多方位角观测星载SAR技术研究

陈杰 杨威 王鹏波 曾虹程 门志荣 李春升

陈杰, 杨威, 王鹏波, 等. 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9(2): 205–220. doi: 10.12000/JR20015
引用本文: 陈杰, 杨威, 王鹏波, 等. 多方位角观测星载SAR技术研究[J]. 雷达学报, 2020, 9(2): 205–220. doi: 10.12000/JR20015
CHEN Jie, YANG Wei, WANG Pengbo, et al. Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9(2): 205–220. doi: 10.12000/JR20015
Citation: CHEN Jie, YANG Wei, WANG Pengbo, et al. Review of novel azimuthal multi-angle observation spaceborne SAR technique[J]. Journal of Radars, 2020, 9(2): 205–220. doi: 10.12000/JR20015

多方位角观测星载SAR技术研究

doi: 10.12000/JR20015
基金项目: 国家自然科学基金(61861136008, 61701012)
详细信息
    作者简介:

    陈 杰(1973–),男,河南郑州人,博士,教授。2002年在北京航空航天大学电子信息工程学院获博士学位,现为北京航空航天大学教授。主要研究方向包括:高分辨率宽覆盖星载SAR成像探测机理、超高分辨率星载SAR成像理论与方法、星载SAR电离层效应精细补偿等。发表SCI论文近60篇,授权发明专利30余项。曾获得军队科技进步一等奖1项、国防科技进步二等奖1项、霍英东青年教师奖等。E-mail: chenjie@buaa.edu.cn

    杨 威(1983–),男,湖北宜昌人,博士,副教授。北京航空航天大学,信号与信息处理专业,主要从事星载SAR高分辨率雷达信号仿真与成像技术、新体制雷达技术的研究。E-mail: yangweigigi@buaa.edu.cn

    王鹏波(1979–),男,江西波阳人,副教授。研究方向为新体制合成孔径雷达成像,高分辨率雷达成像处理技术,多元信息融合技术。E-mail: wangpb7966@buaa.edu.cn

    曾虹程(1989–),男,四川宣汉人,博士,讲师。2016年在北京航空航天大学电子信息工程学院获博士学位,现为北京航空航天大学讲师。主要研究星载SAR成像处理、外辐射源雷达运动目标探测、星载SAR闪烁补偿等。发表SCI论文6篇,授权发明专利7项。E-mail: zenghongcheng@buaa.edu.cn

    门志荣(1988–),男,山东莱西人,博士,北京航空航天大学,信号与信息处理专业,主要从事新体制成像雷达系统设计和仿真技术等方面的研究工作。E-mail: menzhirong@buaa.edu.cn

    李春升(1963–),男,天津人,北京航空航天大学教授,博士生导师,主要从事星载SAR系统总体与仿真、多源遥感图像信息融合、信息获取与处理等方面的研究工作。E-mail: lichunsheng@buaa.edu.cn

    通讯作者:

    杨威 yangweigigi@buaa.edu.cn

    李春升 lichunsheng@buaa.edu.cn

  • 责任主编:王宇 Corresponding Editor: WANG Yu
  • 中图分类号: TN957

Review of Novel Azimuthal Multi-angle Observation Spaceborne SAR Technique

Funds: The National Natural Science Foundation of China (NSFC)(61861136008, 61701012)
More Information
  • 摘要: 该文针对多方位角观测星载SAR新技术进行综述。首先分析了当前国内外SAR卫星发展现状和趋势,并从多个角度对比综述了其对地观测的能力。在此基础上,结合当前应用需求对多方位角观测星载SAR工作新模式进行了综述,解析其工作机理,并结合试验结果总结分析了多方位角观测星载SAR在目标散射信息、几何信息和运动信息获取方面的优势。最后,对多方位角观测星载SAR技术的发展进行了总结和展望。

     

