-
摘要: 近年来,正交频分复用(OFDM)信号由于具有正交性以及大带宽特性被广泛应用于合成孔径成像(SAR)研究中。相比传统SAR成像,由于其信号的独特性,OFDM SAR在成像上具有一定优势,但也面临着很多挑战。该文根据天线配置的不同,分别对单天线OFDM SAR成像和多天线MIMO OFDM SAR成像所面临的问题进行了梳理与总结,重点讨论了基于OFDM信号和基于循环前缀(CP)OFDM信号的SAR/MIMO SAR成像方法,并分析了OFDM SAR未来的可能发展方向。
-
关键词:
- 正交频分复用 /
- 合成孔径成像 /
- 循环前缀-正交频分复用
Abstract: In recent years, Orthogonal Frequency Division Multiplexing (OFDM) signal has been widely used in Synthetic Aperture Radar (SAR) imaging research due to its orthogonality and large bandwidth. Compared with the traditional SAR, OFDM SAR has certain advantages in imaging applications because of its unique signal characteristics. Nevertheless, OFDM SAR faces many challenges. In this paper, on the basis of different antenna configurations, the problems and studies of single-antenna OFDM SAR imaging and multi-antenna MIMO OFDM SAR imaging are reviewed. The imaging methods of SAR/MIMO SAR based on OFDM and cyclic prefix OFDM signals are discussed, and some possible future research directions of OFDM SAR are presented. -
表 1 OFDM SAR和CP-OFDM SAR成像的研究重点
Table 1. Research focus of OFDM SAR and CP-OFDM SAR
研究重点 技术细节 OFDM SAR
成像方法干扰与杂波抑制方法 利用混沌编码的信号优化设计实现干扰抑制;通过频域编码,增加频率多样性,改善强杂波环境下的成像效果。 多普勒频移处理方法 采用多普勒补偿技术缓解频移对OFDM SAR成像的影响;采用低多普勒敏感信号(FBMC),抑制频移的影响。 距离模糊抑制方法 利用遗传算法优化设计发射信号实现距离模糊抑制;发射子脉冲独立编码、独立匹配滤波,实现子条带无模糊且高分辨,通过子条带拼接实现无模糊宽幅成像。 相位历程提取方法 采用最小二乘估计(LSE)和MUSIC-LSE的方法提取相位历程,提高单/多目标方位向成像的抗干扰和抗噪声性能。 CP-OFDM SAR
成像方法不采用SAR成像中的传统匹配滤波算法,而是通过引入CP来实现IRCI-free距离像重构,大大改善传统匹配滤波算法的高旁瓣问题。 表 2 MIMO OFDM SAR和MIMO CP-OFDM SAR成像的研究重点
Table 2. Research focus of MIMO OFDM SAR and MIMO CP-OFDM SAR
研究重点 技术细节 MIMO OFDM
成像研究OFDM-LFM正交
发射波形设计基于交错正交频分复用(I-OFDM)原理结合LFM对信号进行优化设计,实现恒模、大且稳定的发射功率,研究其在MIMO SAR中调制解调以及成像方法;基于OFDM-LFM信号,结合空时编码相关理论,保证子阵列间的相互正交,通过匹配滤波及多波束形成算法实现宽测绘带与高分辨成像。 OFDM正交发射
波形设计提出随机子载波正交信号集设计方法,通过优化设计得到子载波的频谱分布结构和加权方案,保证发射端各通道具有较低相关性,改善峰值模糊等问题。 MIMO CP-OFDM
成像研究MIMO CP-OFDM雷达是在共享频谱的情况下,实现不同天线发射信号在离散频域里的正交性,提出脉冲压缩和脉冲相干积累协同方法,理论上可消除不同发射信号的同频串扰,消除距离旁瓣串扰,且达到多天线的空间分集。 -
[1] AXELSSON S R J. Analysis of random step frequency radar and comparison with experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(4): 890–904. doi: 10.1109/TGRS.2006.888865 [2] GARMATYUK D S and NARAYANAN R M. Ultra-wideband continuous-wave random noise arc-SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2543–2552. doi: 10.1109/TGRS.2002.807009 [3] XU Xiaojian and NARAYANAN R M. FOPEN SAR imaging using UWB step-frequency and random noise waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(4): 1287–1300. doi: 10.1109/7.976965 [4] KRIEGER G. MIMO-SAR: Opportunities and pitfalls[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2628–2645. doi: 10.1109/TGRS.2013.2263934 [5] WANG Wenqin. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 28(8): 18–23. doi: 10.1109/MAES.2013.6575407 [6] 邢孟道, 保铮, 李真芳, 等. 雷达成像算法进展[M]. 北京: 电子工业出版社, 2014.XING Mengdao, BAO Zheng, LI Zhenfang, et al. The Development of Radar Imaging Algorithm[M]. Beijing: Publishing House of Electronics Industry, 2014. [7] BUHARI M D, TIAN Guiyun, TIWARI R, et al. OFDM SAR multiple targets image reconstruction using MUSIC-LSE algorithm[C]. The 2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, Aachen, Germany, 2016: 42–46. doi: 10.1109/CoSeRa.2016.7745696. [8] GARMATYUK D S. Simulated imaging performance of UWB SAR based on OFDM[C]. 