al. Multi-dimensional SAR tomography for monitoring the deformation of newly built concrete buildings[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106: 118–128. doi: 10.1016/j.isprsjprs.2015.04.012
    [77] RAMBOUR C, DENIS L, TUPIN F, et al. Urban surface reconstruction in SAR tomography by graph-cuts[J]. Computer Vision and Image Understanding, 2019, 188: 102791. doi: 10.1016/j.cviu.2019.07.011
    [78] RAMBOUR C, BUDILLON A, JOHNSY A C, et al. From interferometric to tomographic SAR: A review of synthetic aperture radar tomography-processing techniques for scatterer unmixing in urban areas[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2): 6–29. doi: 10.1109/MGRS.2019.2957215
  • 加载中
图(7)
计量
  • 文章访问数:  3299
  • HTML全文浏览量:  1173
  • PDF下载量:  348
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-07
  • 修回日期:  2020-09-02
  • 网络出版日期:  2021-02-25

目录

    /

    返回文章
    返回