  • 图  1  镶嵌模式工作示意图

    Figure  1.  Illustration of mosaic mode

    图  2  WorldSAR星座工作示意图

    Figure  2.  Illustration of WorldSAR constellation

    图  3  SAR-lupe卫星星座

    Figure  3.  Illustration of SAR-lupe constellation

    图  4  Capella卫星星座构成示意图

    Figure  4.  Illustration of Capella constellation

    图  5  斜距随扫描角度变化曲线

    Figure  5.  Slant range varying with squint angle

    图  6  回波窗数据接收示意图

    Figure  6.  Illustration of the receive window

    图  7  固定脉冲间隔与方位非均匀采样体制下脉冲发射与回波接收示意图

    Figure  7.  Illustration of receiving signal for uniform and non-uniform sampling strategy

    图  8  点阵目标场景回波信号仿真结果

    Figure  8.  Echo data of point targets using uniform and non-uniform sampling

    图  9  星载SAR多方位角观测

    Figure  9.  Illustrations of azimuthal multi-angles observation

    图  10  多方位角观测动目标检测、跟踪模式

    Figure  10.  Movingt target detection mode based on azimuthal multi-angles observation

    图  11  速度矢量提取流程图

    Figure  11.  The flowchart of velocity vector estimation

    图  12  方位向速度估计流程图

    Figure  12.  The flowchart of azimuth velocity estimation

    图  13  距离向速度估计流程图

    Figure  13.  The flowchart of range velocity estimation

    图  14  多角度动目标序贯图像(高铁)

    Figure  14.  Azimuthal multi-angles SAR images (high-speed railway)

    图  15  多方位角观测SAR图像斑点噪声抑制流程图

    Figure  15.  The flowchart for speckle noise suppression based on azimuthal multi-angles SAR images

    图  16  滤波处理结果

    Figure  16.  Filtering results

    图  17  斜视条件下旁瓣抑制处理流程

    Figure  17.  The flowchart for sidelobe suppression in squint

    图  18  斜视条件下旁瓣抑制处理试验结果

    Figure  18.  Sidelobe suppression results

    图  19  多方位角观测星载SAR信噪比提升流程图

    Figure  19.  The flowchart of SNR improvement based on azimuthal multi-angles observation

    图  20  多方位角观测SAR图像目标信噪比提升

    Figure  20.  SNR improvement result based on azimuthal multi-angles observation

    图  21  多方位角观测SAR超分辨率处理结果

    Figure  21.  Super-resolution processing result based on azimuthal multi-angles observation

    图  22  几何观测模型

    Figure  22.  Geometric observation model

    图  23  多方位角SAR图像配准流程图

    Figure  23.  The flowchart of image registration based on azimuthal multi-angles observation

    图  24  立体定位仿真结果示意图

    Figure  24.  Three dimension location results

    图  25  多方位角观测星载SAR三维成像处理流程

    Figure  25.  The flowchart of three dimension imaging based on azimuthal multi-angles observation

    图  26  多方位角观测SAR三维成像仿真结果示意图

    Figure  26.  Three dimension imaging result based on azimuthal multi-angles observation

