基于改进双边网络的SAR图像海陆分割方法

戴牧宸 冷祥光 熊博莅 计科峰

戴牧宸, 冷祥光, 熊博莅, 等. 基于改进双边网络的SAR图像海陆分割方法[J]. 雷达学报, 2020, 9(5): 886–897. doi: 10.12000/JR20089
引用本文: 戴牧宸, 冷祥光, 熊博莅, 等. 基于改进双边网络的SAR图像海陆分割方法[J]. 雷达学报, 2020, 9(5): 886–897. doi: 10.12000/JR20089
DAI Muchen, LENG Xiangguang, XIONG Boli, et al. Sea-land segmentation method for SAR images based on improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886–897. doi: 10.12000/JR20089
Citation: DAI Muchen, LENG Xiangguang, XIONG Boli, et al. Sea-land segmentation method for SAR images based on improved BiSeNet[J]. Journal of Radars, 2020, 9(5): 886–897. doi: 10.12000/JR20089

基于改进双边网络的SAR图像海陆分割方法

DOI: 10.12000/JR20089
基金项目: 国家自然科学基金(61701508, 61971426)
详细信息
    作者简介:

    戴牧宸(1995–),男,甘肃庆阳人,国防科技大学电子科学学院硕士研究生,研究方向为遥感信息处理,合成孔径雷达目标自动识别。E-mail: 906182992@qq.com

    冷祥光(1991–),男,江西九江人,博士,国防科技大学电子科学学院讲师,研究方向为遥感信息处理、SAR图像智能解译和机器学习。E-mail: luckight@163.com

    熊博莅(1981–),男,湖南益阳人,博士,国防科技大学电子科学学院CEMEE国家重点实验室副教授,研究方向为遥感图像智能解译、SAR图像配准及变化检测。E-mail: xiongboli@nudt.edu.cn

    计科峰(1974–),男,陕西长武人,博士,国防科技大学电子科学学院教授,博士生导师,研究方向为SAR图像解译、目标检测与识别、特征提取、SAR和AIS匹配。E-mail: jikefeng@nudt.edu.cn

    通讯作者:

    冷祥光 luckight@163.com

    计科峰 jikefeng@nudt.edu.cn

  • 责任主编:张红 Corresponding Editor: ZHANG Hong
  • 中图分类号: TN95

Sea-land Segmentation Method for SAR Images Based on Improved BiSeNet

Funds: The National Natural Science Foundation of China (61701508, 61971426)
More Information
  • 摘要: 海陆分割是海岸线提取、近岸目标检测的一个基本步骤。传统的海陆分割算法分割准确度差,参数调节繁琐,难以满足实际应用要求。卷积神经网络能够高效地提取图像多个层次特征,广泛应用于图像分类任务,可作为海陆分割新的技术途径。其中双边网络(BiSeNet)能有效平衡分割精度和速度,在自然场景图像语义分割任务上取得了较好的表现。但对于SAR图像海陆分割任务,双边网络难以有效提取SAR图像的上下文语义信息和空间信息,分割效果较差。针对上述问题,该文根据SAR图像特点减少双边网络中空间路径的卷积层数,从而降低空间信息的损失,并选用ResNet18轻量化模型作为上下文路径骨干网络,减少过拟合现象并提供较广阔的特征感受野,同时提出边缘增强损失函数策略,提升模型分割性能。基于高分三号SAR图像数据的实验表明,所提方法可有效提升网络的预测精度和分割速率,其分割准确度和F1分数分别达到了0.9889和0.9915,对尺寸大小为1024×1024的SAR图像切片处理速率为12.7 frames/s,均优于当前主流的分割网络框架。此外,所提网络的规模较BiSeNet减少50%以上,并小于轻量级的U-Net架构,同时网络有较强的泛化性能,具有较高的实际应用价值。

     

  • 图  1  基于改进BiSeNet的SAR图像海陆分割网络架构

    Figure  1.  The structure of network based on improved BiSeNet for sea-land segmentation

    图  2  两类方法的分割结果对比

    Figure  2.  Comparison of segmentation results of two methods

    图  3  使用不同损失函数进行训练的两类方法分割结果对比

    Figure  3.  Comparison of segmentation results of two methods using different loss function

