分布式软目标雷达特性与感知技术述评

李健兵 王雪松

李健兵, 王雪松. 分布式软目标雷达特性与感知技术述评[J]. 雷达学报, 2021, 10(1): 86–99. doi: 10.12000/JR20052
引用本文: 李健兵, 王雪松. 分布式软目标雷达特性与感知技术述评[J]. 雷达学报, 2021, 10(1): 86–99. doi: 10.12000/JR20052
LI Jianbing and WANG Xuesong. Review of radar characteristics and sensing technologies of distributed soft target[J]. Journal of Radars, 2021, 10(1): 86–99. doi: 10.12000/JR20052
Citation: LI Jianbing and WANG Xuesong. Review of radar characteristics and sensing technologies of distributed soft target[J]. Journal of Radars, 2021, 10(1): 86–99. doi: 10.12000/JR20052

分布式软目标雷达特性与感知技术述评

doi: 10.12000/JR20052
基金项目: 国家自然科学基金(61771479, 61490649),湖南省杰出青年基金(2018JJ1030)
详细信息
    作者简介:

    李健兵(1979–),男,湖南邵东人,国防科技大学研究员、博导,湖南省杰青获得者,IEEE高级会员,中国电子学会高级会员、优秀科技工作者、电波传播分会委员、青年科学家俱乐部成员,全国百篇优秀博士学位论文提名、全军优秀博士学位论文获得者。担任IET The Journal of Engineering副主编,《雷达学报》、《雷达科学与技术》编委。主要研究方向为新体制雷达、空间信息获取与处理

    王雪松(1972–),男,内蒙古包头人,国防科技大学电子科学学院教授、博导、院长,国家杰青、国防卓青,中组部“求是”奖获得者,科技部“万人计划”领军人才,国家自然科学基金重大项目首席,军委科技委和装备发展部主题专家,全国百篇优博论文获得者。主要研究方向为极化雷达设计与信息处理、电子对抗、新体制雷达

    通讯作者:

    李健兵 jianbingli@nudt.edu.cn

  • 责任主编:赵拥军 Corresponding Editor: ZHAO Yongjun
  • 中图分类号: TN951

Review of Radar Characteristics and Sensing Technologies of Distributed Soft Target

Funds: The National Natural Science Foundation of China (61771479, 61490649), Hunan Outstanding Youth Fund (2018JJ1030)
More Information
  • 摘要: 分布式软目标是指分布范围较大、具有时变的空间分布或内部相对运动的非刚性目标或目标群,是当前雷达领域较为关注的一类目标,其特性与感知研究是一个多学科交叉的问题。为便于雷达科技工作者较好地理解相关技术,该文从正问题和逆问题两个角度,分连续型和离散型两种情况,对这类目标的运动、电磁散射/传输、雷达特征、探测与参数反演等技术的现状进行了梳理,并分析了发展趋势。以飞机尾流为例,对这类目标的雷达特性与感知技术进行了阐述,为相关雷达探测技术发展提供重要参考。

     

  • 图  1  分布式软目标雷达特性与参数反演研究主要技术途径

    Figure  1.  Technical approaches for studying the radar characteristics and parameter retrieval of distributed soft target

    图  2  激光雷达Doppler散射机理

    Figure  2.  Scattering mechanism of Doppler Lidar

    图  3  飞机尾流一维高分辨距离像的机理解释[50]

    Figure  3.  Hight Resolution Range Profile (HRRP) and its mechanism explanation of aircraft wake vortices[50]

    图  4  降雨条件下飞机尾流内部雨滴的动力学特征及散射强度[16]

    Figure  4.  Dynamics characteristics and scattering intensity of raindrops in aircraft wake vortices under rainy condition[16]

    图  5  飞机尾流激光雷达探测

    Figure  5.  Lidar detection of aircraft wake vortices

  • [1] SKOLNIK M I. Introduction to Radar Systems[M]. Boston: McGraw Hill, 2001.
    [2] GERZ T, HOLZÄPFEL F, and DARRACQ D. Commercial aircraft wake vortices[J]. Progress in Aerospace Sciences, 2002, 38(3): 181–208. doi: 10.1016/S0376-0421(02)00004-0
    [3] 陈静. 雷达箔条干扰原理[M]. 北京: 国防工业出版社, 2007.