    表  1  辐射分辨率分析结果

    Table  1.   Radiation resolution analysis results

    等效视数辐射分辨率(dB)
    原图0.973.03
    单帧5.301.56
    2幅29.640.73
    3幅43.280.61
    4幅52.270.56
    下载: 导出CSV
  • [1] FRANCESCHETTI G, GUIDA R, IODICE A, et al. Efficient simulation of hybrid stripmap/spotlight SAR raw signals from extended scenes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2385–2396. doi: 10.1109/TGRS.2004.834763
    [2] KRIEGER G, GEBERT N, and MOREIRA A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. doi: 10.1109/LGRS.2004.832700
    [3] PRATS P, SCHEIBER R, MITTERMAYER J, et al. Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 770–780. doi: 10.1109/TGRS.2009.2027701
    [4] DE ZAN F and GUARNIERI A M. TOPSAR: Terrain observation by progressive scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2352–2360. doi: 10.1109/TGRS.2006.873853
    [5] META A, MITTERMAYER J, STEINBRECHER U, et al. Investigations on the TOPSAR acquisition mode with TerraSAR-X[C]. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007.
    [6] MITTERMAYER J and WOLLSTADT S. Simultaneous bi-directional SAR acquisition with TerraSAR-X[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010.
    [7] MITTERMAYER J, PRATS P, WOLLSTADT S, et al. Approach to velocity and acceleration measurement in the bi-directional SAR imaging mode[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012.
    [8] MITTERMAYER J, WOLLSTADT S, PRATS-IRAOLA P, et al. Bidirectional SAR imaging mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 601–614. doi: 10.1109/TGRS.2012.2202669
    [9] MITTERMAYER J, WOLLSTADT S, PRATS-IRAOLA P, et al. The TerraSAR-X staring spotlight mode concept[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3695–3706. doi: 10.1109/TGRS.2013.2274821
    [10] KRAUS T, BRAUTIGAM B, MITTERMAYER J, et al. TerraSAR-X staring spotlight mode optimization and global performance predictions[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(3): 1015–1027. doi: 10.1109/JSTARS.2015.2431821
    [11] MITTERMAYER J, KRAUS T, LÓPEZ-DEKKER P, et al. Wrapped staring spotlight SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 5745–5764. doi: 10.1109/TGRS.2016.2571340
    [12] MOSSING J C and ROSS T D. Evaluation of SAR ATR algorithm performance sensitivity to MSTAR extended operating conditions[C]. Proceedings of SPIE 3370, Algorithms for Synthetic Aperture Radar Imagery V, Orlando, USA, 1998: 13.
    [13] ERTIN E, AUSTIN C D, SHARMA S, et al. GOTCHA experience report: Three-dimensional SAR imaging with complete circular apertures[C]. Proceedings of SPIE 6568, Algorithms for Synthetic Aperture Radar Imagery XIV, Orlando, USA, 2007: 656802.
    [14] 洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109

    HONG WEN, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109
    [15] LIU Min, LI Zhou, and LIU Lu. A novel sidelobe reduction algorithm based on two-dimensional sidelobe correction using D-SVA for squint SAR images[J]. Sensors, 2018, 18(783): 783.
    [16] WANG Yamin, YANG Wei, CHEN Jie, et al. Azimuth sidelobes suppression using multi-azimuth angle synthetic aperture radar images[J]. Sensors, 2018, 19(12): 2764.
    [17] YANG Wei, CHEN Jie, LIU Wei, et al. Moving target azimuth velocity estimation for the MASA mode based on sequential SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(6): 2780–2790. doi: 10.1109/JSTARS.2016.2641744
    [18] YANG Wei and MA Xiaocong. A novel spaceborne SAR imaging mode for moving target velocity estimation[C]. 2016 International Conference on Control, Automation and Information Sciences, Ansan, South Korea, 2016.
    [19] ANSARI H, DE ZAN F, PARIZZI A, et al. Measuring 3-D surface motion with future SAR systems based on reflector antennae[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 272–276. doi: 10.1109/LGRS.2015.2509440
    [20] JUNG H S, LU Zhong, SHEPHERD A, et al. Simulation of the superSAR multi-azimuth synthetic aperture radar imaging system for precise measurement of three-dimensional earth surface displacement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(11): 6196–6206. doi: 10.1109/TGRS.2015.2435776
    [21] 邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [22] SHARAY Y and NAFTALY U. TECSAR: Design considerations and programme status[J]. IEE Proceedings - Radar, Sonar and Navigation, 2006, 153(2): 117–121. doi: 10.1049/ip-rsn:20045124
    [23] LEVY-NATHANSOHN R and NAFTALY U. Overview of the TECSAR satellite hardware and mosaic mode[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 423–426. doi: 10.1109/LGRS.2008.915926
    [24] NAFTALY U and ORON O. TECSAR-program status[C]. 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel Aviv, Israel, 2013.
    [25] NAFTALY U and ORON O. TECSAR-program status[C]. The 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014.
    [26] HOELLISCH D, BACH K, JANOTH J, et al. On the second generation of TerraSAR-X[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010.
    [27] HEER C and SCHAEFER C. TerraSAR-X next generation: Technology aspects[C]. The 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, South Korea, 2011.
    [28] GANTERT S, RIEGLER G, TEUFEL F, et al. TerraSAR-X, TanDEM-X, TerraSAR-X2 and their applications[C]. The 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, South Korea, 2011.
    [29] JANOTH J, GANTERT S, KOPPE W, et al. TerraSAR-X2- Mission overview[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012.
    [30] JANOTH J, GANTERT S, SCHRAGE T, et al. Terrasar next generation - Mission capabilities[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013.
    [31] GANTERT S, KERN A, DÜRING R, et al. The future of X-band SAR: TerraSAR-X next generation and WorldSAR constellation[C]. Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 2013.
    [32] JANOTH J, GANTERT S, SCHRAGE T, et al. From TerraSAR-X towards TerraSAR Next Generation[C]. 10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 2014.
    [33] JANOTH J, JOCHUM M, PETRAT L, et al. High resolution wide swath - the next generation X-band mission[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.
    [34] SANFOURCHE J P. ‘SAR-lupe’, an important German initiative[J]. Air & Space Europe, 2000, 2(4): 26–27.
    [35] PETRIE G. Current & future spaceborne SAR systems[C]. VIII International Scientific & Technical Conference “From Imagery to Map: Digital Photogrammetric Technologies, Porec, Croatia, 2008.
    [36] 孙佳. 国外合成孔径雷达卫星发展趋势分析[J]. 装备指挥技术学院学报, 2007, 18(1): 67–70.