    图  4  实验4.4.2海陆分割结果细节

    Figure  4.  The detailed view of the segmentation results of test 4.4.2

    图  5  不同方法分割结果对比

    Figure  5.  Comparison of segmentation results of different methods

    图  6  实验4.4.3海陆分割结果细节

    Figure  6.  The detailed view of the segmentation results of test 4.4.3

    图  7  不同网络架构模型大小对比

    Figure  7.  Comparison of the size of different models

    图  8  聚束模式(SL)成像模式分割结果

    Figure  8.  Segmentation result of SL mode

    图  9  精细条带模式1(FSI)成像模式分割结果

    Figure  9.  Segmentation result of FSI mode

    图  10  精细条带模式2(FSII)成像模式分割结果

    Figure  10.  Segmentation result of FSII mode

    图  11  标准条带模式(SS)成像模式分割结果

    Figure  11.  Segmentation result of SS mode

    表  1  选用数据的工作模式

    Table  1.   The imaging modes of data

    工作模式分辨率(m)极化方式成像幅宽(km)
    聚束(SL)1单极化10
    超精细条带(UFS)3单极化30
    精细条带1(FSI)5双极化50
    精细条带2(FSII)10双极化100
    标准条带(SS)25双极化130
    下载: 导出CSV

    表  2  两类方法在测试数据集上的分割结果对比

    Table  2.   Comparison of segmentation results of two methods on the test dataset

    方法LP(%)LR(%)SP(%)SR(%)EP(%)OP(%)${ {{F} }_{\rm{1} } }$(%)总分割时间(s)
    BiSeNet方法98.2799.1098.2796.6866.1298.2798.6854.32
    本文方法99.3398.8997.9198.7475.3198.8399.1126.73
    下载: 导出CSV

    表  3  使用不同损失函数的两类方法在测试数据集上的分割结果对比

    Table  3.   Comparison of segmentation results of two methods using different loss function on the test dataset

    方法LP(%)LR(%)SP(%)SR(%)EP(%)OP(%)${ {{F} }_{\rm{1} } }$(%)总分割时间(s)
    BiSeNet(交叉熵)98.2799.1098.2796.6866.1298.2798.6854.32
    BiSeNet方法(边缘增强)98.6298.7897.6797.3770.7598.3198.7055.02
    本文方法(交叉熵)99.3398.8997.9198.7475.3198.8399.1126.73
    本文方法(边缘增强)99.1199.2098.4898.3076.5798.8999.1526.38
    下载: 导出CSV

    表  4  不同方法在测试数据集上的分割结果对比

    Table  4.   Comparison of segmentation results of different methods

    方法LP(%)LR(%)SP(%)SR(%)EP(%)OP(%)${ {{F} }_{\rm{1} } }$(%)切片速度(s)总分割时间(s)
    U-Net方法99.4598.2896.8298.9677.4598.5298.860.24080.25
    DeepLabv3+方法98.9798.1396.5198.0671.8398.1198.550.27993.14
    BiSeNet方法98.6298.7897.6797.3770.7598.3198.700.16555.02
    DFANet方法98.9781.1873.3898.3968.8287.1289.200.21270.81
    本文方法99.1199.2098.4898.3076.5798.8999.150.07926.38
    下载: 导出CSV

    表  5  本文方法对各工作模式图像数据的分割结果(%)

    Table  5.   Segmentation result under multi-mode by the proposed method (%)

    工作模式分辨率(m)LPLRSPSROP${ {{F} }_{\rm{1} } }$
    SL199.5699.2899.2099.5199.3999.42
    FSI598.4999.0699.7199.5399.4298.78
    FSII1097.8897.9799.8699.8599.7297.93
    SS2598.5999.2499.8599.7399.6598.91
    下载: 导出CSV
  • [1] 邢相薇, 计科峰, 康利鸿, 等. HRWS SAR图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107–121. doi: 10.12000/JR14144

    XING Xiangwei, JI Kefeng, KANG Lihong, et al. Review of ship surveillance technologies based on high-resolution wide-swath synthetic aperture radar imaging[J]. Journal of Radars, 2015, 4(1): 107–121. doi: 10.12000/JR14144
    [2] 周明, 马亮, 王宁, 等. 面向海面目标检测的陆海分离和海面分区算法研究[J]. 雷达学报, 2019, 8(3): 366–372. doi: 10.12000/JR19036

    ZHOU Ming, MA Liang, WANG Ning, et al. Land-sea separation and sea surface zoning algorithms for sea surface target[J]. Journal of Radars, 2019, 8(3): 366–372. doi: 10.12000/JR19036
    [3] 李智, 曲长文, 周强, 等. 基于SLIC超像素分割的SAR图像海陆分割算法[J]. 雷达科学与技术, 2017, 15(4): 354–358. doi: 10.3969/j.issn.1672-2337.2017.04.003

    LI Zhi, QU Changwen, ZHOU Qiang, et al. A sea-land segmentation algorithm of SAR image based on the SLIC superpixel division[J]. Radar Science and Technology, 2017, 15(4): 354–358. doi: 10.3969/j.issn.1672-2337.2017.04.003
    [4] 安成锦, 牛照东, 李志军, 等. 典型Otsu算法阈值比较及其SAR图像水域分割性能分析[J]. 电子与信息学报, 2010, 32(9): 2215–2219. doi: 10.3724/SP.J.1146.2009.01426