2006 IEEE International Conference on Ultra-Wideband, Waltham, UK, 2006: 237–242. doi: 10.1109/ICU.2006.281556. [9] GARMATYUK D. Ultrawideband imaging radar based on OFDM: System simulation analysis[C]. The SPE 6210, Radar Sensor Technology X, Florida, USA, 2006: 621007. doi: 10.1117/12.660274. [10] GARMATYUK D, SCHUERGER J, MORTON Y T, et al. Feasibility study of a multi-carrier dual-use imaging radar and communication system[C]. 2007 European Microwave Conference, Munich, Germany, 2007: 1473–1476. doi: 10.1109/EUMC.2007.4405484. [11] HOSSAIN A, ELSHAFIEY I, ALKANHAL M A, et al. Adaptive UWB-OFDM synthetic aperture radar[C]. 2011 Saudi International Electronics, Communications and Photonics Conference, Riyadh, Saudi Arabia, 2011: 1–6. doi: 10.1109/SIECPC.2011.5876887. [12] RICHÉ V, MÉRIC S, BAUDAIS J Y, et al. Investigations on OFDM signal for range ambiguity suppression in SAR configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4194–4197. doi: 10.1109/TGRS.2013.2280190 [13] RICHÉ V, MÉRIC S, BAUDAIS J Y, et al. Optimization of OFDM SAR signals for range ambiguity suppression[C]. The 2012 9th European Radar Conference, Amsterdam, Netherlands, 2012: 278–281. [14] RICHÉ V, MÉRIC S, and POTTIER É. Range ambiguity suppression in an OFDM SAR configuration[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 115–118. [15] RICHÉ V, MÉRIC S, POTTIER E, et al. OFDM signal design for range ambiguity suppression in SAR configuration[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 2156–2159. doi: 10.1109/IGARSS.2012.6351076. [16] EL SANHOURY A and MABROUK A H. Performance improvement of pulsed OFDM UWB systems using ATF coding[C]. International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, 2010: 1–4. doi: 10.1109/ICCCE.2010.5556867. [17] SCHUERGER J and GARMATYUK D. Multifrequency OFDM SAR in presence of deception jamming[J]. EURASIP Journal on Advances in Signal Processing, 2010: 451851. doi: 10.1155/2010/451851 [18] ZHANG Tianxian and XIA Xiang-Gen. OFDM synthetic aperture radar imaging with sufficient cyclic prefix[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 394–404. doi: 10.1109/TGRS.2014.2322813 [19] ZHANG Tianxian, XIA Xiang-Gen, and KONG Lingjiang. IRCI free range reconstruction for SAR imaging with arbitrary length OFDM pulse[J]. IEEE Transactions on Signal Processing, 2014, 62(18): 4748–4759. doi: 10.1109/TSP.2014.2339796 [20] PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill, 2001. [21] SOUMEKH M. Synthetic Aperture Radar Signal Processing[M]. New York: Wiley, 1999. [22] 范崇祎, 黄晓涛. 基于编码项补偿的OFDM信号SAR成像[J]. 电子与信息学报, 2012, 34(8): 1833–1839. doi: 10.3724/SP.J.1146.2011.01256FAN Chongyi and HUANG Xiaotao. The imaging of SAR based on OFDM waveforms signal with the compensation of coding term[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1833–1839. doi: 10.3724/SP.J.1146.2011.01256 [23] HOSSAIN A, ELSHAFIEY I, and ALKANHAL M A. High resolution UWB SAR based on OFDM architecture[C]. The 2011 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, Seoul, South Korea, 2011: 1–4. [24] FAN Chongyi, HUANG Xiaotao, JIN Tian, et al. Ambigutiy function of SAR based on OFDM waveform[C]. 2010 IEEE Radar Conference, Washington, USA, 2010: 397–401. doi: 10.1109/RADAR.2010.5494590. [25] 范崇祎. 单/双通道低频SAR/GMTI技术研究[D]. [博士论文], 国防科学技术大学, 2012.FAN Chongyi. Research on low frequency SAR/GMTI techniques with single/dual-channel data[D]. [Ph.D. dissertation], National University of Defense Technology, 2012. [26] YU Xiang, FU Yaowen, NIE Lei, et al. A waveform with low intercept probability for OFDM SAR[C]. 