    CHEN Jing. Principles of Radar Chaff Jamming[M]. Beijing: National Defense Industry Press, 2007.
    [4] Food and Agriculture Organization of the United Nations. Appeal for rapid response and anticipatory action in the Greater Horn of Africa[R]. 2020.
    [5] DOVIAK R J and ZRNIĆ D S. Doppler Radar and Weather Observations[M]. 2nd ed. New York: Dover Publications, 2006.
    [6] SHARMAN R and LANE T. Aviation Turbulence: Processes, Detection, Prediction[M]. Switzerland: Springer, 2016.
    [7] STREETER V L and WYLIE E B. Fluid Mechanics[M]. New York: McGraw-Hill, 1979.
    [8] CHEW W C. Waves and Fields in Inhomogeneous Media[M]. New York: Van Nostrand Reinhold, 1990.
    [9] BORN M and WOLF E. Principles of Optics[M]. Cambridge: Cambridge University Press, 1999.
    [10] WANG Wei, LI Jianbing, and NIU Fengliang. A revisit to the validity of born approximation in high frequency scattering problems[J]. Microwave and Optical Technology Letters, 2012, 54(12): 2792–2797. doi: 10.1002/mop.27161
    [11] LI Jianbing, WANG Xuesong, and WANG Tao. On the validity of born approximation[J]. Progress In Electromagnetics Research, 2010, 107(4): 219–237.
    [12] LI Jianbing, WANG Xuesong, and WANG Tao. A rigorous criterion to identify the validity of the Born approximation[J]. Chinese Physics B, 2009, 18(8): 3174–3182. doi: 10.1088/1674-1056/18/8/014
    [13] NIE Zaiping, YAN Su, HE Shiquan, et al. On the basis functions with traveling wave phase factor for efficient analysis of scattering from electrically large targets[J]. Progress in Electromagnetics Research, 2008, 85: 83–114. doi: 10.2528/PIER08081905
    [14] 李健兵. 飞机尾流雷达特征信号研究[M]. 长沙: 国防科技大学出版社, 2015.

    LI Jianbing. Study on the Radar Signatures of Aircraft Wake Vortices[M]. Changsha: National University of Defense Technology Press, 2015.
    [15] CUI Tiejun, CHEW W C, AYDINER A A, et al. Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted born iterative method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 339–346. doi: 10.1109/36.905242
    [16] LI Jianbing, GAO Hang, LI Yongzhen, et al. Circulation retrieval of simulated wake vortices under rainy condition with a side-looking scanning radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2): 569–584. doi: 10.1109/TAES.2017.2760799
    [17] 谢鸿杰. 稀薄大气中箔条的雷达干扰特性研究[D]. [硕士论文], 国防科技大学, 2014.

    XIE Hongjie. Study on radar jamming characteristics of chaff in rarefied atmosphere[D]. [Master dissertation], National University of Defense Technology, 2014.
    [18] BRINGI V N and CHANDRASEKAR V. Polarimetric Doppler Weather Radar: Principles and Applications[M]. Cambridge: Cambridge University Press, 2001.
    [19] ISHIMARU A. Wave Propagation and Scattering in Random Media[M]. New York: Academic Press, 1978.
    [20] GOUESBET G. Latest achievements in Generalized Lorenz-Mie theories: A commented reference database[J]. Annalen der Physik, 2014, 526(11/12): 461–489.
    [21] LEINONEN J. High-level interface to T-matrix scattering calculations: Architecture, capabilities and limitations[J]. Optics Express, 2014, 22(2): 1655–1660. doi: 10.1364/OE.22.001655
    [22] MAUGHAN J B, CHAKRABARTI A, and SORENSEN C M. Rayleigh scattering and the internal coupling parameter for arbitrary particle shapes[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189: 339–343. doi: 10.1016/j.jqsrt.2016.12.004
    [23] BOWMAN J J, SENIOR T B A, and USLENGHI P L E. Electromagnetic and Acoustic Scattering by Simple Shapes[M]. New York: Hemisphere Publishing Corp, 1987.
    [24] 李金梁. 箔条干扰的特性与雷达抗箔条技术研究[D]. [博士论文], 国防科技大学, 2010.

    LI Jinliang. Study on characteristics of chaff jamming and anti-chaff technology for radar[D]. [Ph.D. dissertation], National University of Defense Technology, 2010.
    [25] 盛裴轩, 毛节泰, 李建国, 等. 大气物理学[M]. 北京: 北京大学出版社, 2003.