    AN Chengjin, NIU Zhaodong, LI Zhijun, et al. Otsu threshold comparison and SAR water segmentation result analysis[J]. Journal of Electronics &Information Technology, 2010, 32(9): 2215–2219. doi: 10.3724/SP.J.1146.2009.01426
    [5] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62–66. doi: 10.1109/TSMC.1979.4310076
    [6] LIU Chun, YANG Jian, YIN Junjun, et al. Coastline detection in SAR images using a hierarchical level set segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(11): 4908–4920. doi: 10.1109/jstars.2016.2613279
    [7] 侯彪, 胡育辉, 焦李成. SAR图像水域的改进Shearlet边缘检测[J]. 中国图象图形学报, 2010, 15(10): 1549–1554. doi: 10.11834/jig.20101019

    HOU Biao, HU Yuhui, and JIAO Licheng. Improved shearlet edge detection for waters of SAR images[J]. Journal of Image and Graphics, 2010, 15(10): 1549–1554. doi: 10.11834/jig.20101019
    [8] LIU Zhongling, LI Fei, LI Ning, et al. A novel region-merging approach for coastline extraction from sentinel-1A IW mode SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 324–328. doi: 10.1109/LGRS.2015.2510745
    [9] 黄祥李, 张杰, 计科峰, 等. 基于GSHHG数据库与改进CV模型的SAR图像海陆分割算法[C]. 第五届高分辨率对地观测学术年会论文集, 西安, 中国, 2018, 877–892.

    HUANG Xiangli, ZHANG Jie, JI Kefeng, et al. Sea-land segmentation algorithm of SAR image based on GSHHG database and improved CV model[C]. The 5th China High Resolution Earth Observation Conference, Xi’an, China, 2018, 877–892.
    [10] SHELHAMER E, LONG J, and DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640–651. doi: 10.1109/TPAMI.2016.2572683
    [11] RONNEBERGER O, FISCHER P, and BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]. The 18th International Conference on Medical Image Computing and Computer-assisted Intervention, Munich, Germany, 2015: 234–241. doi: 10.1007/978-3-319-24574-4_28.
    [12] BADRINARAYANAN V, KENDALL A, and CIPOLLA R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481–2495. doi: 10.1109/TPAMI.2016.2644615
    [13] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834–848. doi: 10.1109/TPAMI.2017.2699184
    [14] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 6230–6239. doi: 10.1109/CVPR.2017.660.
    [15] 李宁, 牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法[J]. 雷达学报, 2020, 9(1): 174–184. doi: 10.12000/JR19096

    LI Ning and NIU Shilin. High-precision water segmentation from synthetic aperture radar images based on local super-resolution restoration technology[J]. Journal of Radars, 2020, 9(1): 174–184. doi: 10.12000/JR19096
    [16] SHAMSOLMOALI P, ZAREAPOOR M, WANG Ruili, et al. A novel deep structure U-Net for sea-land segmentation in remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9): 3219–3232. doi: 10.1109/JSTARS.2019.2925841
    [17] LI Ruirui, LIU Wenjie, YANG Lei, et al. DeepUNet: A deep fully convolutional network for pixel-level sea-land segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 3954–3962. doi: 10.1109/JSTARS.2018.2833382
    [18] 张金松, 邢孟道, 孙光才. 一种基于密集深度分离卷积的SAR图像水域分割算法[J]. 雷达学报, 2019, 8(3): 400–412. doi: 10.12000/JR19008

    ZHANG Jinsong, XING Mengdao, and SUN Guangcai. A water segmentation algorithm for SAR image based on dense depthwise separable convolution[J]. Journal of Radars, 2019, 8(3): 400–412. doi: 10.12000/JR19008
    [19] YU Changqian, WANG Jingbo, PENG Chao, et al. BiSeNet: Bilateral segmentation network for real-time semantic segmentation[C]. The 15th European Conference on Computer Vision, Munich, Germany, 2018: 334–349. doi: 10.1007/978-3-030-01261-8_20.
    [20] 张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049

    ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049
    [21] LI Hanchao, XIONG Pengfei, FAN Haoqiang, et et al. DFANet: Deep feature aggregation for real-time semantic segmentation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 9514–9523. doi: 10.1109/CVPR.2019.00975.
    [22] 张彤彤, 董军宇, 赵浩然, 等. 基于知识蒸馏的轻量型浮游植物检测网络[J]. 应用科学学报, 2020, 38(3): 367–376. doi: 10.3969/j.issn.0255-8297.2020.03.003

    ZHANG Tongtong, DONG Junyu, ZHAO Haoran, et al. Lightweight phytoplankton detection network based on knowledge distillation[J]. Journal of Applied Sciences, 2020, 38(3): 367–376. doi: 10.3969/j.issn.0255-8297.2020.03.003
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  3710
  • HTML全文浏览量:  1541
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-08-13
  • 网络出版日期:  2020-10-28

目录

    /

    返回文章
    返回