    SUN Jia. Analysis of the SAR satellite development tendency in the world[J]. Journal of the Academy of Equipment Command &Technology, 2007, 18(1): 67–70.
    [37] BAYIR I. A glimpse to future commercial spy satellite systems[C]. The 2009 4th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2009.
    [38] STRINGHAM C, FARQUHARSON G, CASTELLETTI D, et al. The capella X-band SAR constellation for rapid imaging[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019.
    [39] 高庆军, 宋泽考. 美国“空间雷达”计划发展动态[J]. 国际太空, 2007(5): 5–8.

    GAO Qingjun and SONG Zekao. The development of American spaceborne radar program[J]. Space International, 2007(5): 5–8.
    [40] United States Government Accountability Office. Assessments of selected weapon programs[R]. GAO-15-342SP, 2015.
    [41] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6–43. doi: 10.1109/MGRS.2013.2248301
    [42] 王鹏波, 陈杰, 李景文, 等. 一种基于方位非均匀采样的滑动聚束SAR工作体制实现方法[P]. 中国, CN201010051678, 2010.

    WANG Pengbo, CHEN Jie, LI Jingwen, et al. A realization method of sliding spotlight SAR based on azimuth nonuniform sampling[P]. China, CN201010051678, 2010.
    [43] WANG Pengbo, LIU Wei, CHEN Jie, et al. A raster scan SAR system for ultra-wide swath imaging[J]. Remote Sensing Letters, 2014, 5(9): 833–842. doi: 10.1080/2150704X.2014.971904
    [44] MEN Zhirong, WANG Pengbo, LI Chunsheng, et al. High-temporal-resolution high-spatial-resolution spaceborne SAR based on continuously varying PRF[J]. Sensors, 2017, 17(8): 1700. doi: 10.3390/s17081700
    [45] ZENG Hongcheng, CHEN Jie, LIU Wei, et al. Modified omega-k algorithm for high-speed platform highly-squint staggered SAR based on azimuth non-uniform interpolation[J]. Sensors, 2015, 15(2): 3750–3765. doi: 10.3390/s150203750
    [46] 陈世阳, 黄丽佳, 俞雷. 基于改进SINC插值的变PRF采样聚束SAR成像[J]. 雷达学报, 2019, 8(4): 527–536. doi: 10.12000/JR18095