2016 Progress in Electromagnetic Research Symposium, Shanghai, China, 2016: 2054–2058. doi: 10.1109/PIERS.2016.7734869. [27] HOSSAIN A, ELSHAFIEY I, ALKANHAL M A, et al. Anti-jamming capabilities of UWB-OFDM SAR[C]. The 2011 8th European Radar Conference, Manchester, UK, 2011: 313–316. [28] FENG Xiangzhi and XU Xiaojian. ECCM performance analysis of chaotic coded orthogonal frequency division multiplexing (COFDM) SAR[C]. The SPIE 8021, Radar Sensor Technology XV, Orlando, USA, 2011: 80211K. doi: 10.1117/12.883637. [29] HOSSAIN A, ELSHAFIEY I, and ALKANHAL M A. High-resolution and jamming-resistant UWB-OFDM SAR imaging[C]. 2011 IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, 2011: 557–561. doi: 10.1109/ISSPIT.2011.6151624. [30] BUFLER T D and GARMATYUK D S. Image-based target detection with multispectral UWB OFDM radar[J]. Proceedings of SPIE 8361, Radar Sensor Technology XVI, Baltimore, 2012: 83610T. doi: 10.1117/12.918710 [31] 王杰, 梁兴东, 丁赤飚, 等. OFDM SAR多普勒补偿方法研究[J]. 电子与信息学报, 2013, 35(12): 3037–3040. doi: 10.3724/SP.J.1146.2012.01547WANG Jie, LIANG Xingdong, DING Chibiao, et al. Investigation on the doppler compensation in OFDM SAR[J]. Journal of Electronics &Information Technology, 2013, 35(12): 3037–3040. doi: 10.3724/SP.J.1146.2012.01547 [32] LI Keyong, PILLAI U, and HIMED B. Moving target geolocation in bistatic/passive SAR images using ATI[C]. 2015 IEEE Radar Conference, Arlington, USA, 2015: 45–50. doi: 10.1109/RADAR.2015.7130968. [33] 朱柯弘, 王杰, 梁兴东, 等. 用于SAR与通信一体化系统的滤波器组多载波波形[J]. 雷达学报, 2018, 7(5): 602–612. doi: 10.12000/JR18038ZHU Kehong, WANG Jie, LIANG Xingdong, et al. Filter bank multicarrier waveform used for integrated SAR and communication systems[J]. Journal of Radars, 2018, 7(5): 602–612. doi: 10.12000/JR18038 [34] ZHU Kehong, WANG Jie, LIANG Xingdong, et al. Joint SAR imaging and wireless communication using the FBMC chirp waveform[J]. Science China Information Sciences, 2020, 63(4): 149302. doi: 10.1007/s11432-018-9830-1 [35] 李小萍. 基于OFDM的合成孔径雷达距离模糊抑制[J]. 舰船电子对抗, 2018, 41(2): 32–36. doi: 10.16426/j.cnki.jcdzdk.2018.02.007LI Xiaoping. Range ambiguity suppression of SAR based on OFDM[J]. Shipboard Electronic Countermeasure, 2018, 41(2): 32–36. doi: 10.16426/j.cnki.jcdzdk.2018.02.007 [36] GARMATYUK D and BRENNEMAN M. Slow-time SAR signal processing for UWB OFDM radar system[C]. 2010 IEEE Radar Conference, Washington, USA, 2010: 853–858. doi: 10.1109/RADAR.2010.5494502. [37] GARMATYUK D. Cross-range SAR reconstruction with multicarrier OFDM signals[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(5): 808–812. doi: 10.1109/LGRS.2011.2182176 [38] GARMATYUK D and BRENNEMAN M. Adaptive multicarrier OFDM SAR signal processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3780–3790. doi: 10.1109/TGRS.2011.2165546 [39] JAMESON B, GARMATYUK D, MORTON Y T J, et al. Short-range rotational sar imaging of indoor environments using UWB OFDM sensor[C]. 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1–6. doi: 10.1109/RADAR.2013.6586021. [40] BUHARI M D and MUQAIBEL A H. SAR multiple targets imaging using UWB OFDM signals[C]. The 2014 9th International Symposium on Communication Systems, Networks & Digital Sign, Manchester, UK, 2014: 485–490. doi: 10.1109/CSNDSP.2014.6923878. [41] BUHARI M D, TIAN Guiyun, TIWARI R, et al. Multicarrier SAR image reconstruction using integrated MUSIC-LSE algorithm[J]. IEEE Access, 2018, 6: 22827–22838. doi: 10.1109/ACCESS.2018.2817359 [42] 郭赛. 