    SHENG Peixuan, MAO Jietai, LI Jianguo, et al. Atmosphere Physics[M]. Beijing: Beijing University Press, 2003.
    [26] ZHANG Guifu. Weather Radar Polarimetry[M]. New York: CRC Press, 2016.
    [27] SKOLNIK M I. Radar Handbook[M]. New York: McGraw-Hill, 2008.
    [28] SULLIVAN R J. Radar Foundations for Imaging and Advanced Concepts[M]. Raleigh: SciTech Pub, 2004.
    [29] MCMANAMON P. Field Guide to Lidar[M]. Washington: SPIE Press, 2015.
    [30] BANAKH V and SMALIKHO I. Coherent Doppler Wind Lidars in a Turbulent Atmosphere[M]. Boston: Artech House, 2013.
    [31] MCAULAY A D. Lidar Protects from Chemical/Biological Weapons[M]. CAULAY A D. Military Laser Technology for Defense: Technology for Revolutionizing 21st Century Warfare. Hoboken, USA: John Wiley & Sons, Inc., 2011: 251–264.
    [32] BRENNEN C E. Fundamentals of Multiphase Flow[M]. Cambridge: Cambridge University Press, 2009.
    [33] LIU Zhengliang, BARLOW J F, CHAN P W, et al. A review of progress and applications of pulsed doppler Wind LiDARs[J]. Remote Sensing, 2019, 11(21): 2522. doi: 10.3390/rs11212522
    [34] GAO Jidong, XUE M, LEE S Y, et al. A three-dimensional variational single-Doppler velocity retrieval method with simple conservation equation constraint[J]. Meteorology and Atmospheric Physics, 2006, 94(1/4): 11–26.
    [35] GAO Jidong, XUE Ming, SHAPIRO A, et al. A variational method for the analysis of three-dimensional wind fields from two doppler radars[J]. Monthly Weather Review, 1999, 127(9): 2128–2142. doi: 10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2
    [36] POTVIN C K. A variational method for detecting and characterizing convective vortices in cartesian wind fields[J]. Monthly Weather Review, 2013, 141(9): 3102–3115. doi: 10.1175/MWR-D-13-00015.1
    [37] QIU Chongjian, SHAO Aimei, LIU S, et al. A two-step variational method for three-dimensional wind retrieval from single Doppler radar[J]. Meteorology and Atmospheric Physics, 2006, 91(1/4): 1–8.
    [38] LI Jianbing, CHANDRASEKAR V, and WANG Xuesong. Determination of dominant-scattering raindrops’ size using dual-polarization radar observations[C]. 2018 IEEE International Conference on Computational Electromagnetics (ICCEM), Chengdu, China, 2018: 1–3.
    [39] HUERTA M P. NextGen implementation plan[R]. Federal Aviation Administration. 2016.
    [40] ASTHEIMER T, HILTON D, BALDONI C, et al. SESAR master plan[R]. DLM-0710-001-02-00, 2008.
    [41] 中国民用航空局空管行业管理办公室. 中国民航航空系统组块升级(ASBU)发展与实施策略[R]. IB-TM-2015-002, 2015.

    Guild Administration Office of CAAC. Development of Implimentation Stratigies of CAAC Aviation System Block Update (ASBU)[R]. IB-TM-2015-002, 2015.
    [42] 李健兵, 高航, 王涛, 等. 飞机尾流的散射特性与探测技术综述[J]. 雷达学报, 2017, 6(6): 660–672. doi: 10.12000/JR17068

