-
摘要: 随着雷达探测逐步进入强电子对抗、隐身时代,传统雷达体制在战术主动性、能量、数量方面均处于劣势。雷达亟需从探测体制方面进行创新,充分挖掘其合作式探测的主动性、充分利用信号波形的信息维度优势,才能适应未来新型防空作战。该文提出一种新的雷达体制——通信化雷达,其通过在发射信号波形中嵌入发射站动态位置、天线扫描指向、发射时刻等辅助信息,并在接收处理中提取、利用该信息进行目标检测、定位、识别、抗干扰和多目标分辨,可提升远程、隐身、强对抗条件下的雷达探测能力和战场生存力。该文从系统架构、探测原理、性能分析等方面对通信化雷达进行了阐述。Abstract: With the emergence of stealth and jamming technology, traditional radar systems are facing great challenges in terms of innovation, number, and energy. It is necessary to develop novel detection systems, explore the initiative of cooperative detection, and utilize the dimensions of information to adapt to new air defense operations in the future. In this study, a new radar system, communicational radar, is proposed. The radar detection ability under the conditions of long-range and strong confrontation can be significantly improved by embedding synchronization information such as the transmitter position, the antenna direction, and the launch time of the emission into the waveform; the embedded information can then be extracted for target detection, reorganization, interference suppression, and multi-target identification. The proposed system is illustrated from the aspects of architecture, detection principle, and performance analysis.
-
表 1 通信化雷达定位所需参数及其获取方式
Table 1. Required parameters for location and their corresponding access methods
参数名称 获取方式 发射站位置$\left( { {x_{\rm{T} } },\,\;{y_{\rm{T} } },\,\;{z_{\rm{T} } } } \right)$ 信息解调 发射方位角${\theta _{\rm{T}}}$ 信息解调 接收站位置$\left( { {x_{\rm{R} } },\,\;{y_{\rm{R} } },\,\;{z_{\rm{R} } } } \right)$ 导航定位 接收方位角${\theta _{\rm{R}}}$ 阵列测角 距离和$\rho = c({t_{\rm{T}}} - {t_{\rm{R}}})$ 时延测量(接收回波到达时刻${t_{\rm{R}}}$)和信息解调(发射时刻${t_{\rm{T}}}$) -
[1] 杨振起, 张永顺, 骆永军. 双(多)基地雷达系统[M]. 北京: 国防工业出版社, 1998.YANG Zhenqi, ZHANG Yongshun, and LUO Yongjun. Bastatic (Multistatic) Radar Systems[M]. Beijing: National Defense Industry Press, 1998. [2] ZHAO Shanshan, LIU Nan, Zhang Linrang, et al. Discrimination of deception targets in multistatic radar based on clustering analysis[J]. IEEE Sensors Journal, 2016, 16(8): 2500–2508. doi: 10.1109/JSEN.2016.2516000 [3] 朱敏, 游志胜, 聂健荪. 双(多)基地雷达系统中的若干关键技术研究[J]. 现代雷达, 2002, 24(6): 1–5.ZHU Min, YOU Zhisheng, and NIE Jiansun. Research of key techniques in bistatic (multistatique) radar system[J]. Modern Radar, 2002, 24(6): 1–5. [4] 朱庆明, 吴曼青. 一种新型无源探测与跟踪雷达系统——"沉默哨兵"[J]. 现代电子, 2000, (1): 1–6, 16.ZHU Qingming and WU Manqing. Silent sentry: A novel passive detecting and tracking radar system[J]. Modern Electronics, 2000, (1): 1–6, 16. [5] 宋杰, 何友, 蔡复青, 等. 基于非合作雷达辐射源的无源雷达技术综述[J]. 系统工程与电子技术, 2009, 31(9): 2151–2156, 2180.SONG Jie, HE You, CAI Fuqing, et al. Overview of passive radar technology based on non-cooperative radar illuminator[J]. Systems Engineering and Electronics, 2009, 31(9): 2151–2156, 2180. [6] YANG Kaipei, LU Qin, BAR-SHALOM Y, et al. Estimation for a thrusting/ballistic object with mass ejection from a single fixed passive sensor with delayed acquisition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(6): 2786–2795. doi: 10.1109/TAES.2019.2893784 [7] CHEN Xingbo, WANG Xiaomo, XU Shanfeng, et al. A novel radar waveform compatible with communication[C]. 2011 International Conference on Computational Problem-Solving, Chengdu, China, 2011: 177–181. doi: 10.1109/ICCPS.2011.6092272. [8] 朱柯弘, 王杰, 梁兴东, 等. 用于SAR与通信一体化系统的滤波器组多载波波形[J]. 雷达学报, 2018, 7(5): 602–612. doi: 10.12000/JR18038ZHU Kehong, WANG Jie, LIANG Xingdong, et al. Filter bank multicarrier waveform used for integrated SAR and communication systems[J]. Journal of Radars, 2018, 7(5): 602–612. doi: 10.12000/JR18038 [9] BLUNT S D and MOKOLE E L. Overview of radar waveform diversity[J]. IEEE Aerospace and Electronic Systems Magazine, 2016, 31(11): 2–42. doi: 10.1109/MAES.2016.160071 [10] SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1498–1503. doi: 10.1109/RADAR.2017.7944444. [11] BLUNT S D, COOK M R, and STILES J. Embedding information into radar emissions via waveform implementation[C]. 2010 International Waveform Diversity and Design Conference, Niagara Falls, USA, 2010: 195–199. doi: 10.1109/WDD.2010.5592502. [12] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667 [13] HASSANIEN A, AMIN M G, ZHANG Y D, et al. Non-coherent PSK-based dual-function radar-communication systems[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485066. [14] SIT Y L, REICHARDT L, STURM C, et al. Extension of the OFDM joint radar-communication system for a multipath, Multiuser Scenario[C]. 2011 IEEE RadarCon, Kansas City, USA, 2001: 718–723. doi: 10.1109/RADAR.2011.5960632. [15] GU Yabin, ZHANG Linrang, ZHOU Yu, et al. Embedding communication symbols into radar waveform with orthogonal FM scheme[J]. IEEE Sensors Journal, 2018, 18(21): 8709–8719. doi: 10.1109/JSEN.2018.2868542 [16] KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762