成像雷达通信一体化共享信号设计与研究[D]. [硕士论文], 哈尔滨工业大学, 2016.GUO Sai. Research and design on integration signal sharing imaging radar and communication[D]. [Master dissertation], Harbin Institute of Technology, 2016. [43] DEL ARROYO J R G and JACKSON J A. WiMAX OFDM for passive SAR ground imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(2): 945–959. doi: 10.1109/TAES.2013.6494391 [44] GUTIÉRREZ DEL ARROYO J R. Passive synthetic aperture radar imaging using commercial OFDM communication networks[D]. [Ph.D. dissertation], Air Force Institute of Technology, 2012. [45] DEL ARROYO J R G and JACKSON J A. Collecting and processing WiMAX ground returns for SAR imaging[C]. 2013 IEEE Radar Conference, Ottawa, Canada, 2013: 1–6. doi: 10.1109/RADAR.2013.6586157. [46] LIU Kai, WANG Xianbin, SAMARABANDU J, et al. Enhanced WiMAX SAR system equipped with multiple modes[C]. The 7th International Conference on Information and Automation for Sustainability, Colombo, Sri Lanka, 2014: 1–6. doi: 10.1109/ICIAFS.2014.7069579. [47] LIU Kai, WANG Xianbin, SAMARABANDU J, et al. Monostatic airborne SAR using license exempt WiMAX transceivers[C]. The 2014 IEEE 80th Vehicular Technology Conference, Vancouver, Canada, 2014: 1–6. doi: 10.1109/VTCFall.2014.6966060. [48] YU Xiang, FU Yaowen, NIE Lei, et al. IRCI-free CP-OFDM SAR signal processing[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(1): 50–54. doi: 10.1109/LGRS.2018.2867484 [49] KHADHER G A B, ZIDOURI A C, and MUQAIBEL A H. UWB cyclic prefix-based OFDM synthetic aperture radar for foliage penetration[C]. The 2018 15th International Multi-Conference on Systems, Signals & Devices, Hammamet, Tunisia, 2018: 234–239. doi: 10.1109/SSD.2018.8570677. [50] KIM J H. Multipe-input multiple-output synthetic aperture radar for multimodal operation[R]. Institut für Hochfrequenztechnik und Elektronik, 2011. [51] KIM J, YOUNIS M, MOREIRA A, et al. A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(3): 568–572. doi: 10.1109/LGRS.2012.2213577 [52] WANG Zongbo, TIGREK F, KRASNOV O, et al. Interleaved OFDM radar signals for simultaneous polarimetric measurements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2085–2099. doi: 10.1109/TAES.2012.6237580 [53] KIM J, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/TGRS.2014.2360148 [54] HAN Kuoye, WANG Yanping, ZHANG Yingjie, et al. Diversity schemes analysis for MIMO synthetic aperture radar[C]. Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar, Tsukuba, Japan, 2013: 404–407. [55] HAN Kuoye, WANG Yanping, PENG Xueming, et al. Modulating multicarriers with chirp for MIMO-SAR waveform diversity design[C]. 2013 IEEE International Conference on Signal Processing, Communication and Computing, Kunming, China, 2013: 1–4. doi: 10.1109/ICSPCC.2013.6664000. [56] WANG Jie, LIANG Xingdong, and CHEN Longyong. MIMO SAR system using digital implemented OFDM waveforms[C]. 