    CHEN Shiyang, HUANG Lijia, and YU Lei. A novel sinc interpolation for continuous PRF sampled sequences reconstruction in spotlight SAR[J]. Journal of Radars, 2019, 8(4): 527–536. doi: 10.12000/JR18095
    [47] MCCORKLE J W and ROFHEART M. Order N2 log(N) backprojector algorithm for focusing wide-angle wide-bandwidth arbitrary-motion synthetic aperture radar[C]. SPIE 2747, Radar Sensor Technology, Orlando, USA, 1996: 25–36.
    [48] LANARI R, HENSLEY S, and ROSEN P A. Chirp z-transform based SPECAN approach for phase-preserving ScanSAR image generation[J]. IEE Proceedings - Radar, Sonar and Navigation, 1998, 145(5): 254–261. doi: 10.1049/ip-rsn:19982218
    [49] JIN M J Y and WU C. A SAR correlation algorithm which accommodates large-range migration[J]. IEEE Transactions on Geoscience and Remote Sensing, 1984, GE-22(6): 592–597. doi: 10.1109/TGRS.1984.6499176
    [50] RANEY R K, RUNGE H, BAMLER R, et al. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4): 786–799. doi: 10.1109/36.298008
    [51] DAVIDSON G W, CUMMING I G, ITO M R. A chirp scaling approach for processing squint mode SAR data[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1): 121–133. doi: 10.1109/7.481254
    [52] 王国栋, 周荫清, 李春升. 星载聚束式SAR改进的Frequency Scaling成像算法[J]. 电子学报, 2003, 31(3): 381–385. doi: 10.3321/j.issn:0372-2112.2003.03.017

    WANG Guodong, ZHOU Yinqing, and LI Chunsheng. Refined frequency scaling algorithm for spaceborne spotlight SAR imaging[J]. Acta Electronica Sinica, 2003, 31(3): 381–385. doi: 10.3321/j.issn:0372-2112.2003.03.017
    [53] 郑义明. 用频率变标算法处理大斜视角SAR数据[J]. 系统工程与电子技术, 2000, 22(6): 8–11, 65. doi: 10.3321/j.issn:1001-506X.2000.06.003

    ZHENG Yiming. Large squint SAR data processing using frequency scaling algorithm[J]. Systems Engineering and Electronics, 2000, 22(6): 8–11, 65. doi: 10.3321/j.issn:1001-506X.2000.06.003
    [54] BAMLER R. A comparison of Range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706–713. doi: 10.1109/36.158864
    [55] 叶晓东, 朱兆达. 一种分块处理斜视SAR成像方法[J]. 现代雷达, 1997, 19(5): 23–29, 47.

    YE Xiaodong and ZHU Zhaoda. An approach for squint SAR imaging based on block processing[J]. Modern Radar, 1997, 19(5): 23–29, 47.
    [56] 曾海彬, 曾涛, 何佩琨. 星载聚束SAR频域极坐标算法研究[J]. 现代雷达, 2006, 28(1): 28–30. doi: 10.3969/j.issn.1004-7859.2006.01.009

    ZENG Haibin, ZENG Tao, and HE Peikun. A study on frequency domain polar format algorithm of spaceborne spotlight SAR[J]. Modern Radar, 2006, 28(1): 28–30. doi: 10.3969/j.issn.1004-7859.2006.01.009
    [57] 李春升, 杨威, 王鹏波. 星载SAR成像处理算法综述[J]. 雷达学报, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071

    LI Chunsheng, YANG Wei, and WANG Pengbo. A review of spaceborne SAR algorithm for image formation[J]. Journal of Radars, 2013, 2(1): 111–122. doi: 10.3724/SP.J.1300.2013.20071
    [58] CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/TGRS.2012.2201260
    [59] SUCHANDT S, RUNGE H, BREIT H, et al. Automatic extraction of traffic flows using TerraSAR-X along-track interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 807–819. doi: 10.1109/TGRS.2009.2037919
    [60] ROSENBERG L and GRAY D A. Constrained fast-time STAP for interference suppression in multichannel SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(3): 1792–1805. doi: 10.1109/TAES.2013.6558020
    [61] MITTERMAYER J and WOLLSTADT S. Simultaneous bi-directional SAR acquisition with TerraSAR-X[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010.
    [62] 张敬. 多源图像超分辨率重建研究[D]. [博士论文], 中国科学技术大学, 2015: 1–30.

    ZHANG Jing. A study on super-resolution of multi-source images[D]. [Ph. D. dissertation], University of Science and Technology of China, 2015: 1–30.
  • 加载中
图(26) / 表(1)
计量
  • 文章访问数:  5086
  • HTML全文浏览量:  2134
  • PDF下载量:  861
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-09
  • 修回日期:  2020-04-27
  • 网络出版日期:  2020-04-01

目录

    /

    返回文章
    返回