    LI Jianbing, GAO Hang, WANG Tao, et al. A survey of the scattering characteristics and detection of aircraft wake vortices[J]. Journal of Radars, 2017, 6(6): 660–672. doi: 10.12000/JR17068
    [43] WANG Xuesong, LI Jianbing, WANG Tao, et al. Validity criterion for the Born approximation convergence in microscopy imaging: Comment[J]. Journal of the Optical Society of America A, 2011, 28(4): 662–664. doi: 10.1364/JOSAA.28.000662
    [44] WANG Xuesong, LI Jianbing, QU Longhai, et al. Temporal evolution of the RCS of aircraft wake vortices[J]. Aerospace Science and Technology, 2013, 24(1): 204–208. doi: 10.1016/j.ast.2011.11.008
    [45] LI Jianbing, SHEN Chun, GAO Hang, et al. Path Integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar[J]. Optics Express, 2020, 28(3): 4286–4306. doi: 10.1364/OE.382968
    [46] GAO Hang, LI Jianbing, CHAN P W, et al. Parameter-retrieval of dry-air wake vortices with a scanning Doppler Lidar[J]. Optics Express, 2018, 26(13): 16377–16392. doi: 10.1364/OE.26.016377
    [47] GAO Hang, LI Jianbing, CHAN P W, et al. Parameter retrieval of aircraft wake vortex based on its max-min distribution of Doppler velocities measured by a Lidar[J]. The Journal of Engineering, 2019, 2019(20): 6852–6855. doi: 10.1049/joe.2019.0539
    [48] LI Jianbing, WANG Xuesong, WANG Tao, et al. On an improved-Levin oscillatory quadrature method[J]. Journal of Mathematical Analysis and Applications, 2011, 380(2): 467–474. doi: 10.1016/j.jmaa.2011.03.055
    [49] LI Jianbing, WANG Xuesong, and WANG Tao. Modeling the dielectric constant distribution of wake vortices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 820–831. doi: 10.1109/TAES.2011.5751228
    [50] LI Jianbing, WANG Xuesong, WANG Tao, et al. High range resolution profile of simulated aircraft wake vortices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 116–129. doi: 10.1109/TAES.2012.6129624
    [51] LI Jianbing, WANG Tao, and WANG Xuesong. Fast evaluation of scattering oscillatory integrals over fan-shaped regions[J]. Applied Mathematics & Information Sciences, 2014, 8(5): 2321–2326.
    [52] LI Jianbing, WANG Xuesong, and WANG Tao. Evaluation of Cauchy principal value integrals of oscillatory kind[J]. Applied Mathematics and Computation, 2010, 217(6): 2390–2396. doi: 10.1016/j.amc.2010.07.039
    [53] LI Jianbing, WANG Xuesong, WANG Tao, et al. Delaminating quadrature method for multi-dimensional highly oscillatory integrals[J]. Applied Mathematics and Computation, 2009, 209(2): 327–338. doi: 10.1016/j.amc.2008.12.061
    [54] LI Jianbing, WANG Xuesong, WANG Tao, et al. Circulation retrieval of wake vortex under rainy condition with a vertically pointing radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1893–1906. doi: 10.1109/TAES.2017.2675198
    [55] LI Jianbing, WANG Tao, QU Longhai, et al. Circulation retrieval of wake vortex in fog with an upward-looking monostatic radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1): 169–180. doi: 10.1109/TAES.2015.140901
    [56] LI Jianbing, WANG Tao, LIU Zhongxun, et al. Circulation retrieval of wake vortex in fog with a side-looking scanning radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2242–2254. doi: 10.1109/TAES.2016.150635
    [57] LI Jianbing, WANG Xuesong, and QU Longhai. Calculation of physical optics integrals over NURBS surface using a delaminating quadrature method[J]. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2388–2397. doi: 10.1109/TAP.2012.2189728
    [58] LI Jianbing, WANG Xuesong, WANG Tao, et al. An improved Levin quadrature method for highly oscillatory integrals[J]. Applied Numerical Mathematics, 2010, 60(8): 833–842. doi: 10.1016/j.apnum.2010.04.009
    [59] LI Jianbing, WANG Xuesong, and WANG Tao. A universal solution to one-dimensional oscillatory integrals[J]. Science in China Series F: Information Sciences, 2008, 51(10): 1614–1622. doi: 10.1007/s11432-008-0121-2
    [60] LI Jianbing, WANG Xuesong, XIAO Shunping, et al. A rapid solution of a kind of 1D Fredholm oscillatory integral equation[J]. Journal of Computational and Applied Mathematics, 2012, 236(10): 2696–2705. doi: 10.1016/j.cam.2012.01.007
    [61] SHARIFF K and WRAY A. Analysis of the radar reflectivity of aircraft vortex wakes[J]. Journal of Fluid Mechanics, 2002, 463: 121–161. doi: 10.1017/S0022112002008674
    [62] MYERS T J, SCALES W A, and MARSHALL R E. Determination of aircraft wake vortex radar cross section due to coherent Bragg scatter from mixed atmospheric water vapor[J]. Radio Science, 1999, 34(1): 103–111. doi: 10.1029/98RS02776
    [63] FILON L N G. On a quadrature formula for trigonometric integrals[J]. Proceedings of the Royal Society of Edinburgh, 1929, 49: 38–47.
    [64] LEVIN D. Procedures for computing one-and two-dimensional integrals of functions with rapid irregular oscillations[J]. Mathematics of Computation, 1982, 38(158): 531–538. doi: 10.1090/S0025-5718-1982-0645668-7
    [65] ISERLES A and LEVIN D. Asymptotic expansion and quadrature of composite highly oscillatory integrals[J]. Mathematics of Computation, 2011, 80(273): 279–296.
    [66] LIU Zhongxun, JEANNIN N, VINCENT F, et al. Modeling the radar signature of raindrops in aircraft wake vortices[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(3): 470–484. doi: 10.1175/JTECH-D-11-00220.1
  • 加载中
图(5)
计量
  • 文章访问数:  2529
  • HTML全文浏览量:  1416
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-01
  • 修回日期:  2020-06-21
  • 网络出版日期:  2021-02-25

目录

    /

    返回文章
    返回