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2012: 7428–7431. doi: 10.1109/IGARSS.2012.6351944. [57] WANG Jie, CHEN Longyong, LIANG Xingdong, et al. Implementation of the OFDM chirp waveform on MIMO SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 5218–5228. doi: 10.1109/TGRS.2015.2419271 [58] WANG Jie, LIANG Xingdong, DING Chibiao, et al. An improved OFDM chirp waveform used for MIMO SAR system[J]. Science China Information Sciences, 2014, 57(6): 1–9. doi: 10.1007/s11432-013-4966-7 [59] WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561 [60] CHENG Pu, WANG Zhan, XIN Qin, et al. Imaging of FMCW MIMO radar with interleaved OFDM waveform[C]. The 2014 12th International Conference on Signal Processing, Hangzhou, China, 2014: 1944–1948. doi: 10.1109/ICOSP.2014.7015332. [61] WANG Wenqin. Space-time coding MIMO-OFDM SAR for high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(8): 3094–3104. doi: 10.1109/TGRS.2011.2116030 [62] WANG Wenqin. Mitigating range ambiguities in High-PRF SAR with OFDM waveform diversity[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(1): 101–105. doi: 10.1109/LGRS.2012.2193870 [63] WANG Wenqin. Wide-swath SAR remote sensing using a multiaperture antenna with waveform diversity[J]. International Journal of Remote Sensing, 2013, 34(12): 4142–4155. doi: 10.1080/01431161.2013.772674 [64] WANG Wenqin. MIMO SAR OFDM chirp waveform diversity design with random matrix modulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1615–1625. doi: 10.1109/TGRS.2014.2346478 [65] 王文钦, 程胜娟, 邵怀宗. 基于稀疏矩阵和相关函数联合优化的MIMO-OFDM线性调频波形复用设计与实现方法[J]. 雷达学报, 2015, 4(1): 1–10. doi: 10.12000/JR14148WANG Wenqin, CHENG Shengjuan, and SHAO Huaizong. MIMO-OFDM chirp waveform diversity design and implementation based on sparse matrix and correlation optimization[J]. Journal of Radars, 2015, 4(1): 1–10. doi: 10.12000/JR14148 [66] LIU Shangwen, ZHANG Zenghui, and YU Wenxian. A space-time coding scheme with time and frequency comb-like chirp waveforms for MIMO-SAR[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 391–403. doi: 10.1109/JSTSP.2016.2631945 [67] 刘尚文. 基于多维分集的MIMO-SAR波形设计[D]. [博士论文], 上海交通大学, 2017.LIU Shangwen. MIMO-SAR waveform design based on the multi-dimensional diversity[D]. [Ph.D. dissertation], Shanghai Jiao Tong University, 2017. [68] LIU Shangwen, ZHANG Zenghui, and YU Wenxian. Circulate shifted OFDM chirp waveform diversity design with digital beamforming for MIMO SAR[J]. Science China Information Sciences, 2017, 60(10): 102307. doi: 10.1007/s11432-016-9003-9 [69] WANG Ruijia, CHEN Jie, WANG Xing, et al. High-performance anti-retransmission deception jamming utilizing range direction Multiple Input and Multiple Output (MIMO) Synthetic Aperture Radar (SAR)[J]. Sensors, 2017, 17(1): 123. doi: 10.3390/s17010123 [70] 李毅, 王杰, 梁兴东. 基于OFDM的MIMO-SAR抗多径波形设计[J]. 雷达科学与技术, 2019, 17(1): 70–76, 82. doi: 10.3969/j.issn.1672-2337.2019.01.013LI Yi, WANG Jie, and LIANG Xingdong. Design of MIMO-SAR anti-multipath waveform based on OFDM[J]. Radar Science and Technology, 2019, 17(1): 70–76, 82. doi: 10.3969/j.issn.1672-2337.2019.01.013 [71] YANG Degui, LIANG Buge, ZHAO Dangjun, et al. MIMO-SAR orthogonal waveform set design based on random subcarriers OFDM signal[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(16): 1722–1738. doi: 10.1080/09205071.2017.1363002 [72] HOSSAIN M A, ELSHAFIEY I, and ALKANHAL M A S. High-resolution and wide-swath UWB OFDM MIMO synthetic aperture radar system using image fusion[J]. Journal of the Indian Society of Remote Sensing, 2015, 43(2): 225–242. doi: 10.1007/s12524-014-0406-4 [73] ALANSI M, ELSHAFIEY I, AL-SANIE A, et al. Multi-user detection for radar and communication multifunction system[J]. Journal of Circuits, Systems and Computers, 2015, 24(3): 1550038. doi: 10.1142/S0218126615500383 [74] BAUDAIS J Y, MÉRIC S, RICHÉ V, et al. MIMO-OFDM signal optimization for SAR imaging radar[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 103. doi: 10.1186/s13634-016-0402-7 [75] 杨卫星. 多天线合成孔径雷达成像研究[D]. [硕士论文], 哈尔滨工业大学, 2017.YANG Weixing. Research on multi-antenna SAR imaging[D]. [Master dissertation], Harbin Institute of Technology, 2017. [76] XIA Xiang-Gen, ZHANG Tianxian, and KONG Lingjiang. MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2276–2293. doi: 10.1109/TAES.2015.140477 [77] 张天贤. 距离旁瓣抑制的波形设计算法研究[D]. [博士论文], 电子科技大学, 2015.ZHANG Tianxian. Waveform design for range sidelobe suppression[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2015. [78] ZHANG Tianxian, XIA Xiang-Gen, and KONG Lingjiang. CP-based MIMO OFDM radar IRCI free range reconstruction using real orthogonal designs[J]. Science China Information Sciences, 2017, 60(2): 022301. doi: 10.1007/s11432-015-0979-5 [79] LIANG Xuebin and XIA Xiang-Gen. On the nonexistence of rate-one generalized complex orthogonal designs[J]. IEEE Transactions on Information Theory, 2003, 49(11): 2984–2988. doi: 10.1109/TIT.2003.818396 [80] WANG Haiquan and XIA Xiang-Gen. Upper bounds of rates of complex orthogonal space-time block codes[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2788–2796. doi: 10.1109/TIT.2003.817830 [81] LIANG Xuebin. Orthogonal designs with maximal rates[J]. IEEE Transactions on Information Theory, 2003, 49(10): 2468–2503. doi: 10.1109/TIT.2003.817426 [82] SU Weifeng, XIA Xiang-Gen, and LIU K J R. A systematic design of high-rate complex orthogonal space-time block codes[J]. IEEE Communications Letters, 2004, 8(6): 380–382. doi: 10.1109/LCOMM.2004.827429 [83] LU Kejie, FU Shengli, and XIA Xiang-Gen. Closed-form designs of complex orthogonal space-time block codes of rates (k+1)/(2k) for 2k–1 or 2k transmit antennas[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4340–4347. doi: 10.1109/TIT.2005.858943 [84] XIA Xiang-Gen. Multirate Filterbanks[M]. WEBSTER J W. Wiley Encyclopedia of Electrical and Electronics Engineering. New York: Wiley, 1999: 35–51. [85] CAO Yunhe, XIA Xiang-Gen, and WANG Shenghua. IRCI free colocated mimo radar based on sufficient cyclic prefix OFDM waveforms[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2107–2120. doi: 10.1109/TAES.2015.140526 [86] CAO Yunhe and XIA Xiang-Gen. IRCI-free MIMO-OFDM SAR using circularly shifted Zadoff-Chu sequences[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1126–1130. doi: 10.1109/LGRS.2014.2385693 [87] 禹卫东, 李红霞. MIMO-SAR回波分离方法分析[J]. 数据采集与处理, 2014, 29(4): 533–541. doi: 10.3969/j.issn.1004-9037.2014.04.007YU Weidong and LI Hongxia. Analysis of echo separation in MIMO-SAR[J]. Journal of Data Acquisition &Processing, 2014, 29(4): 533–541. doi: 10.3969/j.issn.1004-9037.2014.04.007 [88] HUANG Yan, LIAO Guisheng, XU Jingwei, et al. MIMO SAR OFDM chirp waveform design and GMTI with RPCA based method[J]. Digital Signal Processing, 2016, 51: 184–195. doi: 10.1016/j.dsp.2016.01.006 [89] HUANG Yan, LIAO Guisheng, XU Jingwei, et al. GMTI and parameter estimation for MIMO SAR system via fast interferometry RPCA method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(3): 1774–1787. doi: 10.1109/TGRS.2017.2768243